The B-S2CALED Score’s Utility in Predicting Stroke Risk in Breast Cancer Patients with Atrial Fibrillation
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Inclusion Criteria
2.2. Outcome
2.3. Development
2.4. Statistical Analyses
2.5. External Validation
2.6. CHA2DS2-VASc Calculation
2.7. Performance
2.8. Descriptive Analysis
Software and Packages
3. Results
3.1. Population
3.2. Novel Score
3.3. Comparison of the B-S2CALED Score with CHA2DS2-VASc
4. Discussion
5. Strengths and Limitations
6. Conclusions
Clinical Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial Fibrillation: Epidemiology, Screening and Digital Health. Lancet Reg. Health—Eur. 2024, 37, 100786. [Google Scholar] [CrossRef]
- Yao, X.; Hu, Q.; Liu, X.; Ling, Q.; Leng, Y.; Zhao, H.; Yu, P.; Ma, J.; Zhao, Y.; Liu, M.; et al. Atrial Fibrillation and Breast Cancer-Vicious Twins? A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2023, 10, 1113231. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.; Taylor, C.J.; Hobbs, F.D.R.; Bowman, L.; Casadei, B. Screening for Atrial Fibrillation: A Call for Evidence. Eur. Heart J. 2020, 41, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.P.; Choi, E.-K.; Han, K.-D.; Park, S.H.; Jung, J.-H.; Park, S.H.; Ahn, H.-J.; Lim, J.-H.; Lee, S.-R.; Oh, S. Risk of Atrial Fibrillation According to Cancer Type. JACC CardioOncol. 2021, 3, 221–232. [Google Scholar] [CrossRef]
- Navi, B.B.; Reiner, A.S.; Kamel, H.; Iadecola, C.; Okin, P.M.; Elkind, M.S.V.; Panageas, K.S.; DeAngelis, L.M. Risk of Arterial Thromboembolism in Patients with Cancer. J. Am. Coll. Cardiol. 2017, 70, 926–938. [Google Scholar] [CrossRef]
- Navi, B.B.; Kasner, S.E.; Elkind, M.S.V.; Cushman, M.; Bang, O.Y.; DeAngelis, L.M. Cancer and Embolic Stroke of Undetermined Source. Stroke 2021, 52, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Seth, L.; Stabellini, N.; Doss, S.; Patel, V.; Shah, V.; Lip, G.; Dent, S.; Fradley, M.G.; Køber, L.; Guha, A. Atrial Fibrillation and Ischemic Stroke in Cancer: The Latest Scientific Evidence, Current Management, and Future Directions. J. Thromb. Thrombolysis 2025, 1–14. [Google Scholar] [CrossRef]
- Guha, A.; Dey, A.K.; Jneid, H.; Ibarz, J.P.; Addison, D.; Fradley, M. Atrial Fibrillation in the Era of Emerging Cancer Therapies. Eur. Heart J. 2019, 40, 3007–3010. [Google Scholar] [CrossRef]
- Park, Y.-M.M.; Jung, W.; Yeo, Y.; Park, S.H.; Fradley, M.G.; Malapati, S.J.; Tarun, T.; Raj, V.; Lee, H.S.; Naqvi, T.Z.; et al. Mid- and Long-Term Risk of Atrial Fibrillation among Breast Cancer Surgery Survivors. BMC Med. 2024, 22, 88. [Google Scholar] [CrossRef]
- Pastori, D.; Marang, A.; Bisson, A.; Menichelli, D.; Herbert, J.; Lip, G.Y.H.; Fauchier, L. Thromboembolism, Mortality, and Bleeding in 2,435,541 Atrial Fibrillation Patients with and without Cancer: A Nationwide Cohort Study. Cancer 2021, 127, 2122–2129. [Google Scholar] [CrossRef]
- D’Souza, M.; Carlson, N.; Fosbøl, E.; Lamberts, M.; Smedegaard, L.; Nielsen, D.; Torp-Pedersen, C.; Gislason, G.; Schou, M. CHA2 DS2-VASc Score and Risk of Thromboembolism and Bleeding in Patients with Atrial Fibrillation and Recent Cancer. Eur. J. Prev. Cardiol. 2018, 25, 651–658. [Google Scholar] [CrossRef]
- McCracken, C.; Condurache, D.-G.; Szabo, L.; Elghazaly, H.; Walter, F.M.; Mead, A.J.; Chakraverty, R.; Harvey, N.C.; Manisty, C.H.; Petersen, S.E.; et al. Predictive Performance of Cardiovascular Risk Scores in Cancer Survivors from the UK Biobank. JACC CardioOncol. 2024, 6, 575–588. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.-E. Anticancer Drug-Induced Cardiac Rhythm Disorders: Current Knowledge and Basic Underlying Mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Guha, A.; Fradley, M.G.; Dent, S.F.; Weintraub, N.L.; Lustberg, M.B.; Alonso, A.; Addison, D. Incidence, Risk Factors, and Mortality of Atrial Fibrillation in Breast Cancer: A SEER-Medicare Analysis. Eur. Heart J. 2022, 43, 300–312, Erratum in Eur. Heart J. 2022, 43, 2019. