Intraperitoneal Chemotherapy Strategies in Pancreatic Ductal Adenocarcinoma: A Systematic Review of Hyperthermic Intraperitoneal Chemotherapy, Normothermic Intraperitoneal Chemotherapy, and Pressurized Intraperitoneal Aerosol Chemotherapy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy and Study Selection
2.4. Data Collection Process
2.5. Risk of Bias Assessment
2.6. Synthesis Methods
2.7. Evaluation of Publication Bias
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. HIPEC Studies and Treatment Characteristics
3.2.2. NIPEC/IP Paclitaxel Programs
3.2.3. PIPAC Programs and Efficacy Evidence
3.3. Risk of Bias
3.4. Results of Individual Studies
3.4.1. HIPEC Studies
3.4.2. NIPEC/IP Paclitaxel Studies
3.4.3. PIPAC Studies
3.5. Additional/Contemporary Investigations
4. Discussion
4.1. Positioning Intraperitoneal Therapy Against Systemic-Only Benchmarks
4.2. Adjuvant HIPEC: Reducing Locoregional Recurrence Without Compromising Safety
4.3. CRS + HIPEC for Isolated Peritoneal Metastases: A “Regional Oligometastatic” State?
4.4. NIPEC/IP-PTX: Consistent Disease Control and Meaningful Conversion-to-Resection
4.5. PIPAC: A Repeatable, Biologically Active Option for Frailer Patients
4.6. Biological Rationale and Emerging Translational Insights
4.7. Patient Selection, Staging, and Integration into PDAC Care Pathways
4.8. Contextualizing Intraperitoneal Strategies Against Contemporary Systemic Therapy Benchmarks
4.9. Standardization of Outcomes and Reporting Framework
- 1.
- Overall survival (OS)
- OS from time of PM diagnosis, to capture true disease trajectory
- OS from initiation of intraperitoneal therapy, to enable between-modality comparisons
- 2.
- Progression-free survival (PFS)
- Defined using harmonized radiologic and/or laparoscopic criteria
- With prespecified handling of systemic vs. peritoneal progression
- 3.
- Disease control assessment
- Routine reporting of Peritoneal Regression Grading Score (PRGS) for histologic response
- Baseline PCI and dynamic PCI change where feasible
- 4.
- Morbidity and feasibility
- Standardized Clavien–Dindo morbidity
- Procedural completion rates and reasons for discontinuation
- 5.
- Patient-centered outcomes
- Formal reporting of ascites control, symptom burden, and quality-of-life metrics
4.10. Quality of Life, Treatment Burden, and Patient-Centered Outcomes
4.11. Limitations of the Current Evidence and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AE | Adverse event |
| CC-0/1 | Complete or near-complete cytoreduction (no visible disease/residual disease < 2.5 mm) |
| CRS | Cytoreductive surgery |
| DFS | Disease-free survival |
| GnP | Gemcitabine plus nab-paclitaxel |
| HIPEC | Hyperthermic intraperitoneal chemotherapy |
| IP | Intraperitoneal |
| LRR | Locoregional recurrence |
| mOS | Median overall survival |
| NIPEC | Normothermic intraperitoneal chemotherapy |
| IP-PTX/NIPEC-PTX | Intraperitoneal paclitaxel |
| OR | Operating room |
| OS | Overall survival |
| PCI | Peritoneal carcinomatosis index |
| PD | Progressive disease |
| PDAC | Pancreatic ductal adenocarcinoma |
| PFS | Progression-free survival |
| PIPAC | Pressurized intraperitoneal aerosol chemotherapy |
| PM | Peritoneal metastases |
| PRGS | Peritoneal Regression Grading Score |
| RCT | Randomized controlled trial |
