Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces
Abstract
:1. Introduction
2. Modelling and Simulation Method
2.1. Interatomic Potentials
2.2. Simulation Model
3. Results and Discussion
3.1. Self-Diffusion
3.2. Interdiffusion
4. Conclusions
- Al atoms diffused into SiC during diffusion and a layered structure of Al and SiC near the interface was produced.
- The interdiffusion coefficients increased with the increasing temperature and annealing time.
- The Si-terminated interface in the 6H–SiC/Al diffusion couple had a higher diffusivity than the C-terminated one, while the opposite was true for the 3C–SiC/Al diffusion couple.
- In terms of the interdiffusion, there was no significant difference between 6H–SiC/Al and 3C–SiC/Al.
- The average ternary interdiffusion coefficients of SiC/Al systems of SiC/Al systems were obtained for the first time using the concentration profiles of atoms during diffusion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ünlü, B.S. Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Mater. Des. 2008, 29, 2002–2008. [Google Scholar] [CrossRef]
- Bhattacharyya, J.J.; Mitra, R. Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al–SiC particulate composite. Mater. Sci. Eng. A 2012, 557, 92–105. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Dynamic pulse sensitivity of WC/Co composite. Compos. Struct. 2018, 203, 498–512. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading. Compos. Struct. 2018, 194, 494–508. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, L.; Zhang, L. High-throughput determination of high-quality interdiffusion coefficients in metallic solids: A review. J. Mater. Sci. 2020, 55, 10303–10338. [Google Scholar] [CrossRef]
- Chang, H.C.; Le May, C.Z.; Wallace, L.F. Use of silicon carbide in high temperature transistors. In Proceedings of the Conference of Silicon Carbide, Boston, MA, USA, 2–3 April 1959; pp. 496–507. [Google Scholar]
- Mokhov, E.; Vodakov, Y.; Lomakina, G. Aluminum diffusion in silicon carbide. Fiz. Tverd. Tela 1969, 11, 519–522. [Google Scholar]
- Van Opdorp, C. Anomalous diffusion of Al into SiC. Solid·State Electron. 1971, 14, 613–625. [Google Scholar] [CrossRef]
- Tajima, Y.; Kijima, K.; Kingery, W.D. Diffusion of ion implanted aluminum in silicon carbide. J. Chem. Phys. 1982, 77, 2592–2598. [Google Scholar] [CrossRef]
- Laurent, V.; Chatain, D.; Eustathopoulos, N. Wettability of SiC by aluminium and Al-Si alloys. J. Mater. Sci. 1987, 22, 244–250. [Google Scholar] [CrossRef]
- Narciso, J.; Garcia-Cordovilla, C.; Louis, E. Reactivity of thermally oxidized and unoxidized SiC particulates with aluminium-silicon alloys. Mater. Sci. Eng. B 1992, 15, 148–155. [Google Scholar] [CrossRef]
- Rajan, T.P.D.; Pillai, R.M.; Pai, B.C. Reinforcement coatings and interfaces in aluminium metal matrix composites. J. Mater. Sci. 1998, 33, 3491–3503. [Google Scholar] [CrossRef]
- Tham, L.M.; Gupta, M.; Cheng, L. Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater. 2001, 49, 3243–3253. [Google Scholar] [CrossRef]
- Lee, J.-C.; Ahn, J.-P.; Shim, J.-H.; Shi, Z.; Lee, H.-I. Control of the interface in SiC/Al composites. Scripta Mater. 1999, 41, 895–900. [Google Scholar] [CrossRef]
- Sozhamannan, G.G.; Prabu, S.B. Influence of interface compounds on interface bonding characteristics of aluminium and silicon carbide. Mater. Charact. 2009, 60, 986–990. [Google Scholar] [CrossRef]
- Soloviev, S.I.; Gao, Y.; Khlebnikov, Y.I.; Khlebnikov, I.I.; Sudarshan, T.S. Aluminum and boron diffusion into (1-100) face SiC substrates. Mater. Sci. Forum 2002, 389–393, 557–560. [Google Scholar] [CrossRef]
- Müting, J.; Bobal, V.; Willinger, M.G.; Zadeh, A.B.; Reidt, S.; Vines, L.; Grossner, U. Spatially resolved diffusion of aluminum in 4H-SiC during postimplantation annealing. IEEE Trans. Electron Devices 2020, 67, 4360–4365. [Google Scholar] [CrossRef]
