Intraoperative Ex Vivo Shear-Wave Elastography of Sentinel Lymph Nodes in Endometrial Cancer and Other Gynaecological Malignancies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Surgical Procedure and Sentinel-Node Procurement
2.3. Shear-Wave Elastography (SWE)
2.4. Histopathological Reference
2.5. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. LN Dimension Analysis
3.3. Representative SWE Image

4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ITCs | Isolated Tumor cells |
| LN | Lymph node |
| SLN | Sentinel Lymph node |
| SLNB | Sentinel Lymph node Biopsy |
| SW | Shear Wave |
| SWE | Shear-wave elastography |
| ROI | Region of interest |
References
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135, Erratum in Int. J. Gynaecol. Obstet. 2019, 147, 279–280. https://doi.org/10.1002/ijgo.12969. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N. FIGO staging of endometrial cancer: 2023. Int. J. Gynaecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155, 61–85. [Google Scholar] [CrossRef] [PubMed]
- Concin, N.; Matias-Guiu, X.; Cibula, D.; Colombo, N.; Creutzberg, C.L.; Ledermann, J.; Mirza, M.R.; Vergote, I.; Abu-Rustum, N.R.; Bosse, T.; et al. ESGO-ESTRO-ESP guidelines for the management of patients with endometrial carcinoma: Update 2025. Lancet Oncol. 2025, 26, e423–e435, Erratum in Lancet Oncol. 2025, 26, e522. [Google Scholar] [CrossRef] [PubMed]
- de Boer, S.M.; Powell, M.E.; Mileshkin, L.; Katsaros, D.; Bessette, P.; Haie-Meder, C.; Ottevanger, P.B.; Ledermann, J.A.; Khaw, P.; Colombo, A.; et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): Final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 295–309, Erratum in Lancet Oncol. 2018, 19, e184. [Google Scholar] [CrossRef]
- Cheng, X.; Cai, S.; Li, Z.; Tang, M.; Xue, M.; Zang, R. The prognosis of women with stage IB1-IIB node-positive cervical carcinoma after radical surgery. World J. Surg. Oncol. 2004, 2, 47. [Google Scholar] [CrossRef]
- Cibula, D.; Raspollini, M.R.; Planchamp, F.; Centeno, C.; Chargari, C.; Felix, A.; Fischerová, D. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer–Update 2023. Int. J. Gynecol. Cancer 2023, 33, 649–666. [Google Scholar] [CrossRef]
- Van der Zee, A.G.; Oonk, M.H.; De Hullu, J.A.; Ansink, A.C.; Vergote, I.; Verheijen, R.H.; Maggioni, A.; Gaarenstroom, K.N.; Baldwin, P.J.; Van Dorst, E.B.; et al. Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J. Clin. Oncol. 2008, 26, 884–889. [Google Scholar] [CrossRef]
- Oonk, M.H.; Planchamp, F.; Baldwin, P.; Mahner, S.; Mirza, M.R.; Fischerová, D.; Creutzberg, C.L.; Guillot, E.; Garganese, G.; Lax, S. European Society of Gynaecological Oncology guidelines for the management of patients with vulvar cancer-update 2023. Int. J. Gynecol. Cancer 2023, 33, 1023–1043. [Google Scholar] [CrossRef]
- González-Martín, A.; Harter, P.; Leary, A.; Lorusso, D.; Miller, R.E.; Pothuri, B.; Ray-Coquard, I.; Tan, D.S.P.; Bellet, E.; Oaknin, A.; et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 833–848. [Google Scholar] [CrossRef]
- Aldoheyan, T.; Klein, J. Quality assurance review: Intra-operative evaluation of sentinel lymph nodes in breast cancer. Cancer Med. 2021, 10, 7213–7221. [Google Scholar] [CrossRef]
