Application of Transthoracic and Endobronchial Elastography—A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- Inclusion criteria
- -
- Ultrasound elastography in all iterations, investigating thoracic conditions.
- Exclusion criteria
- -
- Animal studies;
- -
- Phantom studies;
- -
- Evaluation for lymph nodes, costal or intercostal structures;
- -
- Conference abstract or highlights report.
2.2. Search Strategy
- -
- Population: All humans who had their thorax assessed with any type of elastography.
- -
- Index test: Transthoracic or endoscopic ultrasound elastography.
- -
- Reference test: Diagnostic tests considered gold standards encompass, but were not limited to, pathology or cytology by transthoracic or endoscopic biopsy, microbiological studies or clinical follow-up elastography examination. For studies aiming at establishing reference values in healthy subjects, no reference standard was required.
- -
- Diagnosis of interest: Any pathology or description of physiological conditions of the thorax.
- Block 1: Lung
- Lung [MeSH] OR Pulm* OR Lung* OR Pneu* OR Pleura [MeSH] OR Pleur*
- Block 2: Pulmonary embolism
- Elasticity Imaging Techniques [MeSH] OR Shearwav* OR Elastograph* OR Fibroscan*
2.3. Grouping of Included Studies
- (A)
- Pleural effusion;
- (B)
- Pulmonary consolidations;
- (C)
- Interstitial lung disease;
- (D)
- Procedural guidance;
- (E)
- Other.
2.4. Risk of Bias and Quality Assessment
3. Results
3.1. TUS
- Pleural Effusion
- B.
- Pulmonary Lesions
- C.
- Interstitial Lung Disease
- D.
- Procedural Guidance
- E.
- Other
3.2. EBUS
- B.
- Pulmonary lesions
3.3. Risk of Bias and Quality Assessment
4. Discussion
4.1. Clinical Implication
4.2. Methodological Concerns
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marini, T.J.; Rubens, D.J.; Zhao, Y.T.; Weis, J.; O’Connor, T.P.; Novak, W.H.; Kaproth-Joslin, K.A. Lung Ultrasound: The Essentials. Radiol. Cardiothorac. Imaging 2021, 3, e200564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laursen, C.B.; Clive, A.; Hallifax, R.; Pietersen, P.I.; Asciak, R.; Davidsen, J.R.; Bhatnagar, R.; Bedawi, E.O.; Jacobsen, N.; Coleman, C.; et al. European Respiratory Society statement on thoracic ultrasound. Eur. Respir. J. 2021, 57, 2001519. [Google Scholar] [CrossRef] [PubMed]
- Jarman, R.D.; McDermott, C.; Colclough, A.; Bøtker, M.; Knudsen, L.; Harris, T.; Albaroudi, B.; Albaroudi, O.; Haddad, M.; Darke, R.; et al. EFSUMB Clinical Practice Guidelines for Point-of-Care Ultrasound: Part One (Common Heart and Pulmonary Applications) LONG VERSION. Ultraschall Med. 2023, 44, e1–e24. [Google Scholar] [CrossRef]
- Volpicelli, G.; Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; Via, G.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, D.; Goldstein, I.; Mourgeon, E.; Cluzel, P.; Grenier, P.; Rouby, J.J. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 2004, 100, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Reissig, A.; Copetti, R. Lung ultrasound in community-acquired pneumonia and in interstitial lung diseases. Respiration 2014, 87, 179–189. [Google Scholar] [CrossRef]
- Vilmann, P.; Clementsen, P.F.; Colella, S.; Siemsen, M.; De Leyn, P.; Dumonceau, J.-M.; Herth, F.J.; Larghi, A.; Vazquez-Sequeiros, E.; Hassan, C.; et al. Combined endobronchial and oesophageal endosonography for the diagnosis and staging of lung cancer. Eur. Respir. J. 2015, 46, 40–60. [Google Scholar] [CrossRef]
