Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Photocatalytic Properties
2.2.1. Optical Characteristics and Band Structure Configurations
2.2.2. Characterization of Charge Separation
2.3. Photocatalytic Activity
2.3.1. Photocatalytic Degradation Rhodamine B (RhB)
2.3.2. Photocatalytic Degradation Tetracycline (TC)
2.3.3. Photocatalysis Mechanism
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of Catalysts
3.2.1. Synthesis of BiOCl Nanosheets
3.2.2. Synthesis of MIL-121
3.2.3. Synthesis of BiOCl/MIL-121 Composites
3.3. Characterization Techniques and Degradation Testing
3.3.1. Assessment of Photocatalytic Performance
3.3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Hao, C.; Gao, S.; Zhao, X.; An, X.; Hu, G. Piezoelectric catalysts for water pollutant remediation: Achievements, challenges, and perspectives. Mater. Today 2025, 88, 415–440. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S.; Liu, Y.; Han, J.; Duan, G.; Fu, Q.; Han, X.; Zhang, C.; He, S.; Jiang, S. Structure modifications of wood-based materials for water treatment applications: A review. Mater. Today 2025, 87, 252–286. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B Environ. Energy 2019, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Mengting, Z.; Kurniawan, T.A.; Avtar, R.; Othman, M.H.D.; Ouyang, T.; Yujia, H.; Xueting, Z.; Setiadi, T.; Iswanto, I. Applicability of TiO2(B) nanosheets@hydrochar composites for adsorption of tetracycline (TC) from contaminated water. J. Hazard. Mater. 2021, 405, 123999. [Google Scholar] [CrossRef]
- Secondes, M.F.N.; Naddeo, V.; Belgiorno, V.; Ballesteros, F. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. J. Hazard. Mater. 2014, 264, 342–349. [Google Scholar] [CrossRef]
- Li, P.; Zhao, T.; Zhao, Z.; Tang, H.; Feng, W.; Zhang, Z. Biochar derived from chinese herb medicine residues for Rhodamine B dye adsorption. ACS Omega 2023, 8, 4813–4825. [Google Scholar] [CrossRef]
- Tariq, M.; Muhammad, M.; Khan, J.; Raziq, A.; Uddin, M.K.; Niaz, A.; Ahmed, S.S.; Rahim, A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst. J. Mol. Liq. 2020, 312, 113399. [Google Scholar] [CrossRef]
- Yang, X.; Lu, J.; Zhou, L.; Wang, Q.; Wu, F.; Pan, Y.; Zhang, M.; Wu, G. Morphological regulation of Bi5O7I for enhanced efficiency of Rhodamine B degradation under Visible-Light. Catalysts 2025, 15, 714. [Google Scholar] [CrossRef]
- Çelik, M.S.; Çetinus, Ş.A.; Yenidünya, A.F.; Çetinkaya, S.; Tüzün, B. Biosorption of Rhodamine B dye from aqueous solution by Rhus coriaria L. plant: Equilibrium, kinetic, thermodynamic and DFT calculations. J. Mol. Struct. 2023, 1272, 134158. [Google Scholar] [CrossRef]
- Wu, L.; Yang, X.-J.; Ma, K.; Qu, X.; Zhang, Y.; Xia, H.; Wu, J.; Lu, S.; Liu, D. 2D/2D ultrathin (Zn/Ti)LDH/BiOCl Z-scheme heterostructure nanosheets boosted visible-light-catalytic degradation of dyes and antibiotics. Compos. Part B Eng. 2025, 293, 112144. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, L.; Liang, F.; An, D.; Chen, Z.; Feng, D.; Xian, M. Water-assisted synthesis of shape-specific BiOCl nanoflowers with enhanced adsorption and photosensitized degradation of rhodamine B. Environ. Chem. Lett. 2020, 18, 243–249. [Google Scholar] [CrossRef]
- Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. 2016, 3, 1500389. [Google Scholar] [CrossRef]
- Noël, T.; Zysman-Colman, E. The promise and pitfalls of photocatalysis for organic synthesis. Chem. Catal. 2022, 2, 468–476. [Google Scholar] [CrossRef]
- Alhokbany, N.S.; Mousa, R.; Naushad, M.; Alshehri, S.M.; Ahamad, T. Fabrication of Z-scheme photocatalysts g-C3N4/Ag3PO4/chitosan for the photocatalytic degradation of ciprofloxacin. Int. J. Biol. Macromol. 2020, 164, 3864–3872. [Google Scholar] [CrossRef] [PubMed]