- Lim, J.; Govindarajulu, S.; Sahu, A.; Ibrahim, N.; Magdub, S.; Cawthorn, S. Multiple Step-section Frozen Section sentinel lymph node biopsy–a review of 717 patients. Breast 2013, 22, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.A.; Horton, S.; Wilson, M.L.; Atun, R.; DeStigter, K.; Flanigan, J.; Sayed, S.; Adam, P.; Aguilar, B.; Andronikou, S.; et al. The Lancet Commission on diagnostics: Transforming access to diagnostics. Lancet 2021, 398, 1997–2050. [Google Scholar] [CrossRef]
- Yoon, K.H.; Park, S.; Kim, J.Y.; Park, H.S.; Kim, S.I.; Cho, Y.U.; Park, B.W. Is the frozen section examination for sentinel lymph node necessary in early breast cancer patients? Ann. Surg. Treat. Res. 2019, 97, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Liang, Z.; Zhang, Q.; Wang, C.; Liu, X. The performance of one-step nucleic acid amplification assay for intraoperative detection of sentinel lymph node macrometastasis in breast cancer: An updated meta-analysis. Breast 2018, 39, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Raia-Barjat, T.; Trombert, B.; Khaddage, A.; Douchet, C.; Seffert, P.; Peoc’h, M.; Falk, A.T.; Magné, N.; Chauleur, C. OSNA (one-step nucleic acid amplification) sentinel lymph node intraoperative molecular analysis in breast cancer: A cost-benefit analysis. Med. Oncol. 2014, 31, 322. [Google Scholar] [CrossRef]
- Youk, J.H.; Gweon, H.M.; Son, E.J. Shear-wave elastography in breast ultrasonography: The state of the art. Ultrasonography 2017, 36, 300–309. [Google Scholar] [CrossRef]
- Barr, R.G. Sonographic breast elastography: A primer. J. Ultrasound Med. 2012, 31, 773–783. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Bamber, J.; Berzigotti, A.; Bota, S.; Cantisani, V.; Castera, L.; Cosgrove, D.; Ferraioli, G.; Friedrich-Rust, M.; Gilja, O.H.; et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall. Med. 2017, 38, e16–e47. [Google Scholar] [CrossRef]
- Cosgrove, D.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Dighe, M.; Vinayak, S.; Xu, J.M.; Dietrich, C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 2017, 43, 4–26. [Google Scholar] [CrossRef]
- Huang, X.W.; Huang, Q.X.; Huang, H.; Cheng, M.Q.; Tong, W.J.; Xian, M.F.; Liang, J.Y.; Wang, W. Diagnostic Performance of Quantitative and Qualitative Elastography for Axillary Lymph Node Metastasis in Breast Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 552177. [Google Scholar] [CrossRef]
- Togawa, R.; Riedel, F.; Feisst, M.; Fastner, S.; Gomez, C.; Hennigs, A.; Nees, J.; Pfob, A.; Schäfgen, B.; Stieber, A.; et al. Shear-wave elastography as a supplementary tool for axillary staging in patients undergoing breast cancer diagnosis. Insights Imaging 2024, 15, 196. [Google Scholar] [CrossRef]
- Bae, S.J.; Park, J.T.; Park, A.Y.; Youk, J.H.; Lim, J.W.; Lee, H.W.; Lee, H.M.; Ahn, S.G.; Son, E.J.; Jeong, J. Ex Vivo Shear-Wave Elastography of Axillary Lymph Nodes to Predict Nodal Metastasis in Patients with Primary Breast Cancer. J. Breast Cancer 2018, 21, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Togawa, R.; Dahm, H.; Feisst, M.; Sinn, P.; Hennigs, A.; Nees, J.; Pfob, A.; Schäfgen, B.; Stieber, A.; Zivanovic, O.; et al. Evaluation of Ex Vivo Shear Wave Elastography of Axillary Sentinel Lymph Nodes in Patients with Early Breast Cancer. Cancers 2024, 16, 4270. [Google Scholar] [CrossRef]
- Suh, C.H.; Choi, Y.J.; Baek, J.H.; Lee, J.H. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis. Eur. Radiol. 2017, 27, 222–230. [Google Scholar] [CrossRef]