| TME | Tumor microenvironment |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Groot, V.P.; Rezaee, N.; Wu, W.; Cameron, J.L.; Fishman, E.K.; Hruban, R.H.; Weiss, M.J.; Zheng, L.; Wolfgang, C.L.; He, J. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2018, 267, 936–945. [Google Scholar] [CrossRef]
- del Castillo, C.F.; Warshaw, L. Peritoneal metastases in pancreatic carcinoma. Hepatogastroenterology 1993, 40, 430–432. [Google Scholar]
- Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M.; et al. Stromal biology and therapy in pancreatic cancer. Gut 2011, 60, 861–868. [Google Scholar] [CrossRef]
- Ohlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.H.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef]
- Dedrick, R.L.; Myers, C.E.; Bungay, P.M.; DeVita, V.T. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 1978, 62, 1–11. [Google Scholar] [PubMed]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef]
- Markman, M. Intraperitoneal antineoplastic drug delivery: Rationale and results. Lancet Oncol. 2003, 4, 277–283. [Google Scholar] [CrossRef]
- Fujimoto, S.; Shrestha, R.D.; Kokubun, M.; Ohta, M.; Takahashi, M.; Kobayashi, K.; Kiuchi, S.; Okui, K.; Miyoshi, T.; Arimizu, N.; et al. Intraperitoneal Hyperthermic Perfusion Combined with Surgery Effective for Gastric Cancer Patients with Peritoneal Seeding. Ann. Surg. 1988, 208, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Sugarbaker, P.H. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. In Peritoneal Carcinomatosis: Principles of Management; Sugarbaker, P.H., Ed.; Springer: Boston, MA, USA, 1996; pp. 359–374. [Google Scholar]
- Chia, D.K.A.; Demuytere, J.; Ernst, S.; Salavati, H.; Ceelen, W. Effects of Hyperthermia and Hyperthermic Intraperitoneal Chemoperfusion on the Peritoneal and Tumor Immune Contexture. Cancers 2023, 15, 4314. [Google Scholar] [CrossRef]
- Bodell, W.J.; Cleaver, J.E.; Roti, J.L.R. Inhibition by Hyperthermia of Repair Synthesis and Chromatin Reassembly of Ultraviolet-Induced Damage to DNA. Radiat. Res. 1984, 100, 87–95. [Google Scholar] [CrossRef]
- Cross, A.; Shelley, J.; Newman, R.; Strid, J.; Denton, A.E. Role of Fibroblast-Immune Crosstalk in Kidney, Lung, and Skin Tertiary Lymphoid Structures. Immunol. Rev. 2025, 334, e70059. [Google Scholar] [CrossRef]
- Levine, E.A.; Stewart, J.H.; Shen, P.; Russell, G.B.; Loggie, B.L.; Votanopoulos, K.I. Intraperitoneal Chemotherapy for Peritoneal Surface Malignancy: Experience with 1000 Patients. J. Am. Coll. Surg. 2014, 218, 573–585. [Google Scholar] [CrossRef]
- Markman, M. Intraperitoneal paclitaxel in the management of ovarian cancer. Semin Oncol. 1995, 22, 86–87. [Google Scholar]
- Kamei, T.; Kitayama, J.; Yamaguchi, H.; Soma, D.; Emoto, S.; Konno, T.; Ishihara, K.; Ishigami, H.; Kaisaki, S.; Nagawa, H. Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-con-butyl methacrylate) in peritoneal metastatic nodules. Cancer Sci. 2010, 102, 200–205. [Google Scholar] [CrossRef]
- Markman, M.; Brady, M.F.; Spirtos, N.M.; Hanjani, P.; Rubin, S.C. Phase II trial of intraperitoneal paclitaxel in carcinoma of the ovary, tube, and peritoneum: A Gynecologic Oncology Group Study. J. Clin. Oncol. 1998, 16, 2620–2624. [Google Scholar] [CrossRef]
- Kitayama, J.; Ishigami, H.; Yamaguchi, H.; Yamashita, H.; Emoto, S.; Kaisaki, S. S-1 plus intravenous and intraperitoneal Paclitaxel for gastric cancer with peritoneal metastasis. Gastrointest. Cancer Res. GCR 2012, 5, S10. [Google Scholar]