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.; No, H.; Guo, F.; Merchant, G.; Park, N.J.; Jackson, S.; Clark, D.E.; Vitzthum, L.; Chin, A.; Horst, K.; et al. Predictors of Atrial Fibrillation After Thoracic Radiotherapy. JACC CardioOncol. 2024, 6, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Ho, I.; Wong, C.-K.; Wong, Y.-K.; Lam, T.-H.; Sze-Him Leung, I.; Lin, M.; Tak-Wai Lui, D.; Kwok, W.C.; Tam, C.-C.; Chan, Y.-H.; et al. Aromatase Inhibitor Therapy Increases the Risk of New-Onset Atrial Fibrillation in Patients With Breast Cancer. JACC Asia 2024, 4, 150–160. [Google Scholar] [CrossRef]
- Ajabnoor, A.M.; Parisi, R.; Zghebi, S.S.; Ashcroft, D.M.; Faivre-Finn, C.; Morris, C.; Mamas, M.A.; Kontopantelis, E. Common Cancer Types and Risk of Stroke and Bleeding in Patients with Nonvalvular Atrial Fibrillation: A Population-Based Study in England. J. Am. Heart Assoc. 2023, 12, e029423, Erratum in J. Am. Heart Assoc. 2023, 13, e027748. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Zhang, Y.; Tchelebi, L.T.; Mackley, H.B.; Chinchilli, V.M.; Zacharia, B.E. Stroke among Cancer Patients. Nat. Commun. 2019, 10, 5172. [Google Scholar] [CrossRef]
- Ajabnoor, A.M.; Zghebi, S.S.; Parisi, R.; Ashcroft, D.M.; Faivre-Finn, C.; Mamas, M.A.; Kontopantelis, E. Performance of CHA2DS2-VASc and HAS-BLED in Predicting Stroke and Bleeding in Atrial Fibrillation and Cancer. Eur. Heart J. Open 2024, 4, oeae053. [Google Scholar] [CrossRef]
- Chan, Y.-H.; Chao, T.-F.; Lee, H.-F.; Chen, S.-W.; Li, P.-R.; Liu, J.-R.; Wu, L.-S.; Chang, S.-H.; Yeh, Y.-H.; Kuo, C.-T.; et al. Clinical Outcomes in Atrial Fibrillation Patients with a History of Cancer Treated with Non-Vitamin K Antagonist Oral Anticoagulants: A Nationwide Cohort Study. Stroke 2021, 52, 3132–3141. [Google Scholar] [CrossRef]
- Stabellini, N.; Dmukauskas, M.; Bittencourt, M.S.; Cullen, J.; Barda, A.J.; Moore, J.X.; Dent, S.; Abdel-Qadir, H.; Kawatkar, A.A.; Pandey, A.; et al. Social Determinants of Health and Racial Disparities in Cardiac Events in Breast Cancer. J. Natl. Compr. Cancer Netw. 2023, 21, 705–714.e17. [Google Scholar] [CrossRef]
- Stabellini, N.; Cullen, J.; Moore, J.X.; Dent, S.; Sutton, A.L.; Shanahan, J.; Montero, A.J.; Guha, A. Social Determinants of Health Data Improve the Prediction of Cardiac Outcomes in Females with Breast Cancer. Cancers 2023, 15, 4630. [Google Scholar] [CrossRef]
- Stabellini, N.; Cullen, J.; Cao, L.; Shanahan, J.; Hamerschlak, N.; Waite, K.; Barnholtz-Sloan, J.S.; Montero, A.J. Racial Disparities in Breast Cancer Treatment Patterns and Treatment Related Adverse Events. Sci. Rep. 2023, 13, 1233. [Google Scholar] [CrossRef]
- Stabellini, N.; Cullen, J.; Bittencourt, M.S.; Moore, J.X.; Sutton, A.; Nain, P.; Hamerschlak, N.; Weintraub, N.L.; Dent, S.; Tsai, M.; et al. Allostatic Load/Chronic Stress and Cardiovascular Outcomes in Patients Diagnosed with Breast, Lung, or Colorectal Cancer. J. Am. Heart Assoc. 2024, 13, e033295. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Riley, R.D.; Cole, T.J.; Deeks, J.; Kirkham, J.J.; Morris, J.; Perera, R.; Wade, A.; Collins, G.S. On the 12th Day of Christmas, a Statistician Sent to Me. BMJ 2022, 379, e072883. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Freijeiro-González, L.; Febrero-Bande, M.; González-Manteiga, W. A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates. Int. Stat. Rev. 2022, 90, 118–145. [Google Scholar] [CrossRef]
- Gauthier, J.; Wu, Q.V.; Gooley, T.A. Cubic Splines to Model Relationships between Continuous Variables and Outcomes: A Guide for Clinicians. Bone Marrow Transpl. 2020, 55, 675–680. [Google Scholar] [CrossRef]