- Kawahara, Y.; Togawa, Y.; Yamamoto, Y.; Wakabayashi, S.; Matsue, H.; Inafuku, K. Usefulness of 2-D shear wave elastography for the diagnosis of inguinal lymph node metastasis of malignant melanoma and squamous cell carcinoma. J. Dermatol 2020, 47, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Fischerova, D.; Gatti, E.; Culcasi, C.; Ng, Z.; Szabó, G.; Zanchi, L.; Burgetova, A.; Nanka, O.; Gambino, G.; Kadajari, M.R.; et al. Ultrasound assessment of lymph nodes for staging of gynecological cancer: Consensus opinion on terminology and examination technique. Ultrasound Obstet. Gynecol. 2025, 65, 206–225. [Google Scholar] [CrossRef]
- Borges, A.C.; Veloso, H.; Galindo, P.; Danés, A.; Chacon, E.; Mínguez, J.A.; Alcázar, J.L. Role of ultrasound in detection of lymph-node metastasis in gynecological cancer: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2024, 64, 155–163. [Google Scholar] [CrossRef]
- Shen, Y.; Dai, J.; Li, J.; Lu, M. The Application of Three-dimensional Shear Wave Elastography in the Detection of Inguinal Lymph Node Metastasis in Gynecological Malignancies. Clin. Exper. Obstet. Gynecol. 2025, 52, 27141. [Google Scholar] [CrossRef]
- Kilic, F.; Velidedeoglu, M.; Ozturk, T.; Kandemirli, S.G.; Dikici, A.S.; Er, M.E.; Aydogan, F.; Kantarci, F.; Yilmaz, M.H. Ex Vivo Assessment of Sentinel Lymph Nodes in Breast Cancer Using Shear Wave Elastography. J. Ultrasound Med. 2016, 35, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Cacko, D.; Lewandowski, M. Shear wave elastography implementation on a portable research ultrasound system: Initial results. Appl. Sci. 2022, 12, 6210. [Google Scholar] [CrossRef]
- Vejdani-Jahromi, M.; Nagle, M.; Trahey, G.E.; Wolf, P.D. Ultrasound shear wave elasticity imaging quantifies coronary perfusion pressure effect on cardiac compliance. IEEE Trans. Med. Imaging 2015, 34, 465–473. [Google Scholar] [CrossRef]
- Castelein, J.; Pamplona, C.; Armstrong Junior, R.; Vidal Dos Santos, M.; Sack, I.; Dierckx, R.; Moers, C.; Borra, R. Effects of kidney perfusion on renal stiffness and tissue fluidity measured with tomoelastography in an MRI-compatible ex vivo model. Front. Bioeng Biotechnol. 2023, 11, 1236949. [Google Scholar] [CrossRef]
- Cosgrove, D.O.; Berg, W.A.; Doré, C.J.; Skyba, D.M.; Henry, J.P.; Gay, J.; Cohen-Bacrie, C. Shear wave elastography for breast masses is highly reproducible. Eur. Radiol. 2012, 22, 1023–1032. [Google Scholar] [CrossRef]
- Lago, V.; Rey, I.; Arnáez, M.; Padilla-Iserte, P.; Matute, L.; Gurrea, M.; López, S.; Montero, B.; Dawid De Vera, T.; Domingo, S. Sentinel lymph node detection in early ovarian cancer: The role of indocyanine green as a single tracer. Int. J. Gynecol. Cancer 2025, 35, 101826. [Google Scholar] [CrossRef]
- Bizzarri, N.; Restaino, S.; Gueli Alletti, S.; Monterossi, G.; Gioè, A.; La Fera, E.; Gallotta, V.; Fagotti, A.; Scambia, G.; Fanfani, F. Sentinel lymph node detection in endometrial cancer with indocyanine green: Laparoscopic versus robotic approach. Facts Views Vis. Obgyn 2021, 13, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Cusimano, M.C.; Vicus, D.; Pulman, K.; Maganti, M.; Bernardini, M.Q.; Bouchard-Fortier, G.; Laframboise, S.; May, T.; Hogen, L.F.; Covens, A.L.; et al. Assessment of Sentinel Lymph Node Biopsy vs Lymphadenectomy for Intermediate- and High-Grade Endometrial Cancer Staging. JAMA Surg. 2021, 156, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Y.; Choi, S.; Chaurasia, A.; Ding, H.; Haroon, A.; Wan, S.; Adeleke, S. Evaluating Different Quantitative Shear Wave Parameters of Ultrasound Elastography in the Diagnosis of Lymph Node Malignancies: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5568. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, B.; Zheng, Y.; Hu, X. Analysis of influencing factors of shear wave elastography of the superficial tissue: A phantom study. Front. Med. 2022, 9, 943844. [Google Scholar] [CrossRef]
