Abstract
Industrial and domestic effluents contaminated with synthetic dyes represent a significant global environmental and public health concern, necessitating the development of efficient, cost-effective, and sustainable wastewater treatment technologies. Among various remediation strategies, activated carbon (AC) has garnered considerable attention as an effective adsorbent, owing to its high surface area, excellent porosity, and strong adsorption capacity. This review presents a comprehensive analysis of activated carbon, with a particular focus on its derivation from bamboo biomass—a renewable, abundant, and low-cost precursor. It explores the key physicochemical characteristics of bamboo-based AC, common synthesis techniques, and the role of modification strategies—particularly metal oxide doping with TiO2, ZnO, and MoS2—in enhancing dye removal performance. The mechanisms underlying dye remediation, including adsorption and photocatalysis, as well as the synergistic effects observed in advanced AC-based composites, are critically examined. Emphasis is placed on the degradation of commonly used textile dyes such as methylene blue (MB), rhodamine B (RhB), and reactive blue, supported by comparative analyses of efficiency, stability, and reusability across various studies. Finally, the review outlines current challenges and knowledge gaps in the field, offering perspectives on future research directions to advance the development and large-scale application of sustainable bamboo-derived activated carbon composites for effective and eco-friendly wastewater purification.
Keywords:
activated carbon; bamboo-based activated carbon (BAC); bamboo biomass; carbonization; doping strategies; dye degradation; photocatalysis; adsorption; metal oxides; hydroxyl radicals; methylene blue (MB); nanophotocatalysts; synergistic effects; reactive blue dyes; rhodamine B (RhB); superoxide; wastewater treatment