- Saito, S.; Yamaguchi, H.; Ohzawa, H.; Miyato, H.; Kanamaru, R.; Kurashina, K.; Hosoya, Y.; Lefor, A.K.; Sata, N.; Kitayama, J. Intraperitoneal Administration of Paclitaxel Combined with S-1 Plus Oxaliplatin as Induction Therapy for Patients with Advanced Gastric Cancer with Peritoneal Metastases. Ann. Surg. Oncol. 2020, 28, 3863–3870. [Google Scholar] [CrossRef]
- Sugarbaker, P.H. Intraperitoneal paclitaxel: Pharmacology, clinical results and future prospects. J. Gastrointest. Oncol. 2021, 12, S231–S239. [Google Scholar] [CrossRef] [PubMed]
- Baggaley, A.E.; Lafaurie, G.B.R.C.; Tate, S.J.; Boshier, P.R.; Case, A.; Prosser, S.; Torkington, J.; Jones, S.E.F.; Gwynne, S.H.; Peters, C.J. Pressurized intraperitoneal aerosol chemotherapy (PIPAC): Updated systematic review using the IDEAL framework. Br. J. Surg. 2022, 110, 10–18. [Google Scholar] [CrossRef]
- Ellebæk, S.B.; Graversen, M.; Detlefsen, S.; Lundell, L.; Fristrup, C.W.; Pfeiffer, P.; Mortensen, M.B. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) of peritoneal metastasis from gastric cancer: A descriptive cohort study. Clin. Exp. Metastasis 2020, 37, 325–332. [Google Scholar] [CrossRef]
- Ametsbichler, P.; Böhlandt, A.; Nowak, D.; Schierl, R. Occupational exposure to cisplatin/oxaliplatin during Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC)? Eur. J. Surg. Oncol. (EJSO) 2018, 44, 1793–1799. [Google Scholar] [CrossRef]
- Khosrawipour, V.; Khosrawipour, T.; Kern, A.J.P.; Osma, A.; Kabakci, B.; Diaz-Carballo, D.; Förster, E.; Zieren, J.; Fakhrian, K. Distribution pattern and penetration depth of doxorubicin after pressurized intraperitoneal aerosol chemotherapy (PIPAC) in a postmortem swine model. J. Cancer Res. Clin. Oncol. 2016, 142, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.; Chandler, J.; Welch, V.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef]
- Deeken, J.F.; LoösCher, W. The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses. Clin. Cancer Res. 2007, 13, 1663–1674. [Google Scholar] [CrossRef]
- Song, S.Y.; Kim, E. The clinical trial transparency in oncology significantly increased over the recent years. J. Clin. Epidemiol. 2020, 119, 100–108. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.N.M.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef]
- Parmar, M.K.; Torri, V.; Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 1998, 17, 2815–2834. [Google Scholar] [CrossRef]
- Margulis, A.V.; Pladevall, M.; Riera-Guardia, N.; Varas-Lorenzo, C.; Hazell, L.; Berkman, N.D.; Viswanathan, M.; Perez-Gutthann, S. Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: The Newcastle–Ottawa Scale and the RTI item bank. Clin. Epidemiol. 2014, 6, 359–368. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P. Analytic Approaches to Observational Studies with Treatment Selection Bias. JAMA 2007, 297, 2077–2078. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Z.; Li, T.; Chen, H.; Yuan, Y.; Wang, Y.A.; Hsiao, C.-H.; Chow, D.S.-L.; Overwijk, W.W.; Li, C. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in Pancreatic Cancer. ACS Nano 2018, 12, 9881–9893. [Google Scholar] [CrossRef]
- Carbone, L.; Incognito, G.G.; Incognito, D.; Nibid, L.; Caruso, G.; Berretta, M.; Taffon, C.; Palumbo, M.; Perrone, G.; Roviello, F.; et al. Clinical implications of epithelial-to-mesenchymal transition in cancers which potentially spread to peritoneum. Clin. Transl. Oncol. 2025, 27, 2838–2851. [Google Scholar] [CrossRef]
