Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyaniline Iron Oxide Characterization
2.1.1. Polyaniline Iron Oxide Scanning with SEM Micrography
2.1.2. FTIR Spectral Characterization
2.1.3. UV Spectroscopy
2.2. Electrochemical Characteristics of the Electrode Surface
2.3. Cyclic Voltammetry Study of the Biosensor
2.3.1. Concentration Effect
2.3.2. Proposed Reaction Mechanism for Amlodipine
2.3.3. Scan Rate Effect
2.4. Optimization of Working Conditions
2.4.1. pH Effect on Biosensor Response
2.4.2. Effect of Temperature on Biosensor Response
3. Experimental
3.1. Apparatus
3.2. Chemicals and Reagents
3.3. Preparation of PANI/Iron Oxide
3.4. Electrode Modification and Immobilization of the Enzyme Candida rugosa Lipase
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Evtugin, G. Biosensors: Essentials, Lecture Notes in Chemistry; Springer: Heidelberg, Germany, 2014; Volume 84. [Google Scholar]
- Karyakin, A.A.; Vuki, M.; Lukachova, L.V.; Karyakina, E.E.; Orlov, A.V.; Karpachova, G.P.; Wang, J. Processible polyaniline as an advanced potentiometric pH transducer. Application to biosensor. Anal. Chem. 1999, 71, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Shin, M.C.; Kim, H.S. Electrochemical adsorption of glucose oxidase onto polypyrrole film for the construction of a glucose biosensor. Sens. Actuators B 1996, 30, 137–141. [Google Scholar] [CrossRef]
- Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821. [Google Scholar] [CrossRef] [PubMed]
- Popovic, N.; Jugovic, B.; Jokic, B.; Knezevic-Jugovc, Z.; Stevanovic, J.; Grgur, B.; Gvozdenović, M. Electrochemical template-free synthesis of nanofibrous polyaniline modified electrode for ascorbic acid determination. Int. J. Electrochem. Sci. 2015, 10, 1208–1220. [Google Scholar]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Martina, V.; De Riccardis, M.F.; Carbone, D.; Rotolo, P.; Bozzini, B.; Mele, C. Electrodeposition of polyaniline–carbon nanotubes composite films and investigation on their role in corrosion protection of austenitic stainless steel by SNIFTIR analysis. J. Nanopart. Res. 2011, 13, 6035–6047. [Google Scholar] [CrossRef]
- Lin, M.S.; Leu, H.J. A Fe3O4-Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide. Electroanalysis 2005, 17, 2068–2073. [Google Scholar] [CrossRef]
- Sungur, S.; Numanoglu, Y. Development of Glucose Biosensor by using Gelatin and Gelatin-Polyacrylamide Supporting Systems. Artif. Cells Blood Substit. Biotechnol. 2006, 34, 41–54. [Google Scholar] [CrossRef]
- Arkhypova, V.N.; Dzyadevych, S.V.; Soldatkin, A.P.; El’skaya, A.V.; Jaffrezic-Renault, N.; Jaffrezic, H.; Martelet, C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta 2001, 55, 919–927. [Google Scholar] [CrossRef]
- Emregul, E.; Sungur, S.; Akbulut, U. Immobilization of glucose oxidase onto gelatin for biosensor construction. J. Biomater. Sci. Polym. Ed. 2005, 16, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Baali, S.; Kherrat, R.; Zougar, S.; Djeghaba, Z.; Benamia, F.; Jaffrezic-Renault, N.; Haddour, N. Comparative Study of Responses of Two Enzymatic Biosensors Based on Lipase from Candida rugosa and Porcine Pancreas for Detection of Diclofop-Methyl. Sens. Transducers 2014, 11, 2021–2029. [Google Scholar] [CrossRef]
- Zehani, N.; Kherrat, R.; Dzyadevych, S.; Jaffrezic-Renault, N.J. A microconductometric biosensor based on lipase extracted from Candida rugosa for direct and rapid detection of organophosphate pesticides. Int. J. Environ. Anal. Chem. 2015, 95, 466–479. [Google Scholar] [CrossRef]
- Zehani, N.; Dzyadevych, S.V.; Kherrat, R.; Jaffrezic-Renault, N.J. Sensitive impedimetric biosensor for direct detection of diazinin based on lipases. Front. Chem. Anal. Chem. 2014, 2, 1–7. [Google Scholar]