- Lane, D.A.; Lip, G.Y.H. Use of the CHA2 DS2-VASc and HAS-BLED Scores to Aid Decision Making for Thromboprophylaxis in Nonvalvular Atrial Fibrillation. Circulation 2012, 126, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.H.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156, Erratum in Circulation 2024, 149, e936; Erratum in Circulation 2024, 149, e167; Erratum in Circulation 2024, 149, e1413. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Vettoretti, M.; Di Camillo, B. A Practical Perspective on the Concordance Index for the Evaluation and Selection of Prognostic Time-to-Event Models. J. Biomed. Inform. 2020, 108, 103496. [Google Scholar] [CrossRef]
- Pencina, M.J.; D’ Agostino, R.B.; D’ Agostino, R.B.; Vasan, R.S. Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification and Beyond. Stat. Med. 2008, 27, 157–172. [Google Scholar] [CrossRef]
- Porter, C.; Azam, T.U.; Mohananey, D.; Kumar, R.; Chu, J.; Lenihan, D.; Dent, S.; Ganatra, S.; Beasley, G.S.; Okwuosa, T. Permissive Cardiotoxicity. JACC CardioOncol. 2022, 4, 302–312. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Martin Morgan and Marcel Ramos BiocManager: Access the Bioconductor Project Package Repository. 2024. Available online: https://bioconductor.github.io/BiocManager/ (accessed on 14 January 2025).
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Thomas, A. Gerds Prodlim: Product-Limit Estimation for Censored Event History Analysis. 2024. Available online: https://cran.r-project.org/web/packages/prodlim/prodlim.pdf (accessed on 14 January 2025).
- Schröder, M.S.; Culhane, A.C.; Quackenbush, J.; Haibe-Kains, B. Survcomp: An R/Bioconductor Package for Performance Assessment and Comparison of Survival Models. Bioinformatics 2011, 27, 3206–3208. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Statistics for Biology and Health; Springer: New York, NY, USA, 2000; ISBN 978-1-4419-3161-0. [Google Scholar]
- Fradley, M.G.; Beckie, T.M.; Brown, S.A.; Cheng, R.K.; Dent, S.F.; Nohria, A.; Patton, K.K.; Singh, J.P.; Olshansky, B.; on behalf of the American Heart Association Council on Clinical Cardiology; et al. Recognition, Prevention, and Management of Arrhythmias and Autonomic Disorders in Cardio-Oncology: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e41–e55. [Google Scholar] [CrossRef]
- Kelly, D.M.; Ademi, Z.; Doehner, W.; Lip, G.Y.H.; Mark, P.; Toyoda, K.; Wong, C.X.; Sarnak, M.; Cheung, M.; Herzog, C.A.; et al. Chronic Kidney Disease and Cerebrovascular Disease: Consensus and Guidance from a KDIGO Controversies Conference. Stroke 2021, 52, e328–e346. [Google Scholar] [CrossRef] [PubMed]
- Asplund, K.; Karvanen, J.; Giampaoli, S.; Jousilahti, P.; Niemelä, M.; Broda, G.; Cesana, G.; Dallongeville, J.; Ducimetriere, P.; Evans, A.; et al. Relative Risks for Stroke by Age, Sex, and Population Based on Follow-Up of 18 European Populations in the MORGAM Project. Stroke 2009, 40, 2319–2326. [Google Scholar] [CrossRef] [PubMed]
- Kurth, T.; Gaziano, J.M.; Berger, K.; Kase, C.S.; Rexrode, K.M.; Cook, N.R.; Buring, J.E.; Manson, J.E. Body Mass Index and the Risk of Stroke in Men. Arch. Intern. Med. 2002, 162, 2557. [Google Scholar] [CrossRef] [PubMed]
- Essien, U.R.; Chiswell, K.; Kaltenbach, L.A.; Wang, T.Y.; Fonarow, G.C.; Thomas, K.L.; Turakhia, M.P.; Benjamin, E.J.; Rodriguez, F.; Fang, M.C.; et al. Association of Race and Ethnicity with Oral Anticoagulation and Associated Outcomes in Patients with Atrial Fibrillation: Findings from the Get with The Guidelines–Atrial Fibrillation Registry. JAMA Cardiol. 2022, 7, 1207. [Google Scholar] [CrossRef]