- Bhachu, D.S.; Moniz, S.J.A.; Sathasivam, S.; Scanlon, D.O.; Walsh, A.; Bawaked, S.M.; Mokhtar, M.; Obaid, A.Y.; Parkin, I.P.; Tang, J.; et al. Bismuth oxyhalides: Synthesis, structure and photoelectrochemical activity. Chem. Sci. 2016, 7, 4832–4841. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, Y.; Yang, J.; Liu, X.; Li, W.; Zhang, L.; Wu, Y.; Sun, J.; Feng, J.; Zhu, Y. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Appl. Catal. B Environ. Energy 2021, 291, 120127. [Google Scholar] [CrossRef]
- Du, F.; Sun, L.; Huang, Z.; Chen, Z.; Xu, Z.; Ruan, G.; Zhao, C. Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 2020, 239, 124764. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, Q.; Tang, G.; Zhu, W.; Yang, X.; Luo, Y. TBAOH assisted synthesis of ultrathin BiOCl nanosheets with enhanced charge separation efficiency for superior photocatalytic activity in carbamazepine degradation. J. Colloid Interface Sci. 2020, 570, 242–250. [Google Scholar] [CrossRef]
- Gao, X.; Gong, C.; Wang, X.; Zhu, W.; Luo, Y. Facile synthesis of cobalt doped BiOCl ultrathin nanosheets as superior photocatalyst for degradation of carbamazepine under visible light. J. Solid State Chem. 2021, 298, 122131. [Google Scholar] [CrossRef]
- Wu, F.; Tang, Y.; Pan, Y.; Han, J.; Xing, W.; Zhang, J.; Wu, G.; Huang, Y. Interfacial linkage engineering inducted directional electron transfer over ZnIn2S4@BiOCl S-Scheme heterojunctions for CO2 photoreduction and tetracycline decomposition. Small 2025, 21, 2500670. [Google Scholar] [CrossRef]
- Wu, F.; Wu, G.; Tang, Y.; Pan, Y.; Han, J.; Zhang, J.; Xing, W.; Huang, Y. Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal. Inorg. Chem. Front. 2025, 12, 1200–1213. [Google Scholar] [CrossRef]
- Liu, G.; Guo, Y.; Chen, C.; Lu, Y.; Chen, G.; Liu, G.; Han, Y.; Jin, W.; Xu, N. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. Nat. Mater. 2023, 22, 769–776. [Google Scholar]
- He, R.; Xue, K.; Wang, J.; Yan, Y.; Peng, Y.; Yang, T.; Hu, Y.; Wang, W. Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P-N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin. Chemosphere 2020, 259, 127465. [Google Scholar] [PubMed]
- Xu, K.; Shen, J.; Zhang, S.; Xu, D.; Chen, X. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin. J. Mater. Sci. Technol. 2022, 121, 236–244. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, T.; Hou, J.; Zhang, T.; Zhang, G.; Zhang, Y.; Wang, X. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals. J. Mater. Sci. Technol. 2022, 114, 240–248. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Ran, W.; Wang, Y.; Tian, F.; Zhang, F.; Xu, M.; Zhang, D.; Li, N.; Yan, T. Spin polarization regulates photocatalytic CO2 into hydrocarbons by Co doped BiOCl. Appl. Catal. B Environ. Energy 2024, 351, 123978. [Google Scholar]
- Song, T.; Yu, X.; Tian, N.; Huang, H.W. Preparation, structure and application of g-C3N4/BiOX composite photocatalyst. Int. J. Hydrogen Energy 2021, 46, 1857–1878. [Google Scholar]
- Yang, J.; Liang, Y.; Li, K.; Yang, G.; Yin, S. One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Appl. Catal. B Environ. Energy 2019, 250, 17–30. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI). J. Hazard. Mater. 2021, 407, 124394. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, F.; Ling, M.; Zheng, H.; Wu, Y.; Li, L. In-situ constructed indirect Z-type heterojunction by plasma Bi and BiO2-X-Bi2O2CO3 co-modified with BiOCl@Bi-MOF for enhanced photocatalytic efficiency toward antibiotics. Chem. Eng. J. 2023, 464, 142762. [Google Scholar]