- Jajamovich, G.H.; Dyvorne, H.; Donnerhack, C.; Taouli, B. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: Assessment of reproducibility and postprandial effect at 3.0 T. PLoS ONE 2014, 9, e97355. [Google Scholar] [CrossRef]
- Sakamoto, T.; Asanuma, T.; Uchida, K.; Kawahara, H.; Endo, A.; Yoshitomi, H.; Tanabe, K. Evaluation of thyroid congestion in patients with heart failure using shear wave elastography: An observational study. Medicine 2024, 103, e38159. [Google Scholar] [CrossRef]
- Chang, J.M.; Shin, H.J.; Choi, J.S.; Shin, S.U.; Choi, B.H.; Kim, M.J.; Yoon, J.H.; Chung, J.; Kim, T.H.; Han, B.K.; et al. Imaging Protocol and Criteria for Evaluation of Axillary Lymph Nodes in the NAUTILUS Trial. J. Breast. Cancer 2021, 24, 554–560. [Google Scholar] [CrossRef]
- Lee, C.U.; Hesley, G.K.; Pierson, T.A.; Higgins, R.L.; Urban, M.W. Breast ultrasound knobology and the knobology of twinkling for marker detection. Transl. Breast Cancer Res. 2024, 5, 28. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Q.; Wang, J.Y.; Yu, Y.; Yi, A.J.; Cui, X.W.; Dietrich, C.F. Ultrasound Elastography for the Evaluation of Lymph Nodes. Front. Oncol. 2021, 11, 714660. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Mi, C.; Zhang, Q.; Zhang, K. Differential Diagnosis Value of Shear-Wave Elastography for Superficial Enlarged Lymph Nodes. Front. Oncol. 2022, 12, 908085. [Google Scholar] [CrossRef] [PubMed]
- Pfob, A.; Sidey-Gibbons, C.; Barr, R.G.; Duda, V.; Alwafai, Z.; Balleyguier, C.; Clevert, D.A.; Fastner, S.; Gomez, C.; Goncalo, M.; et al. Intelligent multi-modal shear wave elastography to reduce unnecessary biopsies in breast cancer diagnosis (INSPiRED 002): A retrospective, international, multicentre analysis. Eur. J. Cancer 2022, 177, 1–14. [Google Scholar] [CrossRef]
- Zheng, X.; Yao, Z.; Huang, Y.; Yu, Y.; Wang, Y.; Liu, Y.; Mao, R. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat. Commun. 2020, 11, 1236. [Google Scholar] [CrossRef]
- La Rocca, L.R.; Caruso, M.; Stanzione, A.; Rocco, N.; Pellegrino, T.; Russo, D.; Salatiello, M.; de Giorgio, A.; Pastore, R.; Maurea, S.; et al. Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography. Eur. J. Radiol. 2024, 181, 111795. [Google Scholar] [CrossRef]
- Soliman, A.; Li, Z.; Parwani, A.V. Artificial intelligence’s impact on breast cancer pathology: A literature review. Diagn. Pathol. 2024, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Arsalan, M.; Owais, M.; Lee, M.B.; Park, K.R. Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs. J. Clin. Med. 2020, 9, 749. [Google Scholar] [CrossRef] [PubMed]

| Characteristics | Parameter | Absolute No. | % |
|---|---|---|---|
| Patient demographics | |||
| Median patient age in years (range) | 62 (38–79) | ||
| Cancer type (n1) * | Endometrial | 100 | 58.1 |
| Cervical | 29 | 16.9 | |
| Vulvar | 24 | 14.0 | |
| Ovarian | 19 | 11.0 | |
| SLN location (n1) | Pelvic | 118 | 68.6 |
| Inguinal | 44 | 25.6 | |
