Radiomic and Clinical–Pathological Factors Predictive of Postoperative Recurrence in Lung Neuroendocrine Tumors: A Pilot Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
- The study is divided into two phases:
- Retrospective Phase: This phase retrospectively included all patients who underwent radical surgery (R0) for localized or locally advanced pulmonary NETs between January 2021 and September 2023.
- Prospective Phase: This phase prospectively included patients undergoing radical surgery (R0) with the same characteristics, operated on from October 2023 up to April 2024, and who had at least 12 months of postoperative follow-up.
2.2. CT Evaluation
2.3. Tumor Volumetric Segmentation and Radiomic Extraction Characteristics
2.4. Surgery
2.5. Statistical Analysis
3. Results
3.1. Clinicopathologic Characteristics
3.2. Radiomic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, J.C.; Hassan, M.M.; Phan, A.T.; Dagohoy, C.G.; Leary, C.C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Soga, J.; Yakuwa, Y. Bronchopulmonary carcinoids: An analysis of 1,875 reported cases with special reference to a comparison between typical carcinoids and atypical varieties. Ann. Thorac. Cardiovasc. Surg. 1999, 5, 211–219. [Google Scholar]
- Singh, S.; Poon, R.; Wong, R.; Metser, U. 68Ga PET Imaging in Patients With Neuroendocrine Tumors. Clin. Nucl. Med. 2018, 43, 802–810. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Sigel, K.; Martin, J.; Jordan, R.; Beasley, M.B.; Smith, C.; Kaufman, A.; Wisnivesky, J.; Kim, M.K. Evaluation of the Prognostic Significance of TNM Staging Guidelines in Lung Carcinoid Tumors. J. Thorac. Oncol. 2019, 14, 184–192. [Google Scholar] [CrossRef]
- Singh, S.; Bergsland, E.K.; Card, C.M.; Hope, T.A.; Kunz, P.L.; Laidley, D.T.; Lawrence, B.; Leyden, S.; Metz, D.C.; Michael, M.; et al. Commonwealth Neuroendocrine Tumour Research Collaboration and the North American Neuroendocrine Tumor Society Guidelines for the Diagnosis and Management of Patients With Lung Neuroendocrine Tumors: An International Collaborative Endorsement and Update of the 2015 European Neuroendocrine Tumor Society Expert Consensus Guidelines. J. Thorac. Oncol. 2020, 15, 1577–1598. [Google Scholar] [CrossRef]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.; Frilling, A.; de Herder, W.; Hörsch, D.; Knigge, U.; et al. Corrigendum to “Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up”. Ann. Oncol. 2021, 32, 1453–1455. [Google Scholar] [CrossRef]
- Caplin, M.E.; Baudin, E.; Ferolla, P.; Filosso, P.; Garcia-Yuste, M.; Lim, E.; Oberg, K.; Pelosi, G.; Perren, A.; Rossi, R.E.; et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. 2015, 26, 1604–1620. [Google Scholar] [CrossRef]
- Filosso, P.L.; Rena, O.; Guerrera, F.; Casado, P.M.; Sagan, D.; Raveglia, F.; Brunelli, A.; Welter, S.; Gust, L.; Pompili, C.; et al. Clinical management of atypical carcinoid and large-cell neuroendocrine carcinoma: A multicentre study on behalf of the European Association of Thoracic Surgeons (ESTS) Neuroendocrine Tumours of the Lung Working Group. Eur. J. Cardiothorac. Surg. 2015, 48, 55–64. [Google Scholar] [CrossRef]
- Raz, D.J.; Nelson, R.A.; Grannis, F.W.; Kim, J.Y. Natural History of Typical Pulmonary Carcinoid Tumors. Chest. 2015, 147, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- La Salvia, A.; Marcozzi, B.; Manai, C.; Mazzilli, R.; Landi, L.; Pallocca, M.; Ciliberto, G.; Cappuzzo, F.; Faggiano, A. Rachel score: A nomogram model for predicting the prognosis of lung neuroendocrine tumors. J. Endocrinol. Investig. 2024, 47, 2575–2586. [Google Scholar] [CrossRef]