- Akhtar, R.; Sherratt, M.J.; Cruickshank, J.K.; Derby, B. Characterizing the elastic properties of tissues. Mater. Today 2011, 14, 96–105. [Google Scholar] [CrossRef]
- Parker, K.J.; Taylor, L.S.; Gracewski, S.; Rubens, D.J. A unified view of imaging the elastic properties of tissue. J. Acoust. Soc. Am. 2005, 117, 2705–2712. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Bolondi, L.; Duck, F.; Evans, D.H.; Ewertsen, C.; Fraser, A.G.; Gilja, O.H.; Jenssen, C.; Merz, E.; Nolsoe, C.; et al. History of Ultrasound in Medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB. A publication of the European Federation of Societies for Ultrasound In Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound. Med. Ultrason. 2022, 24, 434–450. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Clay, R.; Bartholmai, B.J.; Zhou, B.; Karwoski, R.; Peikert, T.; Osborn, T.; Rajagopalan, S.; Kalra, S.; Zhang, X. Assessment of Interstitial Lung Disease Using Lung Ultrasound Surface Wave Elastography: A Novel Technique With Clinicoradiologic Correlates. J. Thorac. Imaging 2019, 34, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.; Cosgrove, D.; Dietrich, C.F.; Fromageau, J.; Bojunga, J.; Calliada, F.; Cantisani, V.; Correas, J.M.; D’Onofrio, M.; Drakonaki, E.E.; et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med. 2013, 34, 169–184. [Google Scholar] [CrossRef]
- Cosgrove, D.; Piscaglia, F.; Bamber, J.; Bojunga, J.; Correas, J.M.; Gilja, O.A.; Klauser, A.S.; Sporea, I.; Calliada, F.; Cantisani, V.; et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med. 2013, 34, 238–253. [Google Scholar] [PubMed]
- Vargas-Ursúa, F.; Ramos-Hernández, C.; Pazos-Area, L.A.; Fernández-Granda, I.; Rodríguez-Otero, I.; Gómez-Corredoira, E.; Pintos-Louro, M.; Fernández-Villar, A. Current evidence for lung ultrasound elastography in the field of pneumology: A systematic review. ERJ Open Res. 2024, 10, 00081–02024. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Li, X.L.; Yin, Y.; Zhang, Q.; Zang, T.; Song, W.S.; Wang, X.M.; Kang, J.; Herth, F.J.F.; Hou, G. Ultrasound elastography: A novel tool for the differential diagnosis of pleural effusion. Eur. Respir. J. 2019, 54, 1802018. [Google Scholar] [CrossRef]
- Ozgokce, M.; Durmaz, F.; Yavuz, A.; Üney, İ.; Yildiz, H.; Arslan, H.; Dundar, I.; Havan, N.; Ogul, H. Shear-Wave Elastography in the Characterization of Pleural Effusions. Ultrasound Q. 2019, 35, 164–168. [Google Scholar] [CrossRef]
- Nielsen, R.W.; Falster, C.; Posth, S.; Jacobsen, N.; Licht, A.E.; Bhatnagar, R.; Laursen, C.B. Diagnostic Accuracy of Shear Wave Elastography in Predicting Malignant Origins of Pleural Effusions in Emergency Departments. Diagnostics 2025, 15, 225. [Google Scholar] [CrossRef]
- Petersen, J.K.; Fjaellegaard, K.; Rasmussen, D.B.; Alstrup, G.; Høegholm, A.; Sidhu, J.S.; Sivapalan, P.; Gerke, O.; Bhatnagar, R.; Clementsen, P.F.; et al. Ultrasound in the Diagnosis of Non-Expandable Lung: A Prospective Observational Study of M-Mode, B-Mode, and 2D-Shear Wave Elastography. Diagnostics 2024, 14, 204. [Google Scholar] [CrossRef]
- Zhi, X.; Wang, L.; Chen, J.; Zheng, X.; Li, Y.; Sun, J. Scoring model of convex probe endobronchial ultrasound multimodal imaging in differentiating benign and malignant lung lesions. J. Thorac. Dis. 2020, 12, 7645–7655. [Google Scholar] [CrossRef]
- Kuo, Y.W.; Chen, Y.L.; Wu, H.D.; Chien, Y.C.; Huang, C.K.; Wang, H.C. Application of transthoracic shear-wave ultrasound elastography in lung lesions. Eur. Respir. J. 2021, 57, 2002347. [Google Scholar] [CrossRef]