| Para-aortic | 10 | 5.8 | |
| Histopathology (n1) | Non-Metastatic | 141 | 82.0 |
| Metastatic | 31 | 18.0 | |
| Metastatic nodes classification | Isolated tumor cells (ITCs) | 10 | 5.8 |
| Micrometastasis | 9 | 5.2 | |
| Macrometastasis | 12 | 7.0 | |
| Surgical approach (n2) ** | Robotic | 45 | 71.4 |
| Open | 18 | 28.6 | |
| Histopathological Subtype (n2) | Endometrioid carcinoma | 32 | 50.8 |
| Squamous cell carcinoma | 15 | 23.8 | |
| Serous carcinoma | 6 | 9.5 | |
| Clear cell carcinoma | 3 | 4.8 | |
| Adenosquamous carcinoma | 3 | 4.8 | |
| Ovarian dysgerminoma | 2 | 3.2 | |
| Mucinous carcinoma | 1 | 1.6 | |
| Uterine carcinosarcoma | 1 | 1.6 | |
| FIGO Stage *** (n2) | |||
| Endometrial carcinoma (n = 37) | IA | 12 | 19.0 |
| IB | 9 | 14.3 | |
| IC | 2 | 3.2 | |
| IIA | 3 | 4.8 | |
| IIC | 2 | 3.2 | |
| IIIA | 1 | 1.6 | |
| IIIC 1 i | 3 | 4.8 | |
| III C 1 ii | 4 | 6.3 | |
| III C 2 ii | 1 | 1.6 | |
| Cervical carcinoma (n = 9) | IA1 | 2 | 3.2 |
| IA2 | 3 | 4.8 | |
| IB1 | 1 | 1.6 | |
| IB2 | 1 | 1.6 | |
| IIIC1 | 2 | 3.2 | |
| Vulvar Carcinoma (n = 9) | IB | 6 | 9.5 |
| IIIA | 2 | 3.2 | |
| IIIB | 1 | 1.6 | |
| Ovarian Carcinoma (n = 8) | IA | 4 | 6.3 |
| IC1 | 1 | 1.6 | |
| IC2 | 1 | 1.6 | |
| IIIA1i | 1 | 1.6 | |
| IIIA1ii | 1 | 1.6 |
| Parameter | Non-Malignant (Mean ± SD, mm) | Malignant (Mean ± SD, mm) | p-Value |
|---|---|---|---|
| Sonographic long-axis diameter | 10.80 ± 3.28 | 13.02 ± 3.31 | 0.002 * |
| Sonographic short-axis diameter | 4.89 ± 1.44 | 5.00 ± 1.38 | 0.686 |
| Pathological long-axis diameter | 9.75 ± 2.61 | 11.45 ± 2.83 | 0.004 * |
| Pathological short-axis diameter | 5.08 ± 1.48 | 5.43 ± 1.52 | 0.239 |
| Mean ± SD (m/s) | Min (m/s) | Max (m/s) | p-Value | |
|---|---|---|---|---|
| Non-Malignant | 1.343 ± 0.236 | 0.553 | 2.063 | 0.541 |
| Malignant | 1.381 ± 0.307 | 0.853 | 2.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shaalan, W.; Eldesouky, M.; Mokry, T.; Bischoff, A.; Sinn, P.; Hassan, N.; Togawa, R.; Batarseh, D.; Haßdenteufel, K.; Tretschock, L.M.; et al. Intraoperative Ex Vivo Shear-Wave Elastography of Sentinel Lymph Nodes in Endometrial Cancer and Other Gynaecological Malignancies. Cancers 2026, 18, 183. https://doi.org/10.3390/cancers18020183
Shaalan W, Eldesouky M, Mokry T, Bischoff A, Sinn P, Hassan N, Togawa R, Batarseh D, Haßdenteufel K, Tretschock LM, et al. Intraoperative Ex Vivo Shear-Wave Elastography of Sentinel Lymph Nodes in Endometrial Cancer and Other Gynaecological Malignancies. Cancers. 2026; 18(2):183. https://doi.org/10.3390/cancers18020183
Chicago/Turabian StyleShaalan, Walid, Mohamed Eldesouky, Theresa Mokry, Arved Bischoff, Peter Sinn, Nourhan Hassan, Riku Togawa, Dina Batarseh, Kathrin Haßdenteufel, Lara Meike Tretschock, and et al. 2026. "Intraoperative Ex Vivo Shear-Wave Elastography of Sentinel Lymph Nodes in Endometrial Cancer and Other Gynaecological Malignancies" Cancers 18, no. 2: 183. https://doi.org/10.3390/cancers18020183
APA StyleShaalan, W., Eldesouky, M., Mokry, T., Bischoff, A., Sinn, P., Hassan, N., Togawa, R., Batarseh, D., Haßdenteufel, K., Tretschock, L. M., Hlamazda, M., Schmidt, C., Torkildsen, C., Gerhardt, A., Hennigs, A., Nees, L. K., Zivanovic, O., & Riedel, F. (2026). Intraoperative Ex Vivo Shear-Wave Elastography of Sentinel Lymph Nodes in Endometrial Cancer and Other Gynaecological Malignancies. Cancers, 18(2), 183. https://doi.org/10.3390/cancers18020183