- Villeneuve, P.; Muderhwa, J.M.; Graille, J.; Hass, M.J. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B Enzym. 2000, 9, 113–148. [Google Scholar] [CrossRef]
- Hou, C.T. Industrial Uses of Lipase in Kuo and Gardner ed. Lipid Biotechnology; Marcel Dekker Inc. Press: New York, NY, USA, 2002; Volume 159, pp. 387–397. [Google Scholar]
- Bossert, F.; Vater, W. Dihydropyridines, a new group of strongly effective coronary therapeutic agents. Naturwissenschaften 1971, 58, 578. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, S.; Stoltefuss, J. 1,4-Dihydropyridines: Effects of chirality and conformation on the calcium antagonist and calcium agonist activities. Angew. Chem. Int. Ed. Engl. 1991, 30, 1559–1578. [Google Scholar] [CrossRef]
- Martindale, S.S.C. The Complete Drug Reference, 37th ed.; The Pharmaceutical Press: London, UK, 2011. [Google Scholar]
- Rahman, N.; Nasrul Hoda, M. Validated spectrophotometric methods for the determination of amlodipine besylate in drug formulations using 2,3-dichloro 5,6-dicyano 1,4-benzoquinone and ascorbic acid. J. Pharmabiomed. Anal. 2003, 31, 381–392. [Google Scholar] [CrossRef]
- Rahman, N.; Singh, M.; Hoda, M.N. Application of oxidants to the spectrophotometric determination of amlodipine besylate in pharmaceutical formulations. IL Farm. 2004, 59, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wadood, H.M.; Mohamed, N.A.; Mahmoud, A.M. Validated spectrofluorometric methods for determination of amlodipine besylate in tablets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Meyyanathan, S.; Suresh, B. HPTLC Method for the simultaneous determination of amlodipine and benazepril in their formulations. J. Chromatogr. Sci. 2005, 43, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, G.; Mirzaeei, S. Simple and rapid HPLC method for determination of amlodipine in human serum with fluorescence detection and its use in pharmacokinetic studies. J. Pharm. Biomed. Anal. 2004, 36, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Foroutan, S.; Shafaati, A.; Khoddam, A. Validated HPLC method for determination of amlodipine in human plasma and its application to pharmacokinetic studies. IL Farm. 2005, 60, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Klinkenberg, R.; Streel, B.; Ceccato, A. Development and validation of a liquid chromatographic method for the determination of amlodipine residues on manufacturing equipment surfaces. J. Pharm. Biomed. Anal. 2003, 32, 345–352. [Google Scholar] [CrossRef]
- Monkman, S.; Ellis, J.; Cholerton, S.; Thomason, J.; Seymour, R.; Idle, J. Automated gas chromatographic assay for amlodipine in plasma and gingival crevicular fluid. J. Chromatogr. B Biomed. Sci. Appl. 1996, 678, 360–364. [Google Scholar] [CrossRef]
- Quaglia, M.; Barbato, F.; Fanali, S.; Santucci, E.; Donati, E.; Carafa, M.; Marianecci, C. Direct determination by capillary electrophoresis of cardiovascular drugs, previously included in liposomes. J. Pharm. Biomed. Anal. 2005, 37, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Altiokka, G.; Altiokka, M. Flow injection analysis of amlodipine using UV-detection. Die Pharm. 2002, 57, 500–508. [Google Scholar]
- Matalka, K.; El-Thaher, T.; Saleem, M.; Arafat, T.; Jehanli, A.; Badwan, A. Enzyme linked immunosorbent assay for determination of amlodipine in plasma. J. Clin. Lab. Anal. 2001, 15, 47–53. [Google Scholar] [CrossRef]
- Stoiljković, Z.Ž.; Ivić, M.L.A.; Petrović, S.D.; Mijin, D.Ž.; Stevanović, S.I.; Lačnjevac, U.Č.; Marinković, A.D. Voltammetric and Square-Wave Anodic Stripping Determination of Amlodipine Besylate on Gold Electrode. Int. J. Electrochem. Sci. 2012, 7, 2288–2303. [Google Scholar]
