# Characterization of the Strain-Rate-Dependent Plasticity of Alloys Using Instrumented Indentation Tests

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Finite Element Modeling

#### 2.1. Strain-Rate-Dependent Constitutive Model

#### 2.2. Finite Element Model of the Instrumented Indentation Test

#### 2.3. Finite Element Model of the Compression Test

## 3. Experiments

#### 3.1. Specimen

#### 3.2. Instrumented Indentation Tests at High Temperatures

#### 3.2.1. Compression Tests at High Temperatures

## 4. Characterization of Strain Rate Dependency

#### 4.1. Determination of Material Constants

#### 4.2. Validation in Compression Tests

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Spary, I.; Bushby, A.; Jennett, N.M. On the indentation size effect in spherical indentation. Philos. Mag.
**2006**, 86, 5581–5593. [Google Scholar] [CrossRef] [Green Version] - Rester, M.; Motz, C.; Pippan, R. Indentation across size scales–A survey of indentation-induced plastic zones in copper {1 1 1} single crystals. Scr. Mater.
**2008**, 59, 742–745. [Google Scholar] [CrossRef] - Fincher, C.D.; Ojeda, D.; Zhang, Y.; Pharr, G.M.; Pharr, M. Mechanical properties of metallic lithium: From nano to bulk scales. Acta Mater.
**2020**, 186, 215–222. [Google Scholar] [CrossRef] - Ruzic, J.; Emura, S.; Ji, X.; Watanabe, I. Mo segregation and distribution in Ti–Mo alloy investigated using nanoindentation. Mater. Sci. Eng. A
**2018**, 718, 48–55. [Google Scholar] [CrossRef] - Hintsala, E.D.; Hangen, U.; Stauffer, D.D. High-throughput nanoindentation for statistical and spatial property determination. JOM
**2018**, 70, 494–503. [Google Scholar] [CrossRef] [Green Version] - Matsuno, T.; Ando, R.; Yamashita, N.; Yokota, H.; Goto, K.; Watanabe, I. Analysis of preliminary local hardening close to the ferrite–martensite interface in dual-phase steel by a combination of finite element simulation and nanoindentation test. Int. J. Mech. Sci.
**2020**, 180, 105663. [Google Scholar] [CrossRef] - Li, K.; Injeti, V.; Misra, R.; Cai, Z.; Ding, H. On the strain rate sensitivity of aluminum-containing transformation-induced plasticity steels: Interplay between TRIP and TWIP effects. Mater. Sci. Eng. A
**2018**, 711, 515–523. [Google Scholar] [CrossRef] - Man, T.; Ohmura, T.; Tomota, Y. Mechanical behavior of individual retained austenite grains in high carbon quenched-tempered steel. ISIJ Int.
**2019**, 59, 559–566. [Google Scholar] [CrossRef] [Green Version] - Man, T.; Ohmura, T.; Tomota, Y. The effect of boundary or interface on stress-induced martensitic transformation in a Fe-Ni alloy. Mater. Today Commun.
**2020**, 23, 100896. [Google Scholar] [CrossRef] - Chen, Y.; Hintsala, E.; Li, N.; Becker, B.R.; Cheng, J.Y.; Nowakowski, B.; Weaver, J.; Stauffer, D.; Mara, N.A. High-throughput nanomechanical screening of phase-specific and temperature-dependent hardness in AlxFeCrNiMn high-entropy alloys. JOM
**2019**, 71, 3368–3377. [Google Scholar] [CrossRef] - Suzuki, T.; Ohmura, T. Ultra-microindentation of silicon at elevated temperatures. Philos. Mag. A
**1996**, 74, 1073–1084. [Google Scholar] [CrossRef] - Ruzic, J.; Watanabe, I.; Goto, K.; Ohmura, T. Nano-indentation measurement for heat resistant alloys at elevated temperatures in inert atmosphere. Mater. Trans.
**2019**, 60, 1411–1415. [Google Scholar] [CrossRef] [Green Version] - Ruzic, J.; Goto, K.; Watanabe, I.; Osada, T.; Wu, L.; Ohmura, T. Temperature-dependent deformation behavior of γ and gamma’ single-phase nickel-based superalloys. Mater. Sci. Eng. A
**2021**, 818, 141439. [Google Scholar] [CrossRef] - Minnert, C.; Oliver, W.C.; Durst, K. New ultra-high temperature nanoindentation system for operating at up to 1100 °C. Mater. Des.
**2020**, 192, 108727. [Google Scholar] [CrossRef] - Chu, S.; Li, J. Impression creep of β-tin single crystals. Mater. Sci. Eng.
**1979**, 39, 1–10. [Google Scholar] [CrossRef] - Dean, J.; Bradbury, A.; Aldrich-Smith, G.; Clyne, T. A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater.
**2013**, 65, 124–134. [Google Scholar] [CrossRef] - Takagi, H.; Dao, M.; Fujiwara, M.; Otsuka, M. Experimental and computational creep characterization of Al–Mg solid-solution alloy through instrumented indentation. Philos. Mag.
**2003**, 83, 3959–3976. [Google Scholar] [CrossRef] - Takagi, H.; Dao, M.; Fujiwara, M. Analysis on pseudo-steady indentation creep. Acta Mech. Solida Sin.
**2008**, 21, 283–288. [Google Scholar] [CrossRef] - Takagi, H.; Fujiwara, M. Set of conversion coefficients for extracting uniaxial creep data from pseudo-steady indentation creep test results. Mater. Sci. Eng. A
**2014**, 602, 98–104. [Google Scholar] [CrossRef] - Fujiwara, M.; Takagi, H.; Higashida, K. High-temperature creep mechanism of dual-ductile-phase magnesium alloy with long-period stacking ordered phase. Mater. Trans.
**2019**, 60, 503–512. [Google Scholar] [CrossRef] [Green Version] - Cheng, Y.T.; Cheng, C.M. Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res.
**1999**, 14, 3493–3496. [Google Scholar] [CrossRef] [Green Version] - Tho, K.K.; Swaddiwudhipong, S.; Liu, Z.S.; Zeng, K.; Hua, J. Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res.
**2004**, 19, 2498–2502. [Google Scholar] [CrossRef] - Alkorta, J.; Martinez-Esnaola, J.M.; Sevillano, J.G. Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. J. Mater. Res.
**2005**, 20, 432–437. [Google Scholar] [CrossRef] - Futakawa, M.; Wakui, T.; Tanabe, Y.; Ioka, I. Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J. Mater. Res.
**2001**, 16, 2283–2292. [Google Scholar] [CrossRef] [Green Version] - Bucaille, J.L.; Stauss, S.; Felder, E.; Michler, J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater.
**2003**, 51, 1663–1678. [Google Scholar] [CrossRef] - Chollacoop, N.; Dao, M.; Suresh, S. Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater.
**2003**, 51, 3713–3729. [Google Scholar] [CrossRef] - Taljat, B.; Zacharia, T.; Kosel, F. New analytical procedure to determine stress–strain curve from spherical indentation data. Int. J. Solids Struct.
**1998**, 35, 4411–4426. [Google Scholar] [CrossRef] - Ahn, J.H.; Kwon, D. Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res.
**2001**, 16, 3170–3178. [Google Scholar] [CrossRef] - Swadener, J.; Taljat, B.; Pharr, G. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res.
**2001**, 16, 2091–2102. [Google Scholar] [CrossRef] - Goto, K.; Watanabe, I.; Ohmura, T. Determining suitable parameters for inverse estimation of plastic properties based on indentation marks. Int. J. Plast.
**2019**, 116, 81–90. [Google Scholar] [CrossRef] - Goto, K.; Watanabe, I.; Ohmura, T. Inverse estimation approach for elastoplastic properties using the load-displacement curve and pile-up topography of a single Berkovich indentation. Mater. Des.
**2020**, 194, 108925. [Google Scholar] [CrossRef] - Duan, Y.; Xu, J.; Chen, J.; Yu, C.; Chen, J.; Lu, H. The effects of heat treatment on the microstructure and cyclic behavior of A7N01-T4 aluminum alloy. Mater. Charact.
**2017**, 131, 201–209. [Google Scholar] [CrossRef] - Chen, T.; Watanabe, I.; Liu, D.; Goto, K. Data-driven estimation of plastic properties of alloys using neighboring indentation test. Sci. Technol. Adv. Mater. Methods
**2021**, 1, 143–151. [Google Scholar] - Simmons, G.; Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
**1963**, 11, 431–441. [Google Scholar] [CrossRef] - Lüthy, H.; White, R.A.; Sherby, O.D. Grain boundary sliding and deformation mechanism maps. Mater. Sci. Eng.
**1979**, 39, 211–216. [Google Scholar] [CrossRef] - Cipoletti, D.E.; Bower, A.F.; Qi, Y.; Krajewski, P.E. The influence of heterogeneity in grain boundary sliding resistance on the constitutive behavior of AA5083 during high-temperature deformation. Mater. Sci. Eng. A
**2009**, 504, 175–182. [Google Scholar] [CrossRef]