- Quarato, C.M.I.; Venuti, M.; Dimitri, L.; Lacedonia, D.; Simeone, A.; Mirijello, A.; De Cosmo, S.; Maiello, E.; Taurchini, M.; Scioscia, G.; et al. Transthoracic ultrasound shear wave elastography for the study of subpleural lung lesions. Ultrasonography 2022, 41, 93–105. [Google Scholar] [CrossRef]
- Alhyari, A.; Görg, C.; Dietrich, C.F.; Trenker, C.; Ludwig, M.; Safai Zadeh, E. Diagnostic Performance of Point Shear Wave Elastography Using Acoustic Radiation Force Impulse Technology in Peripheral Pulmonary Consolidations: A Feasibility Study. Ultrasound Med. Biol. 2022, 48, 778–785. [Google Scholar] [CrossRef]
- Adamietz, B.R.; Fasching, P.A.; Jud, S.; Schulz-Wendtland, R.; Anders, K.; Uder, M.; Wüst, W.; Rauh, C.; Meier-Meitinger, M. Ultrasound elastography of pulmonary lesions—A feasibility study. Ultraschall Med. 2014, 35, 33–37. [Google Scholar] [CrossRef]
- Boccatonda, A.; Susca, V.; Primomo, G.L.; Cocco, G.; Cinalli, S.; Di Resta, V.; Martino, L.; Mucilli, F.; Marinari, S.; Cipollone, F.; et al. Role of shear-wave and strain elastography to differentiate malignant vs benign subpleural lung lesions. Medicine 2021, 100, e24123. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shen, M.; Zhang, Y.; Cong, Y.; Zu, H.; Chen, H.; Wang, Y. A Model for Predicting Malignant Sub-pleural Solid Masses Using Grayscale Ultrasound and Ultrasound Elastography. Ultrasound Med. Biol. 2021, 47, 1212–1218. [Google Scholar] [CrossRef]
- Lewen, H.; Aiyun, Z.; Cheng, Z.; Fan, X.; Minwei, L. Real-time shear wave elastography in differential diagnosis of benign and malignant peripheral lung masses. Chin. J. Med. Imaging Technol. 2019, 35, 687. [Google Scholar]
- Lim, C.K.; Chung, C.L.; Lin, Y.T.; Chang, C.H.; Lai, Y.C.; Wang, H.C.; Yu, C.J. Transthoracic Ultrasound Elastography in Pulmonary Lesions and Diseases. Ultrasound Med. Biol. 2017, 43, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sperandeo, M.; Trovato, F.M.; Dimitri, L.; Catalano, D.; Simeone, A.; Martines, G.F.; Piscitelli, A.P.; Trovato, G.M. Lung transthoracic ultrasound elastography imaging and guided biopsies of subpleural cancer: A preliminary report. Acta Radiol. 2015, 56, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Lu, Y.; Ji, Q.; Zhou, H.; Zhou, X. The application of conventional us and transthoracic ultrasound elastography in evaluating peripheral pulmonary lesions. Exp. Ther. Med. 2018, 16, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Ozgokce, M.; Yavuz, A.; Akbudak, I.; Durmaz, F.; Uney, I.; Aydin, Y.; Yildiz, H.; Batur, A.; Arslan, H.; Dundar, I. Usability of Transthoracic Shear Wave Elastography in Differentiation of Subpleural Solid Masses. Ultrasound Q. 2018, 34, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Osborn, T.; Zhou, B.; Meixner, D.; Kinnick, R.R.; Bartholmai, B.; Greenleaf, J.F.; Kalra, S. Lung Ultrasound Surface Wave Elastography: A Pilot Clinical Study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1298–1304. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, B.; Bartholmai, B.; Kalra, S.; Osborn, T. A quantitative method for measuring the changes of lung surface wave speed for assessing disease progression of interstitial lung disease. Ultrasound Med. Biol. 2019, 45, 741–748. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, B.; Kalra, S.; Bartholmai, B.; Greenleaf, J.; Osborn, T. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases. Ultrasound Med. Biol. 2018, 44, 321–331. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, B.; Osborn, T.; Bartholmai, B.; Kalra, S. Lung Ultrasound Surface Wave Elastography for Assessing Interstitial Lung Disease. IEEE Trans. Biomed. Eng. 2019, 66, 1346–1352. [Google Scholar] [CrossRef]