- Gardner, M.J.; Jones, L.M.; Catterall, J.B.; Turner, G.A. Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett. 1995, 91, 229–234. [Google Scholar] [CrossRef]
- Easterbrook, P.; Gopalan, R.; Berlin, J.; Matthews, D. Publication bias in clinical research. Lancet 1991, 337, 867–872. [Google Scholar] [CrossRef]
- Ayorinde, A.A.; Williams, I.; Mannion, R.; Song, F.; Skrybant, M.; Lilford, R.J.; Chen, Y.F. Assessment of publication bias and outcome reporting bias in systematic reviews of health services and delivery research: A meta-epidemiological study. PLoS ONE 2020, 15, e0227580. [Google Scholar] [CrossRef]
- Yurttas, C.; Horvath, P.; Fischer, I.; Meisner, C.; Nadalin, S.; Königsrainer, I.; Königsrainer, A.; Beckert, S.; Löffler, M.W. A Prospective, Phase I/II, Open-Label Pilot Trial to Assess the Safety of Hyperthermic Intraperitoneal Chemotherapy After Oncological Resection of Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2021, 28, 9086–9095. [Google Scholar] [CrossRef]
- Hamm, J.J.M.; van den Berg, R.; Andrinopoulou, E.-R.; Zwanenburg, E.S.; Musters, G.D.; Tanis, P.J.; Arjona-Sanchez, A.; Zwanenburg, E.S. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with colon cancer at high risk of peritoneal metastases: Individual patient data meta-analysis. Br. J. Surg. 2025, 112, znaf076. [Google Scholar] [CrossRef]
- Caro, C.R.; Manzanedo, I.; Pereira, F.; Carrion-Alvarez, L.; Serrano, Á.; Pérez-Viejo, E. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with gastric cancer and peritoneal carcinomatosis. Eur. J. Surg. Oncol. (EJSO) 2018, 44, 1805–1810. [Google Scholar] [CrossRef]
- Grotz, T.E.; Yonkus, J.A.; Thiels, C.A.; Warner, S.G.; McWilliams, R.R.; Mahipal, A.; Bekaii-Saab, T.S.; Cleary, S.P.; Kendrick, M.L.; Truty, M.J. Cytoreduction with Hyperthermic Intraperitoneal Chemoperfusion for Pancreatic Cancer with Low-Volume Peritoneal Metastasis: Results from a Prospective Pilot Study. Ann. Surg. Oncol. 2022, 30, 395–403. [Google Scholar] [CrossRef]
- Gudmundsdottir, H.; Yonkus, J.A.; Thiels, C.A.; Warner, S.G.; Cleary, S.P.; Kendrick, M.L.; Truty, M.J.; Grotz, T.E. Oncologic Outcomes of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Highly Selected Patients with Metastatic Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2023, 30, 7833–7839. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhang, K.; Yan, L.; Zhang, Y. Efficacy and safety of cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy in patients with pancreatic cancer peritoneal metastasis. World J. Surg. Oncol. 2024, 22, 212. [Google Scholar] [CrossRef] [PubMed]
- Tentes, A.-A.; Pallas, N.; Karamveri, C.; Kyziridis, D.; Hristakis, C. Cytoreduction and HIPEC for peritoneal carcinomatosis of pancreatic cancer. J. BUON 2018, 23, 482–487. [Google Scholar]
- Satoi, S.; Fujii, T.; Yanagimoto, H.; Motoi, F.; Kurata, M.; Takahara, N.; Yamada, S.; Yamamoto, T.; Mizuma, M.; Honda, G.; et al. Multicenter Phase II Study of Intravenous and Intraperitoneal Paclitaxel with S-1 for Pancreatic Ductal Adenocarcinoma Patients with Peritoneal Metastasis. Ann. Surg. 2017, 265, 397–401. [Google Scholar] [CrossRef]