- Du, L.; Ernani, V.; Liu, A.; Schild, S.E.; Jaroszewski, D.E.; Cassivi, S.D.; Beamer, S.E.; Luo, Y.-H.; Wampfler, J.A.; Dos Santos, P.A.R.; et al. Prognostic factors in resected pulmonary carcinoid tumors: A retrospective study with 10 years of follow-up. Oncol. Lett. 2023, 25, 80. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, X.; Lu, T.; Li, M.; Zhao, M.; Yang, X.; Ma, K.; Wang, S.; Zhan, C.; Liu, Y.; et al. Assessment of the prognostic factors in patients with pulmonary carcinoid tumor: A population-based study. Cancer Med. 2018, 7, 2434–2441. [Google Scholar] [CrossRef] [PubMed]
- Naheed, S.; Holden, C.; Tanno, L.; Pattini, L.; Pearce, N.W.; Green, B.; Jaynes, E.; Cave, J.; Ottensmeier, C.H.; Pelosi, G. Utility of KI-67 as a prognostic biomarker in pulmonary neuroendocrine neoplasms: A systematic review and meta-analysis. BMJ Open 2022, 12, e041961. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, A.; Tang, N.; Zengin, G.; Li, M.; Liu, Y. Patient-derived xenograft models in pan-cancer: From bench to clinic. Interdiscip. Med. 2025, 3. [Google Scholar] [CrossRef]
- Tokhanbigli, S.; Haghi, M.; Dua, K.; Oliver, B.G.G. Cancer-associated fibroblast cell surface markers as potential biomarkers or therapeutic targets in lung cancer. Cancer Drug Resist. 2024, 7, 32. [Google Scholar] [CrossRef]
- Girigoswami, A.; Girigoswami, K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes 2023, 14, 1370. [Google Scholar] [CrossRef]
- Choi, E.-R.; Lee, H.Y.; Jeong, J.Y.; Choi, Y.-L.; Kim, J.; Bae, J.; Lee, K.S.; Shim, Y.M. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget 2016, 7, 67302–67313. [Google Scholar] [CrossRef]
- Materka, A. Texture analysis methodologies for magnetic resonance imaging. Dialogues Clin. Neurosci. 2004, 6, 243–250. [Google Scholar] [CrossRef]
- Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al. Radiomics in Oncology, Part 1: Technical Principles and Gastrointestinal Application in CT and MRI. Cancers 2021, 13, 2522. [Google Scholar] [CrossRef]
- He, M.; Liu, Z.; Lin, Y.; Wan, J.; Li, J.; Xu, K.; Wang, Y.; Jin, Z.; Tian, J.; Xue, H. Differentiation of atypical non-functional pancreatic neuroendocrine tumor and pancreatic ductal adenocarcinoma using CT based radiomics. Eur. J. Radiol. 2019, 117, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhuge, X.; Wang, Z.; Wang, Q.; Sun, K.; Feng, Z.; Chen, X. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: Association with WHO grade. Abdom. Radiol. 2019, 44, 576–585. [Google Scholar] [CrossRef]
- Polici, M.; Caruso, D.; Masci, B.; Marasco, M.; Valanzuolo, D.; Dell’UNto, E.; Zerunian, M.; Campana, D.; De Santis, D.; Lamberti, G.; et al. Radiomics in advanced gastroenteropancreatic neuroendocrine neoplasms: Identifying responders to somatostatin analogs. J. Neuroendocrinol. 2025, 37, e13472. [Google Scholar] [CrossRef]
- Caruso, D.; Polici, M.; Rinzivillo, M.; Zerunian, M.; Nacci, I.; Marasco, M.; Magi, L.; Tarallo, M.; Gargiulo, S.; Iannicelli, E.; et al. CT-based radiomics for prediction of therapeutic response to Everolimus in metastatic neuroendocrine tumors. Radiol. Med. 2022, 127, 691–701. [Google Scholar] [CrossRef]
- Homps, M.; Soyer, P.; Coriat, R.; Dermine, S.; Pellat, A.; Fuks, D.; Marchese, U.; Terris, B.; Groussin, L.; Dohan, A.; et al. A preoperative computed tomography radiomics model to predict disease-free survival in patients with pancreatic neuroendocrine tumors. Eur. J. Endocrinol. 2023, 189, 476–484. [Google Scholar] [CrossRef]