**Figure 4.**Load–depth curves obtained in the experiments and simulations using the determined material constants. The dashed lines indicate the simulation results.

**Figure 5.**Depth–time curves obtained in the experiments and simulations using the determined material constants. The dashed lines indicate the simulation results.

**Figure 6.**von Mises stress distribution at the beginning and end of the holding processes in the computational simulations using the determined material constants for $\alpha \in (0,1)$.

**Figure 7.**Equivalent plastic strain distribution at the beginning and end of the holding processes in the computational simulations using the determined material constants for $\alpha \in (0,1)$.

**Figure 8.**Load–stroke curves in the experiments and simulations using the determined material constants. The dashed lines indicate the simulation results.

Zn | Mg | Zr | Cu | Fe | Si | Ti |
---|---|---|---|---|---|---|

5.60 | 1.34 | 0.16 | 0.15 | 0.03 | 0.02 | 0.02 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, T.-T.; Watanabe, I.; Funazuka, T.
Characterization of the Strain-Rate-Dependent Plasticity of Alloys Using Instrumented Indentation Tests. *Crystals* **2021**, *11*, 1316.
https://doi.org/10.3390/cryst11111316

**AMA Style**

Chen T-T, Watanabe I, Funazuka T.
Characterization of the Strain-Rate-Dependent Plasticity of Alloys Using Instrumented Indentation Tests. *Crystals*. 2021; 11(11):1316.
https://doi.org/10.3390/cryst11111316

**Chicago/Turabian Style**

Chen, Ta-Te, Ikumu Watanabe, and Tatsuya Funazuka.
2021. "Characterization of the Strain-Rate-Dependent Plasticity of Alloys Using Instrumented Indentation Tests" *Crystals* 11, no. 11: 1316.
https://doi.org/10.3390/cryst11111316