- Aloni, P.; Venkatesan, P.; Roy, D.; Nguyen, M.D.; Doong, R.A. Synergistic effect of g-C3N4/NH2-functionalized MIL-125(Ti) heterojunction and Schottky Ti3C2 MXene for the visible-light-driven photodegradation of diclofenac. Sep. Purif. Technol. 2025, 377, 134201. [Google Scholar] [CrossRef]
- Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Haouas, M.; Taulelle, F.; Elkaim, E.; Stock, N. High-throughput aided synthesis of the porous metal−organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization. Inorg. Chem. 2010, 49, 9852–9862. [Google Scholar]
- Qiu, J.; Li, M.; Yang, L.; Yao, J. Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(VI). Chem. Eng. J. 2019, 375, 121990. [Google Scholar]
- Qiu, J.; Dai, D.; Zhang, L.; Xia, G.; Yao, J. Oxygen vacancy-rich Bi2MoO6 anchored on cuboid metal-organic frameworks for photocatalytic elimination of Cr(VI)/2-nitrophenol mixed pollutants. Sep. Purif. Technol. 2022, 301, 121990. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Chen, X.; Wang, Z.; Ji, H.; Chen, L.; Liu, W.; Wang, C.C. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation. Sci. Total Environ. 2021, 752, 141901. [Google Scholar] [CrossRef]
- Dong, Y.; Pang, S.; Zhang, F.; Xu, D.; Wang, Q.; Wang, K.; Zhang, L.; Liang, L.; Ren, Z.; Wang, P. A novel lateral epitaxial Bi2O3@BiOCl heterostructure for photocatalytic antibiotic degradation in an internal circulation fluidized bed reactor. Chem. Eng. J. 2023, 478, 147540. [Google Scholar]
- Wang, S.; Song, D.; Liao, L.; Li, M.; Li, Z.; Zhou, W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv. Colloid Interface Sci. 2024, 324, 103088. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, J.; Li, M.; Xu, J.; Zhang, L.; Yao, J. Construction of two-dimensional BiOI on carboxyl-rich MIL-121 for visible-light photocatalytic degradation of tetracycline. J. Alloys Compd. 2021, 872, 159711. [Google Scholar]
- Ahmed, S.; Shin, J.; Zubair, M.; Shim, J.; Park, G. Carbon wrapped cobalt as bifunctional catalysts in rechargeable zinc-air batteries. Inorg. Chem. Commun. 2025, 182, 115390. [Google Scholar] [CrossRef]
- Song, H.; Wu, R.; Yang, J.; Dong, J.; Ji, G. Fabrication of CeO2 nanoparticles decorated three-dimensional flower-like BiOI composites to build p-n heterojunction with highly enhanced visible-light photocatalytic performance. J. Colloid Interface Sci. 2018, 512, 325–334. [Google Scholar] [PubMed]
- Chen, S.; Mukherjee, S.; Lucier, B.E.G.; Guo, Y.; Wong, Y.T.A.; Terskikh, V.V.; Zaworotko, M.J.; Huang, Y. Cleaving carboxyls: Understanding thermally triggered hierarchical pores in the metal-organic framework MIL-121. J. Am. Chem. Soc. 2019, 141, 14257–14271. [Google Scholar]
- Liu, Y.; Guo, H.; Zhang, Y.; Cheng, X.; Zhou, P.; Zhang, G.; Wang, J.; Tang, P.; Ke, T.; Li, W. Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Sep. Purif. Technol. 2018, 192, 88–98. [Google Scholar]
- Tang, J.; Gao, G.; Luo, W.; Dai, Q.; Wang, Y.; Elzilal, H.A.; Abo-Dief, H.M.; Algadi, H.; Zhang, J. Z-scheme metal organic framework@graphene oxide composite photocatalysts with enhanced photocatalytic degradation of tetracycline. Adv. Compos. Hybrid Mater. 2023, 6, 190. [Google Scholar]
- Greczynski, G.; Pshyk, O.; Hultman, L. Toward an increased reliability of chemical bonding assignment in insulating samples by X-ray photoelectron spectroscopy. Sci. Adv. 2023, 9, 3192. [Google Scholar] [CrossRef]
- Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242. [Google Scholar] [PubMed]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew. Chem. Int. Ed. 2020, 59, 8255–8261. [Google Scholar] [CrossRef]