- Grillo, H.C.; Bendixen, H.H.; Gephart, T. Resection of the Carina and Lower Trachea. Ann. Surg. 1963, 158, 889–893. [Google Scholar] [CrossRef]
- Marinucci, B.T.; Menna, C.; Rendina, E.A.; Mohsen, I. Extended Tracheal Resection: Carinal Resections. Thorac. Surg. Clin. 2025, 35, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Rendina, E.A.; Venuta, F.; Ricci, P.; Fadda, G.F.; Bognolo, D.A.; Ricci, C.; Rossi, P. Protection and revascularization of bronchial anastomoses by the intercostal pedicle flap. J. Thorac. Cardiovasc. Surg. 1994, 107, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Lababede, O.; Meziane, M.A. The Eighth Edition of TNM Staging of Lung Cancer: Reference Chart and Diagrams. Oncologist 2018, 23, 844–848. [Google Scholar] [CrossRef]
- Rekhtman, N. Neuroendocrine Tumors of the Lung: An Update. Arch. Pathol. Lab. Med. 2010, 134, 1628–1638. [Google Scholar] [CrossRef]
- Hallet, J.; Law, C.H.L.; Cukier, M.; Saskin, R.; Liu, N.; Singh, S. Exploring the rising incidence of neuroendocrine tumors: A population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 2014, 121, 589–597. [Google Scholar] [CrossRef]
- Stolz, A.; Harustiak, T.; Simonek, J.; Schutzner, J.; Polanecky, O.; Burkert, J.; Lischke, R. Long-term outcomes and prognostic factors of patients with pulmonary carcinoid tumors. Neoplasma 2015, 62, 478–483. [Google Scholar] [CrossRef]
- Bian, Y.; Zhao, Z.; Jiang, H.; Fang, X.; Li, J.; Cao, K.; Ma, C.; Guo, S.; Wang, L.; Jin, G.; et al. Noncontrast Radiomics Approach for Predicting Grades of Nonfunctional Pancreatic Neuroendocrine Tumors. J. Magn. Reson. Imaging 2020, 52, 1124–1136. [Google Scholar] [CrossRef]
- Thuillier, P.; Liberini, V.; Rampado, O.; Gallio, E.; De Santi, B.; Ceci, F.; Metovic, J.; Papotti, M.; Volante, M.; Molinari, F.; et al. Diagnostic Value of Conventional PET Parameters and Radiomic Features Extracted from 18F-FDG-PET/CT for Histologic Subtype Classification and Characterization of Lung Neuroendocrine Neoplasms. Biomedicines 2021, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Cangir, A.K.; Orhan, K.; Kahya, Y.; Yücemen, A.U.; Aktürk, I.; Ozakinci, H.; Coruh, A.G.; Sak, S.D. A CT-Based Radiomic Signature for the Differentiation of Pulmonary Hamartomas from Carcinoid Tumors. Diagnostics 2022, 12, 416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Bi, F.; Wen, L.; Niu, Y.; Yang, Y.; Lin, H.; Yu, X. CT-based radiomics for differentiating peripherally located pulmonary sclerosing pneumocytoma from carcinoid. Med. Phys. 2024, 51, 4219–4230. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.M.; Li, C.M.; Hou, J.; Xiong, Z.; Lin, H.M.; Wu, S.B.; Yu, X. Differentiating Peripherally Located Pulmonary Noncalcified Hamartoma From Carcinoid Using CT Radiomics Approaches. J. Comput. Assist. Tomogr. 2023, 47, 402–411. [Google Scholar] [CrossRef]
- Cozzi, D.; Bicci, E.; Cavigli, E.; Danti, G.; Bettarini, S.; Tortoli, P.; Mazzoni, L.N.; Busoni, S.; Pradella, S.; Miele, V. Radiomics in pulmonary neuroendocrine tumours (NETs). Radiol. Med. 2022, 127, 609–615. [Google Scholar] [CrossRef]



| Features | n = 45 (100%) |
|---|---|
| Sex | |
| Female | 32 (71.1%) |
| Male | 13 (28.9%) |
| Median age (years) | 63 (18–83) |
| Smoking | |
| Yes | 17 (37.7%) |
| No | 28 (62.3%) |
| NA | 0 (0%) |
| Primary tumor localization | |
| Peripheral | 18 (40.0%) |
| Central | 27 (60.0%) |
| NA | 0 (0%) |
| Primary tumor side | |
