You are currently viewing a new version of our website. To view the old version click .
Computers
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

15 December 2025

Design of a Digital Personnel Management System for Swine Farms

,
,
,
,
and
College of Engineering, South China Agricultural University, Guangzhou 510642, China
*
Author to whom correspondence should be addressed.

Abstract

To prevent swine fever transmission, swine farms in China adopt enclosed management, making strict farm personnel biosecurity essential for minimizing the risk of pathogen introduction. However, current shower-in procedures and personnel movement records on many farms still rely on manual logging, which is prone to omissions and cannot support enterprise-level supervision. To address these limitations, this study develops a digital personnel management system designed specifically for the changing-room environment that forms the core biosecurity barrier. The proposed three-tier architecture integrates distributed identification terminals, local central controllers, and a cloud-based data platform. The system ensures reliable identity verification, synchronizes templates across terminals, and maintains continuous data availability, even in unstable network conditions. Fingerprint-based identity validation and a lightweight CAN-based communication mechanism were implemented to ensure robust operation in electrically noisy livestock facilities. System performance was evaluated through recognition tests, multi-frame template transmission experiments, and high-load CAN/MQTT communication tests. The system achieved a 91.4% overall verification success rate, lossless transmission of multi-frame fingerprint templates, and stable end-to-end communication, with mean CAN-bus processing delays of 99.96 ms and cloud-processing delays below 70.7 ms. These results demonstrate that the proposed system provides a reliable digital alternative to manual personnel movement records and shower duration, offering a scalable foundation for biosecurity supervision. While the present implementation focuses on identity verification, data synchronization, and calculating shower duration based on the interval between check-ins, the system architecture can be extended to support movement path enforcement and integration with wider biosecurity infrastructures.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.