- Zhou, B.; Bartholmai, B.J.; Kalra, S.; Osborn, T.G.; Zhang, X. Lung US Surface Wave Elastography in Interstitial Lung Disease Staging. Radiology 2019, 291, 479–484. [Google Scholar] [CrossRef]
- Huang, S.; Guo, R.; Yuan, X.; Tang, X.; Liu, T.; Xie, Q.; Qiu, L. Evaluation of connective tissue disease-related interstitial lung disease using ultrasound elastography: A preliminary study. Quant. Imaging Med. Surg. 2022, 12, 3778–3791. [Google Scholar] [CrossRef]
- Deng, M.; Xia, Y.; Ye, X.; Ma, J.; Zhao, S.; Zhang, Q.; Li, J.; Lin, J.; Jing, A.; Li, Z.Y.; et al. Ultrasonic Elastography-guided Pleural Biopsy versus Traditional Thoracic Ultrasound-guided Pleural Biopsy for the Diagnosis of Pleural Effusion: A Multicentre Randomized Trial. Eur. Respir. J. 2025, 66, 2501062. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Roy Cardinal, M.-H.; Chassé, M.; Garneau, S.; Cavayas, Y.A.; Cloutier, G.; Denault, A.Y. Regional pleural strain measurements during mechanical ventilation using ultrasound elastography: A randomized, crossover, proof of concept physiologic study. Front. Med. 2022, 9, 935482. [Google Scholar] [CrossRef]
- Bandelli, G.P.; Levi, G.; Quadri, F.; Marchetti, G.P. “Elasto-lung point”: A new tool for the sonographic confirmation of pneumothorax. Clin. Respir. J. 2020, 14, 758–762. [Google Scholar] [CrossRef]
- Nouvenne, A.; Zanichelli, I.; Cerundolo, N.; Milanese, G.; Sverzellati, N.; Rendo, M.; Ridolo, E.; Scarlata, S.; Meschi, T.; Ticinesi, A. Thoracic Ultrasound Strain Elastosonography as a Noninvasive Biomarker of Chronic Obstructive Pulmonary Disease-Associated Lung Injury: A Feasibility Study. Respiration 2022, 101, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Wiley, B.M.; Zhou, B.; Pandompatam, G.; Zhou, J.; Kucuk, H.O.; Zhang, X. Lung Ultrasound Surface Wave Elastography for Assessing Patients With Pulmonary Edema. IEEE Trans. Biomed. Eng. 2021, 68, 3417–3423. [Google Scholar] [CrossRef]
- Zhang, X.; Qiang, B.; Hubmayr, R.D.; Urban, M.W.; Kinnick, R.; Greenleaf, J.F. Noninvasive ultrasound image guided surface wave method for measuring the wave speed and estimating the elasticity of lungs: A feasibility study. Ultrasonics 2011, 51, 289–295. [Google Scholar] [CrossRef] [PubMed]
- He, H.Y.; Chen, J.L.; Ma, H.; Zhu, J.; Wu, D.D.; Lv, X.D. Value of Endobronchial Ultrasound Elastography in Diagnosis of Central Lung Lesions. Med. Sci. Monit. 2017, 23, 3269–3275. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]

| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Jiang et al. [17] | 2018 | China | SWE | Diagnostic Accuracy | Single | October 2012–October 2017 | 130 |
| Nielsen et al. [19] | 2025 | Denmark | SWE | Diagnostic Accuracy | Single | September 2021–April 2022 | 27 |
| Ozgokce et al. [18] | 2018 | Turkey | SWE | Diagnostic Accuracy | Single | June 2016–January 2018 | 60 |
| Petersen et al. [20] | 2025 | Denmark | SWE | Diagnostic Accuracy | Single | July 2019–August 2021 | 98 |
| Author | Diagnosis | Cut-Off Value | Sensitivity (%) | Specificity (%) | Interobserver Agreement | Intraobserver Agreement |