| Left | 18 (40.0%) |
| Right | 27 (60.0%) |
| NA | 0 (0%) |
| Histotype | |
| Typical Carcinoid | 42 (93.3%) |
| Atypical Carcinoid | 3 (6.7%) |
| Stage at diagnosis | |
| I | 33 (73.4%) |
| II | 7 (15.6%) |
| III | 4 (8.8%) |
| IV | 1 (2.2%) |
| NA | 0 (0%) |
| Nodal status | |
| N0 | 43 (95.5%) |
| N+ | 2 (4.5%) |
| NA | 0 (0%) |
| Median IM (/2 mm2) | 1 |
| IM (/2 mm2) | |
| <2 | 42 (93.3%) |
| ≥2 | 3 (6.7%) |
| NA | 0 (0%) |
| Necrosis | |
| Present | 3 (6.7%) |
| Absent | 42 (93.3%) |
| NA | 0 (0%) |
| Median Ki67 (%) | 2 |
| Grading for Ki67 (%) | |
| 1–2 | 34 (75.5%) |
| 3–19 | 11 (24.5%) |
| >20 | 0 (0%) |
| NA | 0 (0%) |
| Recurrence | |
| Yes | 4 (8.9%) |
| No | 41 (91.1%) |
| Alive | |
| Yes | 45 (100%) |
| No | 0 (0%) |
| Features | OR | CI 95% | p-Value |
|---|---|---|---|
| Major age at diagnosis | 1.115 | 1.017–1.222 | 0.020 |
| Atypical histotype | 7.867 | 1.653–37.441 | 0.010 |
| Presence of functional syndrome | 20.667 | 3.113–137.206 | 0.002 |
| Major stage at diagnosis | 2.928 | 1.254–6.833 | 0.013 |
| Presence of necrosis | 8.714 | 1.468–51.737 | 0.017 |
| Higher Ki-67 | 2.274 | 1.393–3.712 | 0.001 |
| Higher grading | 27.726 | 3.284–234.099 | 0.002 |
| Higher mitotic count | 14.000 | 2.105–93.109 | 0.006 |
| Pathologic lymph node | 14.250 | 2.143–94.741 | 0.006 |
| Features | Recurrence | Non-Recurrence | OR (CI 95%) | AUC (CI 95%) | Correctly Classified Cases | p-Value |
|---|---|---|---|---|---|---|
| Non-contrast Phase | Average + SD | Average + SD | ||||
| DependenceEntropy (GLDM) | 5.3026 + 0.1856 | 4.516 + 0.7748 | 6.649 (1.53–82.35) | 0.784 (0.636–0892) | 91.11% | 0.049 |
| DependenceNonUniformityNormalized (GLDM) | 0.0490 + 0.0085 | 0.1248 + 0.1227 | 9.73 × 10−28 (2.89 10−70–3.27 × 10−15) | 0.796 (0.649–0.901) | 91.11% | 0.024 |
| Elongation (3D Shape) | 0.6380 + 0.1954 | 0.7949 + 0.1357 | 0.003 (0–0.93) | 0.817 (0.674–0.916) | 91.11% | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paravani, P.; Polici, M.; Arrivi, G.; Siciliani, A.; Mancini, M.; Mazzilli, R.; Zamponi, V.; Martiradonna, M.; Palmeri, F.; Trabalza Marinucci, B.; et al. Radiomic and Clinical–Pathological Factors Predictive of Postoperative Recurrence in Lung Neuroendocrine Tumors: A Pilot Study. Cancers 2025, 17, 3812. https://doi.org/10.3390/cancers17233812
Paravani P, Polici M, Arrivi G, Siciliani A, Mancini M, Mazzilli R, Zamponi V, Martiradonna M, Palmeri F, Trabalza Marinucci B, et al. Radiomic and Clinical–Pathological Factors Predictive of Postoperative Recurrence in Lung Neuroendocrine Tumors: A Pilot Study. Cancers. 2025; 17(23):3812. https://doi.org/10.3390/cancers17233812
Chicago/Turabian StyleParavani, Piero, Michela Polici, Giulia Arrivi, Alessandra Siciliani, Massimiliano Mancini, Rossella Mazzilli, Virginia Zamponi, Maurizio Martiradonna, Federica Palmeri, Beatrice Trabalza Marinucci, and et al. 2025. "Radiomic and Clinical–Pathological Factors Predictive of Postoperative Recurrence in Lung Neuroendocrine Tumors: A Pilot Study" Cancers 17, no. 23: 3812. https://doi.org/10.3390/cancers17233812
APA StyleParavani, P., Polici, M., Arrivi, G., Siciliani, A., Mancini, M., Mazzilli, R., Zamponi, V., Martiradonna, M., Palmeri, F., Trabalza Marinucci, B., Panzuto, F., Tiracorrendo, M., D’Andrilli, A., Ibrahim, M., Caruso, D., & Faggiano, A. (2025). Radiomic and Clinical–Pathological Factors Predictive of Postoperative Recurrence in Lung Neuroendocrine Tumors: A Pilot Study. Cancers, 17(23), 3812. https://doi.org/10.3390/cancers17233812