- Satoi, S.; Yanagimoto, H.; Yamamoto, T.; Hirooka, S.; Yamaki, S.; Kosaka, H.; Inoue, K.; Hashimoto, Y.; Matsui, Y.; Kon, M. Survival benefit of intravenous and intraperitoneal paclitaxel with S-1 in pancreatic ductal adenocarcinoma patients with peritoneal metastasis: A retrospective study in a single institution. J. Hepato-Biliary-Pancreat. Sci. 2017, 24, 289–296. [Google Scholar] [CrossRef]
- Takahara, N.; Isayama, H.; Nakai, Y.; Sasaki, T.; Ishigami, H.; Yamashita, H.; Yamaguchi, H.; Hamada, T.; Uchino, R.; Mizuno, S.; et al. Intravenous and Intraperitoneal Paclitaxel with S-1 for Refractory Pancreatic Cancer with Malignant Ascites: An Interim Analysis. J. Gastrointest. Cancer 2014, 45, 307–311. [Google Scholar] [CrossRef]
- Yamada, S.; Fujii, T.; Yamamoto, T.; Takami, H.; Yoshioka, I.; Yamaki, S.; Sonohara, F.; Shibuya, K.; Motoi, F.; Hirano, S.; et al. Phase I/II study of adding intraperitoneal paclitaxel in patients with pancreatic cancer and peritoneal metastasis. Br. J. Surg. 2020, 107, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Takahara, N.; Nakai, Y.; Ishigami, H.; Saito, K.; Sato, T.; Hakuta, R.; Ishigaki, K.; Saito, T.; Hamada, T.; Mizuno, S.; et al. A phase I study of intraperitoneal paclitaxel combined with gemcitabine plus nab-paclitaxel for pancreatic cancer with peritoneal metastasis. Investig. New Drugs 2020, 39, 175–181. [Google Scholar] [CrossRef]
- Horvath, P.; Beckert, S.; Struller, F.; Königsrainer, A.; Reymond, M.A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for peritoneal metastases of pancreas and biliary tract cancer. Clin. Exp. Metastasis 2018, 35, 635–640. [Google Scholar] [CrossRef]
- Kurtz, F.; Struller, F.; Horvath, P.; Solass, W.; Bösmüller, H.; Königsrainer, A.; Reymond, M.A. Feasibility, Safety, and Efficacy of Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) for Peritoneal Metastasis: A Registry Study. Gastroenterol. Res. Pract. 2018, 2018, 2743985. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Sgarbura, O.; Rotolo, S.; Schena, C.A.; Bagalà, C.; Inzani, F.; Russo, A.; Chiantera, V.; Pacelli, F. Pressurized intraperitoneal aerosol chemotherapy with cisplatin and doxorubicin or oxaliplatin for peritoneal metastasis from pancreatic adenocarcinoma and cholangiocarcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920940887. [Google Scholar] [CrossRef]
- Robella, M.; De Simone, M.; Berchialla, P.; Argenziano, M.; Borsano, A.; Ansari, S.; Abollino, O.; Ficiarà, E.; Cinquegrana, A.; Cavalli, R.; et al. A Phase I Dose Escalation Study of Oxaliplatin, Cisplatin and Doxorubicin Applied as PIPAC in Patients with Peritoneal Carcinomatosis. Cancers 2021, 13, 1060. [Google Scholar] [CrossRef]
- Khosrawipour, T.; Khosrawipour, V.; Giger-Pabst, U. Pressurized Intra Peritoneal Aerosol Chemotherapy in patients suffering from peritoneal carcinomatosis of pancreatic adenocarcinoma. PLoS ONE 2017, 12, e0186709. [Google Scholar] [CrossRef]
- Tentes, A.-A.; Stamou, K.; Pallas, N.; Karamveri, C.; Kyziridis, D.; Hristakis, C. The effect of hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC) as an adjuvant in patients with resectable pancreatic cancer. Int. J. Hyperth. 2016, 32, 895–899. [Google Scholar] [CrossRef]
- Solaß, W.; Kerb, R.; Mürdter, T.; Giger-Pabst, U.; Reymond, M.A. Intraperitoneal chemotherapy of peritoneal carcinomatosis: Pharmacology, application rationale, and perspectives. Cancer Treat. Rev. 2014, 40, 812–820. [Google Scholar] [CrossRef]