- Dayananda, M.A.; Sohn, Y.H. A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple. Metall. Mater. Trans. A 1999, 30, 535–543. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phy. Rev. B 1999, 59, 3393–3407. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phy. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. Carbon defects and defect reactions in silicon. Phys. Rev. Lett. 1990, 64, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Erhart, P.; Albe, K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phy. Rev. B 2005, 71, 035211. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, C.R.; Shin, Y.C. Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics. Compos. Part A 2011, 42, 355–363. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, N. An inverse adhesion problem for extracting interfacial pair potentials for the Al(0 0 1)/3C–SiC(0 0 1) interface. Inverse Probl. 2008, 24, 035019. [Google Scholar] [CrossRef]
- Purja Pun, G.P.; Yamakov, V.; Mishin, Y. Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Modell. Simul. Mater. Sci. Eng. 2015, 23, 065006. [Google Scholar] [CrossRef] [Green Version]
- Vallin, J.; Mongy, M.; Salama, K.; Beckman, O. Elastic constants of aluminum. J. Appl. Phys. 1964, 35, 1825–1826. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Nakano, A.; Rino, J.P. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J. Appl. Phys. 2007, 101, 103515. [Google Scholar] [CrossRef] [Green Version]
- Feldman, D.W.; Parker, J.H.; Choyke, W.J.; Patrick, L. Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 1968, 173, 787–793. [Google Scholar] [CrossRef]
- Li, S.; Arsenault, R.; Jena, P. Quantum chemical study of adhesion at the SiC/Al interface. J. Appl. Phys. 1988, 64, 6246–6253. [Google Scholar] [CrossRef]
- Luo, X.; Qian, G.; Wang, E.G.; Chen, C. Molecular-dynamics simulation of Al/SiC interface structures. Phy. Rev. B 1999, 59, 10125–10131. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, J.; Meng, Q.-C.; Yao, C.-K. Side-surface structure of a commercial β-silicon carbide whisker. J. Am. Ceram. Soc. 2002, 85, 2864–2866. [Google Scholar] [CrossRef]
- Vedeneyev, V.T. Bond Energies Ionization Potentials and Electron Affinities; Edward Arnold Publishers: London, UK, 1966. [Google Scholar]
- Hoekstra, J.; Kohyama, M. Ab initio calculations of the β-SiC(001)/Al interface. Phy. Rev. B 1998, 57, 2334–2341. [Google Scholar] [CrossRef]
- Romero, J.C.; Arsenault, R.J. Anomalous penetration of Al into SiC. Acta Metall. Mater. 1995, 43, 849–857. [Google Scholar] [CrossRef]
- Usov, I.; Suvorova, A.; Sokolov, V.; Kudryavtsev, Y.A.; Suvorov, A. Transient enhanced diffusion of aluminum in SiC during high temperature ion implantation. J. Appl. Phys. 1999, 86, 6039–6042. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265. [Google Scholar] [CrossRef] [Green Version]
- Boltzmann, L. Zur integration der diffusionsgleichung bei variabeln diffusionscoefficienten. Ann. Phys. 1894, 289, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Matano, C. On the relation between diffusion-coefficients and concentrations of solid metals. Jpn. J. Phys. 1933, 8, 109–113. [Google Scholar]
- Kim, C.W.; Dayananda, M.A. Zero-flux planes and flux reversals in the Cu-Ni-Zn System at 775 °C. Metall. Trans. A 1984, 15, 649–659. [Google Scholar] [CrossRef]
- Kirkaldy, J.S.; Young, D.J. Diffusion in the condensed state. In The Institute of Metals; Carlton House Terrace: London, UK, 1987. [Google Scholar]
- Wei, M.; Zhang, L. Application of distribution functions in accurate determination of interdiffusion coefficients. Sci. Rep. 2018, 8, 5071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, J.; Rothova, V. Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti. Acta Mater. 2003, 51, 4411–4421. [Google Scholar] [CrossRef]