- Chandrapal, R.R.; Bharathi, K.; Bakiyaraj, G.; Bharathkumar, S.; Priyajanani, Y.; Manivannan, S.; Archana, J.; Navaneethan, M. Harnessing ZnCr2O4/g-C3N4 nanosheet heterojunction for enhanced photocatalytic degradation of rhodamine B and ciprofloxacin. Chemosphere 2024, 350, 141094. [Google Scholar]
- Osanloo, M.; Khorasheh, F.; Larimi, A. Fabrication of nano-dandelion magnetic TiO2/CuFe2O4 doped with silver as a highly visible-light-responsive photocatalyst for degradation of Naproxen and Rhodamine B. J. Mol. Liq. 2024, 407, 125242. [Google Scholar]
- Xi, H.; Wang, H.; Liu, D.; Mu, Q.; Xu, X.; Kang, Q.; Yang, Y.; Yang, Z.; Lei, Z. Boosting the photocatalytic benzylamine oxidation and Rhodamine B degradation using Z-scheme heterojunction of NiFe2O4/rGO/Bi2WO6. J. Alloys Compd. 2025, 1010, 177818. [Google Scholar]
- Abd-Rabboh, H.S.M.; Benaissa, M.; Hamdy, M.S.; Ahmed, M.A.; Glal, M. Synthesis of an efficient, and recyclable mesoporous BiVO4/TiO2 direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region. Opt. Mater. 2021, 114, 110761. [Google Scholar]
- Shi, K.; Li, X.; Tian, Z.; Luo, Y.; Ding, R.; Zhu, Y.; Yao, H. Synergistic and efficient photocatalytic degradation of rhodamine B and tetracycline in wastewater based on novel S-scheme heterojunction phosphotungstic Acid@MIL-101(Cr). J. Environ. Manag. 2025, 373, 123716. [Google Scholar]
- Goyal, J.; Sharma, S.; Basu, S. Solar light-induced photocatalytic response of BiOCl/PANI composite towards the degradation of tetracycline. Catalysts 2023, 13, 795. [Google Scholar] [CrossRef]
- Shkir, M.; Aldirham, S.H.; AlFaify, S.; Ali, A.M. A novel BiOBr/rGO photocatalysts for degradation of organic and antibiotic pollutants under visible light irradiation: Tetracycline degradation pathways, kinetics, and mechanism insight. Chemosphere 2024, 357, 141934. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, C.; Hao, H.; Li, L.; Zhu, B.; Chen, X.; Tao, H. Photocatalytic degradation of tetracycline antibiotic over a flower-like S-doped BiOBr: Performance, mechanism insight and toxicity assessment. Front. Nanotechnol. 2022, 4, 1023489. [Google Scholar] [CrossRef]
- Ding, S.; Dong, T.; Peppel, T.; Steinfeldt, N.; Hu, J.; Strunk, J. Construction of amorphous SiO2 modified β-Bi2O3 porous hierarchical microspheres for photocatalytic antibiotics degradation. J. Colloid Interface Sci. 2022, 607, 1717–1729. [Google Scholar]
- Guo, F.; Chen, Z.; Huang, X.; Cao, L.; Cheng, X.; Shi, W.; Chen, L. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis. Chin. J. Chem. Eng. 2022, 44, 157–168. [Google Scholar] [CrossRef]
- Zhan, H.; Zhou, R.; Wang, P.; Zhou, Q. Selective hydroxyl generation for efficient pollutant degradation by electronic structure modulation at Fe sites. Proc. Natl. Acad. Sci. USA 2023, 120, 2305378120. [Google Scholar] [CrossRef]
- Qin, C.; Yang, Y.; Wu, X.; Chen, L.; Liu, Z.; Tang, L.; Lyu, L.; Huang, D.; Wang, D.; Zhang, C.; et al. Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination. Nat. Commun. 2023, 14, 6740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Chen, J.; Ma, Y.; Pan, Y.; Huang, H.; Wu, G. Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation. Catalysts 2025, 15, 995. https://doi.org/10.3390/catal15100995
Xu T, Chen J, Ma Y, Pan Y, Huang H, Wu G. Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation. Catalysts. 2025; 15(10):995. https://doi.org/10.3390/catal15100995
Chicago/Turabian StyleXu, Tao, Jinmin Chen, Yang Ma, Yuwei Pan, Hui Huang, and Guangyu Wu. 2025. "Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation" Catalysts 15, no. 10: 995. https://doi.org/10.3390/catal15100995
APA StyleXu, T., Chen, J., Ma, Y., Pan, Y., Huang, H., & Wu, G. (2025). Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation. Catalysts, 15(10), 995. https://doi.org/10.3390/catal15100995