- Choi, M.; Harper, M.M.; Pandalai, P.K.; Abdel-Misih, S.R.Z.; Patel, R.A.; Ellis, C.S.; Reusch, E.; Reynolds, J.; Vacchi-Suzzi, C.; Park, J.M.; et al. A Multicenter Phase 1 Trial Evaluating Nanoliposomal Irinotecan for Heated Intraperitoneal Chemotherapy Combined with Cytoreductive Surgery for Patients with Peritoneal Surface Disease. Ann. Surg. Oncol. 2022, 30, 804–813. [Google Scholar] [CrossRef]
- Breusa, S.; Zilio, S.; Catania, G.; Bakrin, N.; Kryza, D.; Lollo, G. Localized chemotherapy approaches and advanced drug delivery strategies: A step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front. Oncol. 2023, 13, 1125868. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Ferracci, F.; Bagalà, C.; Carbone, C.; Salvatore, L.; Strippoli, A.; El Halabieh, M.A.; Abatini, C.; Alfieri, S.; Pacelli, F.; et al. Combined Nabpaclitaxel pressurized intraPeritoneal aerosol chemotherapy with systemic Nabpaclitaxel-Gemcitabine chemotherapy for pancreatic cancer peritoneal metastases: Protocol of single-arm, open-label, phase II trial (Nab-PIPAC trial). Pleura Peritoneum 2024, 9, 121–129. [Google Scholar] [CrossRef]
- Lang, N.; Diciola, A.; Labidi-Galy, I.; Ris, F.; Di Marco, M.; Mach, N.; Petignat, P.; Toso, C.; Undurraga, M.; Hubner, M. Nab-PIPAC: A phase IB study protocol of intraperitoneal cisplatin and nab-paclitaxel administered by pressurised intraperitoneal aerosol chemotherapy (PIPAC) in the treatment of advanced malignancies confined to the peritoneal cavity. BMJ Open 2023, 13, e067691. [Google Scholar] [CrossRef]
- Koumpa, F.S.; Xylas, D.; Konopka, M.; Galea, D.; Veselkov, K.; Antoniou, A.; Mehta, A.; Mirnezami, R. Colorectal Peritoneal Metastases: A Systematic Review of Current and Emerging Trends in Clinical and Translational Research. Gastroenterol. Res. Pract. 2019, 2019, 5180895. [Google Scholar] [CrossRef]
- Sundar, R.; Chia, D.; Zhao, J.; Lee, A.; Kim, G.; Tan, H.; Pang, A.; Shabbir, A.; Willaert, W.; Ma, H.; et al. Phase I PIANO trial—PIPAC-oxaliplatin and systemic nivolumab combination for gastric cancer peritoneal metastases: Clinical and translational outcomes. ESMO Open 2024, 9, 103681. [Google Scholar] [CrossRef]
- Safari, D.; Fakhrolmobasheri, M.; Soleymanjahi, S. Efficacy and safety of intraperitoneal chemotherapy for pancreatic cancer. BMC Surg. 2024, 24, 285. [Google Scholar] [CrossRef]
- Wu, G.; Standring, O.J.; King, D.A.; Gholami, S.; Devoe, C.E.; Thiels, C.A.; Grotz, T.E.; Weiss, M.J.; Whelan, R.L.; Raoof, M.; et al. Management of Peritoneal Metastasis in Patients with Pancreatic Ductal Adenocarcinoma. Curr. Oncol. 2025, 32, 103. [Google Scholar] [CrossRef]
- Boshier, P.R.; Tekkis, N.; Baggaley, A.; Robb, H.D.; Lafaurie, G.; Simkens, G.; Nilsson, M.; Hanna, G.B.; Petty, R. Outcomes of intraperitoneal chemotherapy for the treatment of gastric cancer with peritoneal metastasis: A comprehensive systematic review and meta-analysis. Eur. J. Surg. Oncol. (EJSO) 2024, 51, 109499. [Google Scholar] [CrossRef]
- Avula, L.R.; Hagerty, B.; Alewine, C. Molecular mediators of peritoneal metastasis in pancreatic cancer. Cancer Metastasis Rev. 2020, 39, 1223–1243. [Google Scholar] [CrossRef]
- Brind’aMour, A.; Webb, M.; Parapini, M.; Sidéris, L.; Segedi, M.; Chung, S.W.; Chartier-Plante, S.; Dubé, P.; Scudamore, C.H.; Kim, P.T.W. The role of intraperitoneal chemotherapy in the surgical management of pancreatic ductal adenocarcinoma: A systematic review. Clin. Exp. Metastasis 2021, 38, 187–196. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]