- Olaye, O.; Ojo, O.A. Time variation of concentration-dependent interdiffusion coefficient obtained by numerical simulation analysis. Materialia 2021, 16, 101056. [Google Scholar] [CrossRef]
Material | Method | C11 (GPa) | C12 (GPa) | C44 (GPa) | K (GPa) | E (GPa) | G (GPa) | v |
---|---|---|---|---|---|---|---|---|
Al | Present | 107.03 | 61.06 | 31.05 | 76.38 | 62.67 | 22.99 | 0.363 |
MD a | 107.21 | 60.60 | 32.88 | 76.14 | 63.44 | 23.31 | 0.361 | |
Experiment b | 107.3 | 60.08 | 28.3 | 75.7 | 63.83 | 23.48 | 0.359 | |
3C-SiC | Present | 383.78 | 144.41 | 239.75 | 224.20 | 304.81 | 119.68 | 0.273 |
MD c | 390.1 | 142.7 | 191.0 | 225.1 | 313.6 | 123.7 | 0.268 | |
Experiment d | 390 | 142 | 256 | 225 | 314.2 | 124 | 0.267 |
Diffusion System | Al | Si | C | |||
---|---|---|---|---|---|---|
Q (kJ/mol) | D0 × 10−10 (m2/s) | Q (kJ/mol) | D0 × 10−10 (m2/s) | Q (kJ/mol) | D0 × 10−10 (m2/s) | |
C-terminated 6H–SiC/Al | 26.463 | 387.336 | 57.751 | 1.667 | 38.664 | 0.175 |
Si-terminated 6H–SiC/Al | 27.144 | 388.659 | 59.863 | 1.900 | 40.150 | 0.207 |
C-terminated 3C–SiC/Al | 23.275 | 380.809 | 59.287 | 2.051 | 38.115 | 0.192 |
Si-terminated 3C–SiC/Al | 23.029 | 383.979 | 60.331 | 2.137 | 36.399 | 0.164 |
Diffusion Couple | Temperature (K) | For Composition Range of the Bottom Side of the Matano Plane | For Composition Range of the Top Side of the Matano Plane | ||||||
---|---|---|---|---|---|---|---|---|---|
C-terminated 6H–SiC/Al | 1000 | 0.791 | −6.2 × 10−6 | −3.9 × 10−7 | 0.361 | 0.791 | 2.3 × 10−6 | −2.2 × 10−7 | 0.361 |
1200 | 3.213 | 2.2 × 10−6 | 4.5 × 10−6 | 1.870 | 3.213 | 1.6 × 10−6 | −2.9 × 10−6 | 1.870 | |
1500 | 3.572 | 1.7 × 10−6 | 3.2 × 10−7 | 2.479 | 3.572 | 2.1 × 10−6 | 5.5 × 10−7 | 2.479 | |
2000 | 4.929 | −3.2 × 10−5 | −1.6 × 10−7 | 3.195 | 4.929 | −3.5 × 10−5 | 8.3 × 10−6 | 3.195 | |
Si- terminated 6H–SiC/Al | 1000 | 1.097 | 3.3 × 10−7 | 1.2 × 10−7 | 2.413 | 1.097 | 3.6 × 10−7 | 9.1 × 10−8 | 2.413 |
1200 | 3.182 | 2.8 × 10−7 | −5.2 × 10−7 | 5.295 | 3.182 | 5.7 × 10−7 | −4.4 × 10−7 | 5.295 | |
1500 | 3.567 | −3.2 × 10−7 | −7.6 × 10−7 | 7.019 | 3.567 | 2.9 × 10−7 | −3.2 × 10−5 | 7.019 | |
2000 | 5.087 | 1.3 × 10−5 | −7.1 × 10−4 | 7.983 | 5.087 | 6.4 × 10−5 | −4.0 × 10−4 | 7.983 | |
C- terminated 3C–SiC/Al | 1000 | 0.870 | −5.5 × 10−8 | −2.0 × 10−9 | 0.028 | 0.870 | 3.2 × 10−6 | −0.6 × 10−9 | 0.028 |
1200 | 3.493 | −2.4 × 10−6 | −3.3 × 10−8 | 1.936 | 3.493 | −1.6 × 10−6 | 1.1 × 10−7 | 1.936 | |
1500 | 4.689 | −1.8 × 10−4 | −2.6 × 10−8 | 3.029 | 4.689 | −3.9 × 10−5 | −2.4 × 10−7 | 3.029 | |
2000 | 6.512 | −1.3 × 10−2 | 6.7 × 10−5 | 4.571 | 6.515 | −7.2 × 10−3 | −5.1 × 10−5 | 4.571 | |
Si- terminated 3C–SiC/Al | 1000 | 1.048 | 1.4 × 10−7 | −1.4 × 10−3 | 2.954 | 1.048 | 1.4 × 10−7 | −1.4 × 10−3 | 2.955 |
1200 | 2.522 | 9.1 × 10−3 | −5.9 × 10−2 | 4.259 | 2.522 | 8.0 × 10−3 | −5.0 × 10−2 | 4.273 | |
1500 | 4.215 | 4.0 × 10−1 | −3.4 × 10−1 | 4.925 | 4.233 | 4.2 × 10−1 | −3.9 × 10−1 | 4.849 | |
2000 | 4.279 | 4.4 × 10−1 | −5.2 × 10−1 | 5.536 | 4.311 | 4.8 × 10−1 | −6.7 × 10−1 | 5.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahani, M.; Postek, E.; Sadowski, T. Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces. Crystals 2023, 13, 46. https://doi.org/10.3390/cryst13010046
Tahani M, Postek E, Sadowski T. Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces. Crystals. 2023; 13(1):46. https://doi.org/10.3390/cryst13010046
Chicago/Turabian StyleTahani, Masoud, Eligiusz Postek, and Tomasz Sadowski. 2023. "Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces" Crystals 13, no. 1: 46. https://doi.org/10.3390/cryst13010046
APA StyleTahani, M., Postek, E., & Sadowski, T. (2023). Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces. Crystals, 13(1), 46. https://doi.org/10.3390/cryst13010046