- Goyal, R.N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry 2010, 79, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Erden, P.E.; Taşdemir, I.H.; Kaçar, C.; Kiliç, E. Simultaneous determination of valsartan and amlodipine besylate in human serum and pharmaceutical dosage forms by voltammetry. Int. J. Electrochem. Sci. 2014, 9, 2208–2220. [Google Scholar]
- Altiokka, G.; Dogrukol-Ak, D.; Tuncel, M.; Aboul-Enein, H.Y. Determination of Amlodipine in Pharmaceutical Formulations by Differential-Pulse Voltammetry with a Glassy Carbon Electrode. Arch. Pharm. 2002, 335, 104–108. [Google Scholar] [CrossRef]
- Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. An Electrochemical Senor for Determination of Amlodipine Besylate Based on Graphene–Chitosan nanoComposite Film Modified Glassy Carbon Electrode and Application in biological and pharmaceutical samples. Pharm. Sci. 2014, 3, 99–107. [Google Scholar]
- Mansano, G.R.; Eisele, A.P.P.; Dall’Antonia, L.H.; Afonso, S.; Sartori, E.R. Electroanalytical application of a boron-doped diamond electrode: Improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J. Electroanal. Chem. 2015, 738, 188–194. [Google Scholar] [CrossRef]
- Bandgar, D.K.; Navale, S.T.; Naushad, M.; Mane, R.S.; Stadler, F.J.; Patil, V.B. Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 2015, 5, 68964–68971. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles. J. Chem. Educ. 2016, 93, 1606–1611. [Google Scholar] [CrossRef]
- Sathiyanarayanan, S.; Azim, S.S.; Venkatachari, G. Preparation of Polyaniline—Fe2O3 Composite and Its Anticorrosion Performance. Synth. Met. 2007, 157, 751–757. [Google Scholar] [CrossRef]
- Hirose, Y.; Kariya, K.; Sasaki, I.; Kurono, O.; Ebiike, H.; Achiwa, K. Drastic solvent effect on lipase-catalyzed enantioselective hydrolysis of prochiral 1,4-dihydropyridines. Tetrahedron Lett. 1992, 33, 7157–7160. [Google Scholar] [CrossRef]
- Sobolev, A.; Franssen, M.C.; Vigante, B.; Cekavicus, B.; Zhalubovskis, R.; Kooijman, H.; Spek, A.L.; Duburs, G.; de Groot, A. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters. J. Organ. Chem. 2002, 67, 401–410. [Google Scholar] [CrossRef]
- Holdgrun, X.K.; Sih, C.J. A chemoenzymatic synthesis of optically-active dihydropyridines. Tetrahedron Lett. 1991, 32, 3465–3468. [Google Scholar] [CrossRef]
- Salazar, L.; Sih, C.J. Optically-active dihydropyridines via lipase-catalyzed enantioselective hydrolysis. Tetrahedron Asymmetry 1995, 6, 2917–2920. [Google Scholar] [CrossRef]
- Švorc, L.; Cinková, K.; Sochr, J.; Vojs, M.; Michniak, P.; Marton, M. Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J. Electroanal. Chem. 2014, 42, 86–93. [Google Scholar] [CrossRef]
- Valezi, C.F.; Duarte, E.H.; Mansano, G.R.; Dall’Antonia, L.H.; Tarley, C.R.T.; Sartori, E.R. An improved method for simultaneous square-wave voltammetric determination of amlodipine and enalapril at multi-walled carbon nanotubes paste electrode based on effect of cationic surfactant. Sens. Actuators B Chem. 2014, 205, 234–243. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaalab, E.; Samar, M.E.H.; Zougar, S.; Kherrat, R. Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film. Catalysts 2018, 8, 233. https://doi.org/10.3390/catal8060233
Djaalab E, Samar MEH, Zougar S, Kherrat R. Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film. Catalysts. 2018; 8(6):233. https://doi.org/10.3390/catal8060233
Chicago/Turabian StyleDjaalab, Elbahi, Mohamed El Hadi Samar, Saida Zougar, and Rochdi Kherrat. 2018. "Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film" Catalysts 8, no. 6: 233. https://doi.org/10.3390/catal8060233
APA StyleDjaalab, E., Samar, M. E. H., Zougar, S., & Kherrat, R. (2018). Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film. Catalysts, 8(6), 233. https://doi.org/10.3390/catal8060233