| Study | Year | Country | Modality | Setting | Design | N | Regimen | Systemic Therapy Backbone |
|---|---|---|---|---|---|---|---|---|
| Yurttas [44] | 2021 | Germany | HIPEC | Adjuvant | Phase I/II | 16 | Gem 1000 mg/m2, 42 °C, 60 min | Standard adjuvant |
| Padilla-Valverde [45] | 2024 | Spain | HIPEC | Adjuvant | RCT | 42 | Gem 120 mg/m2, 41–42 °C, 30 min | Gemcitabine |
| Padilla-Valverde [46] | 2021 | Spain | HIPEC | Adjuvant | Pilot | 10 | Gem 120 mg/m2 HIPEC | Gemcitabine |
| Grotz [47] | 2023 | USA | CRS + HIPEC | PM | Prospective | 18 | Cisplatin + MMC | Pre-op systemic (≥6 mo) |
| Gudmundsdottir [48] | 2023 | Iceland | CRS + HIPEC | PM | Retrospective | 23 | Institutional HIPEC | Chemo matched cohort |
| Yan [49] | 2024 | China | CRS + HIPEC | PM | Retrospective | 10 | HIPEC | Gem-based |
| Tentes [50] | 2018 | Greece | CRS + HIPEC | PM | Retrospective | 23 | HIPEC | Mixed |
| Satoi (Multicenter) [51] | 2017 | Japan | NIPEC | PM | Phase II | 33 | IP PTX 20 mg/m2 + IV PTX 50 mg/m2 + S-1 | S-1 |
| Satoi (Single center) [52] | 2017 | Japan | NIPEC | PM | Retrospective | 20 | IP PTX + S-1 | S-1 |
| Takahara [53] | 2014 | Japan | NIPEC | PM | Phase II | 10 | IP PTX + IV PTX + S-1 | S-1 |
| Yamada [54] | 2020 | Japan | NIPEC | PM | Phase I/II | 46 | IP PTX + GnP | GnP |
| Takahara [55] | 2021 | Japan | NIPEC | PM | Phase I | 12 | IP PTX + GnP | GnP |
| Horvath [56] | 2018 | Germany | PIPAC | PM | Retrospective | 6 | PIPAC CD/OX | Prior systemic |
| Kurtz [57] | 2018 | Denmark | PIPAC | PM | Prospective | 7 | PIPAC-OX | Outpatient |
| Di Giorgio [58] | 2020 | Italy | PIPAC | PM | Retrospective | 14 | PIPAC CD/OX | Mixed |
| Kim [59] | 2021 | USA | PIPAC | PM | Phase I | 16 | OX 45: 120 mg/m2 | Prior chemo |
| Khosrawipour [60] | 2017 | Germany | PIPAC | PM | Retrospective | 20 | PIPAC CDDP/DOX | Prior systemic |
| Study | Selection (0–4) | Comparability (0–2) | Outcome (0–3) | Total (0–9) |
|---|---|---|---|---|
| Yurttas [44] | 4 | 1 | 3 | 8 |
| Padilla-Valverde RCT [45] | 4 | 2 | 3 | 9 |
| Padilla-Valverde pilot [46] | 3 | 1 | 3 | 7 |
| Grotz [47] | 4 | 2 | 3 | 9 |
| Gudmundsdottir [48] | 3 | 1 | 2 | 6 |
| Yan [49] | 3 | 1 | 2 | 6 |
| Tentes [50] | 2 | 1 | 2 | 5 |
| Satoi multicenter [51] | 3 | 1 | 3 | 7 |
| Satoi single center [52] | 3 | 1 | 2 | 6 |
| Takahara 2014 [53] | 3 | 1 | 2 | 6 |
| Yamada [54] | 4 | 1 | 3 | 8 |
| Takahara 2021 [55] | 4 | 1 | 3 | 8 |
| Horvath [56] | 3 | 1 | 2 | 6 |
| Kurtz [57] | 3 | 1 | 2 | 6 |
| Di Giorgio [58] | 3 | 1 | 2 | 6 |
| Kim [59] | 4 | 1 | 3 | 8 |
| Khosrawipour [60] | 3 | 1 | 2 | 6 |
| Study | Feasibility | 30 d Mortality | Major Complications | Response/PRGS | Conversion | mOS |
|---|---|---|---|---|---|---|
| Yurttas [44] | 89% | 0% | Comparable to pancreatectomy | – | – | 16.1 mo |
| Padilla-Valverde (RCT) [45] | >90% | 0–5% | Acceptable | Decreased LRR | – | ~17–18 mo |
| Grotz [47] | High | 0% | 20–43% | – | – | 26 mo |
| Gudmundsdottir [48] | High | <5% | Acceptable | – | – | 41 mo |
| Yan [49] | High | 0% | Low | – | – | 24.2 mo |
| Satoi multicenter [51] | High | 0% | Manageable | – | 24% | 16.3 mo |
| Yamada [54] | High | – | – | – | 17% | 14.5 mo |
| Di Giorgio [58] | High | 0% | Mostly G1–2 | 50% PRGS regression | – | 9.7 mo |
| Kim (PIPAC) [59] | High | – | Low | PRGS improvement | – | ~12 mo |