|---|---|---|---|---|---|---|
| Jiang et al. [17] | Malignant/Benign | 47.25 kPa | 83.64 (70.70–91.80) | 90.67 (81.15–95.85) | SWE-mean: 0.976 SWE-max: 0.581 | NR |
| Nielsen et al. [19] | Malignant/Benign | 1.68 m/s | 60 (15–95) | 55 [21] (32–76) | NR | NR |
| Ozgokce et al. [18] | Transudative/Exudative | 2.52 m/s | 76.5% | 91% | NR | >85% |
| Petersen et al. [20] | Expandable/Non-Expandable Lung | Visceral Pleura = 1.64 m/s | AUC 0.59 | |||
| Pleural Effusion = 1.64 m/s | AUC 0.53 | |||||
| Parietal Pleura = 2.54 m/s | AUC 0.57 | |||||
| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Kuo et al. [22] | 2021 | Taiwan | SWE | Diagnostic Accuracy | Single | January 2016–December 2019 | 233 |
| Wei et al. [31] | 2018 | China | pSWE SE ARFI | Diagnostic Accuracy | Single | January 2013–January 2015 | 91 |
| Sperandeo et al. [30] | 2015 | Italy | SE | Observational Study | Single | September 2012–February 2013 | 95 |
| Boccantonda et al. [26] | 2021 | Italy | SWE SE | Observational Study | NR | January 2018–December 2019 | 14 |
| Quarato et al. [23] | 2022 | Italy | SWE | Diagnostic Accuracy | Single | November 2018–December 2015 | 190 |
| Ozgokce et al. | 2018 | Turkey | SWE | Diagnostic Accuracy | Single | July 2015–December 2016 | 33 |
| Wanbin Li et al. [27] | 2021 | China | SE | Observational Study | Single | March 2019–May 2019 | 153 |
| Alhyari et al. [24] | 2022 | Germany | ARFI | Diagnostic Accuracy | Single | April 2020–December 2020 | 87 |
| Huang et al. [28] | 2019 | China | SWE | Diagnostic Accuracy | Single | November 2017–October 2018 | 112 |
| Lim et al. [29] | 2016 | Taiwan | SE | Experimental Study | Single | December 2011–March 2013 | 45 |
| Ademitz et al. [24] | 2013 | Germany | Real-Time Elastography | Case Series | Single | NR | 18 |
| Author | Diagnosis | Cut-Off Value | Sensitivity (%) | Specificity (%) | Interobserver Agreement | Intraobserver Agreement | |
|---|---|---|---|---|---|---|---|
| Kuo et al. [22] | Malignant/Benign | 65 kPa | 94.9 | 70.1 | NR | 90.3 | |
| Wei et al. [31] | Malignant/Benign | pSWE | 1.951 m/s | 70.9 | 69.4 | NR | NR |
| SE | No significant difference between malignant and benign (p = 0.542) | ||||||
| ARFI | ≥3 | 83.6 | 52.8 | NR | NR | ||
| Sperandeo et al. [30] | Tumor/Pneumonia | ≥4 | 86.9 | 99.7 | NR | NR | |
| Boccantonda et al. [26] | Malignant/Benign | SWV = 3.6 m/s | AUC 0.792 for the diagnosis of lung malignancy Malignant mean = 5.92 ± 2.8 m/s Benign mean = 3.36 ± 1.20 m/s | ||||
| SE = 2.5 | AUC 0.688 for the diagnosis of lung malignancy | ||||||
| Quarato et al. [23] | Malignant/Benign | No statistical difference in between malignant and benign peripheral lesions | |||||
| Ozgokce et al. | Malignant/Benign | 2.47 m/s | 97.7 | 97.7 | NR | NR | |
| Wanbin Li et al. [27] | Malignant/Benign | NR | Malignant 4.24 ± 0.85 | Benign 3.41 ± 0.99 | p < 0.05 | 0.73 (95% CI 0.65–0.79) | |
| Alhyari et al. [24] | Malignant/Benign | 2.21 m/s | 89.7 | 75.3 | NR | NR | |
| Huang et al. [28] | Malignant/Benign | 5.85 kPa | 81.58 | 80.78 | NR | NR | |
| Lim et al. [29] | Differentiation between lesions | Differentiation between lesions | Necrosis significantly different from atelectasis, consolidation, and tumors | Atelectasis significantly different from consolidation and tumor | Consolidation significantly different from tumor | Primary lung cancer significantly different from pneumonia and metastatic lung cancer | |
| Ademitz et al. [24] | Confirmation of lesion | Confirmation of lesion | NR | 100% | NR | NR | |
| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Zhang et al. [33] | 2017 | USA | Surface Wave Elastography | Case-control | Single | NR | 20 |
| Zhang et al. [35] | 2017 | USA | Surface Wave Elastography | Case-control | Single | NR | 71 |
| Zhang et al. [34] | 2019 | USA | Surface Wave Elastography | Case-control | Single | NR | 121 |
| Zhang et al. [36] | 2018 | USA | Surface Wave Elastography | Observational prospective | Single | NR | 52 |
| Clay et al. [12] | 2019 | USA | Surface Wave Elastography | Case-control | Single | NR | 96 |
| Zhou et al. [37] | 2019 | USA | Surface Wave Elastography | Case-control | Single | February 2016–May 2017 | 118 |
| Huang et al. [38] | 2022 | China | SWE | Case-control | Single | March 2019–November 2020 | 125 |
| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Deng et al. [39] | 2025 | China | SWE | Randomized Controlled Trial 1:1 | Multi | April 2023–August 2024 | 232 |
| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Ventilation | |||||||
| Girard et al. [40] | 2022 | Canada | SE and Surface Wave Elastography | Single-blind randomized crossover proof of concept study | Single | July 2017–October 2017 | 10 |
| Pneumothorax | |||||||
| Bandelli et al. [41] | 2020 | Italy | SE | Diagnostic accuracy | Single | January 2017– December 2018 | 30 |
| COPD | |||||||
| Nouvenne et al. [42] | 2022 | Italy | SE | Cross-sectional, pragmatic diagnostic | Single | NR | 60 |
| Cardiogenic pulmonary edema | |||||||
| Wiley et al. [43] | 2021 | USA | Surface Wave Elastography | Observational | Single | NR | 14 |
| Healthy aerated lung tissue | |||||||
| Zhang et al. [44] | 2010 | USA | Surface Wave Elastography | Observational | Single | NR | 1 |
| Author | Year | Country | Elastography Method | Study Design | Center | Inclusion Period | Sample Size |
|---|---|---|---|---|---|---|---|
| Hai-Yan et al. [45] | 2017 | China | 7.5 MHz Convex probe EBUS (CP-EBUS; EB-1970UK, Pentax, Tokyo, Japan). Ultrasound processor HI VISION AVIUS (HITACHI, Tokyo, Japan). | Observational | Single | January 2014–October 2015 | 57 |
| Zhi et al. [21] | 2020 | China | 10 MHz EBUS (BF-UC260FW) and processor (EU-ME2) Olympus, Tokyo, Japan | Observational | Single | July 2018–December 2019 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kildegaard, C.; Nielsen, R.W.; Laursen, C.B.; Nielsen, A.D.; Juul, A.D.; An, T.J.; Addala, D.; Falster, C. Application of Transthoracic and Endobronchial Elastography—A Systematic Review. Cancers 2026, 18, 190. https://doi.org/10.3390/cancers18020190
Kildegaard C, Nielsen RW, Laursen CB, Nielsen AD, Juul AD, An TJ, Addala D, Falster C. Application of Transthoracic and Endobronchial Elastography—A Systematic Review. Cancers. 2026; 18(2):190. https://doi.org/10.3390/cancers18020190
Chicago/Turabian StyleKildegaard, Christian, Rune W. Nielsen, Christian B. Laursen, Ariella Denize Nielsen, Amanda D. Juul, Tai Joon An, Dinesh Addala, and Casper Falster. 2026. "Application of Transthoracic and Endobronchial Elastography—A Systematic Review" Cancers 18, no. 2: 190. https://doi.org/10.3390/cancers18020190
APA StyleKildegaard, C., Nielsen, R. W., Laursen, C. B., Nielsen, A. D., Juul, A. D., An, T. J., Addala, D., & Falster, C. (2026). Application of Transthoracic and Endobronchial Elastography—A Systematic Review. Cancers, 18(2), 190. https://doi.org/10.3390/cancers18020190