| Khosrawipour [60] | High | ~2% | Low (no CTCAE ≥ 3; 1 SBO death) | 35% histologic regression (TRG) | - | ~9 mo |
| Modality | Ideal Patients | Strengths | Limitations | Safety Notes | Evidence Level |
|---|---|---|---|---|---|
| HIPEC (Adjuvant) | Resected PDAC; high LRR risk | Decrease in LRR; good safety; RCT data | Requires OR time; limited centers | Similar to major abdominal surgery | Moderate |
| CRS + HIPEC | Isolated PM; good response to chemo | Multi-year survival; CC-0/1 possible | Highly selected patients | Major morbidity 20–40% | Low-Moderate |
| NIPEC/IP-PTX | PM with ascites; unresectable | Ascites control; conversion surgery | Requires port; hematologic AEs | Mostly manageable | Low-Moderate |
| PIPAC | Heavily pretreated PM | Histologic regression; low toxicity | Early discontinuation in PD | Safe outpatient profile | Absent |
| Clinical Setting | Contemporary Expected Outcome | Representative Evidence |
|---|---|---|
| General metastatic PDAC | 11–14 months median OS with modern systemic therapy | Conroy et al., NEJM 2011; Von Hoff et al., NEJM 2013 [74,75] |
| PDAC with peritoneal metastases (unselected) | Historically 3–6 months; contemporary selected cohorts ~9–12 months | Wu et al. 2025; Gudmundsdottir 2023 [48,69] |
| Selected PM patients with chemotherapy-responsive biology | ≥12–18 months reported in modern cohorts | Gudmundsdottir 2023; Grotz 2023 [47,48] |
| IP strategies (HIPEC/NIPEC/PIPAC) | 14–30 months in highly selected series | Yurttas 2021; Padilla-Valverde 2024; Satoi; Yamada; Di Giorgio; Robella; Choi [44,45,51,54,58,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ganatra, N.; Abdelhakeem, A.; Jain, P.; Kamatham, S.; Elantably, D.; Adeoye, O.; Babiker, H.M.; O’Donnell, C.D.; Majeed, U. Intraperitoneal Chemotherapy Strategies in Pancreatic Ductal Adenocarcinoma: A Systematic Review of Hyperthermic Intraperitoneal Chemotherapy, Normothermic Intraperitoneal Chemotherapy, and Pressurized Intraperitoneal Aerosol Chemotherapy. Cancers 2026, 18, 182. https://doi.org/10.3390/cancers18020182
Ganatra N, Abdelhakeem A, Jain P, Kamatham S, Elantably D, Adeoye O, Babiker HM, O’Donnell CD, Majeed U. Intraperitoneal Chemotherapy Strategies in Pancreatic Ductal Adenocarcinoma: A Systematic Review of Hyperthermic Intraperitoneal Chemotherapy, Normothermic Intraperitoneal Chemotherapy, and Pressurized Intraperitoneal Aerosol Chemotherapy. Cancers. 2026; 18(2):182. https://doi.org/10.3390/cancers18020182
Chicago/Turabian StyleGanatra, Nency, Ahmed Abdelhakeem, Pragya Jain, Saivaishnavi Kamatham, Dina Elantably, Oluwatayo Adeoye, Hani M. Babiker, Conor D. O’Donnell, and Umair Majeed. 2026. "Intraperitoneal Chemotherapy Strategies in Pancreatic Ductal Adenocarcinoma: A Systematic Review of Hyperthermic Intraperitoneal Chemotherapy, Normothermic Intraperitoneal Chemotherapy, and Pressurized Intraperitoneal Aerosol Chemotherapy" Cancers 18, no. 2: 182. https://doi.org/10.3390/cancers18020182
APA StyleGanatra, N., Abdelhakeem, A., Jain, P., Kamatham, S., Elantably, D., Adeoye, O., Babiker, H. M., O’Donnell, C. D., & Majeed, U. (2026). Intraperitoneal Chemotherapy Strategies in Pancreatic Ductal Adenocarcinoma: A Systematic Review of Hyperthermic Intraperitoneal Chemotherapy, Normothermic Intraperitoneal Chemotherapy, and Pressurized Intraperitoneal Aerosol Chemotherapy. Cancers, 18(2), 182. https://doi.org/10.3390/cancers18020182