- Kresovich, J.K.; O’Brien, K.M.; Xu, Z.; Weinberg, C.R.; Sandler, D.P.; Taylor, J.A. Changes in Methylation-Based Aging in Women Who Do and Do Not Develop Breast Cancer. JNCI J. Natl. Cancer Inst. 2023, 115, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Crespi, C.M.; Cole, S.; Ganz, P.A.; Petersen, L.; Bower, J.E. Transcriptomic Markers of Biological Aging in Breast Cancer Survivors: A Longitudinal Study. JNCI J. Natl. Cancer Inst. 2025, 117, 312–321. [Google Scholar] [CrossRef]
- Forrester, S.N.; Baek, J.; Hou, L.; Roger, V.; Kiefe, C.I. A Comparison of 5 Measures of Accelerated Biological Aging and Their Association with Incident Cardiovascular Disease: The CARDIA Study. J. Am. Heart Assoc. 2024, 13, e032847. [Google Scholar] [CrossRef]
- Zhang, D.; Leeuwenburgh, C.; Zhou, D.; Gong, Y.; Pahor, M.; Licht, J.D.; Braithwaite, D. Analysis of Biological Aging and Risks of All-Cause and Cardiovascular Disease–Specific Death in Cancer Survivors. JAMA Netw. Open 2022, 5, e2218183. [Google Scholar] [CrossRef]
- Bungo, B.; Chaudhury, P.; Arustamyan, M.; Rikhi, R.; Hussain, M.; Collier, P.; Kanj, M.; Khorana, A.A.; Mentias, A.; Moudgil, R. Better Prediction of Stroke in Atrial Fibrillation with Incorporation of Cancer in CHA2DS2VASC Score: CCHA2DS2VASC Score. IJC Heart Vasc. 2022, 41, 101072. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and Validation of a Predictive Model for Chemotherapy-Associated Thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Gutierrez, A.; Patell, R.; Rybicki, L.; Khorana, A.A. Predicting Outcomes in Patients with Cancer and Atrial Fibrillation. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719860676. [Google Scholar] [CrossRef]
- Fradley, M.G.; Ellenberg, K.; Alomar, M.; Swanson, J.; Kharod, A.; Nguyen, A.T.H.; Khodor, S.; Mishra, S.; Duong, L.M.; Shah, N.; et al. Patterns of Anticoagulation Use in Patients with Cancer with Atrial Fibrillation and/or Atrial Flutter. JACC CardioOncol. 2020, 2, 747–754. [Google Scholar] [CrossRef]
- Tuzzio, L.; O’Meara, E.S.; Holden, E.; Parchman, M.L.; Ralston, J.D.; Powell, J.A.; Baldwin, L.-M. Barriers to Implementing Cardiovascular Risk Calculation in Primary Care: Alignment with the Consolidated Framework for Implementation Research. Am. J. Prev. Med. 2021, 60, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Oyer, R.A.; Hurley, P.; Boehmer, L.; Bruinooge, S.S.; Levit, K.; Barrett, N.; Benson, A.; Bernick, L.A.; Byatt, L.; Charlot, M.; et al. Increasing Racial and Ethnic Diversity in Cancer Clinical Trials: An American Society of Clinical Oncology and Association of Community Cancer Centers Joint Research Statement. J. Clin. Oncol. 2022, 40, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Hershman, D.L.; Osarogiagbon, R.U.; Gothwal, A.; Anand, S.; Dasari, A.; Overman, M.; Loree, J.M.; Raghav, K. Representativeness of Black Patients in Cancer Clinical Trials Sponsored by the National Cancer Institute Compared with Pharmaceutical Companies. JNCI Cancer Spectr. 2020, 4, pkaa034. [Google Scholar] [CrossRef]
- Prasanna, A.; Miller, H.N.; Wu, Y.; Peeler, A.; Ogungbe, O.; Plante, T.B.; Juraschek, S.P. Recruitment of Black Adults into Cardiovascular Disease Trials. J. Am. Heart Assoc. 2021, 10, e021108. [Google Scholar] [CrossRef] [PubMed]
| B-S2CALED Score | |
|---|---|
| Covariate | Points |
| BMI > 30 | 1 |
| Smoking history (current or previous smoker) | 2 |
| Stroke/TIA/embolism (prior) | 2 |
| CKD | 1 |
| Antihypertensive use | 1 |
| Lipid-lowering therapy (statin use) | 1 |
| Ethnicity (Black race) | 1 |
| Diabetes | 1 |
| Maximum score | 10 |
| Variables | Overall Internal Validation Cohort (n = 935) | Patients with IS/TIA After AF in the Internal Validation Cohort (n = 87) | Patients Without IS/TIA After AF in the Internal Validation Cohort (n = 848) | p-Value for the Internal Validation Cohort * | Overall External Validation Cohort (n = 95) | Patients with IS/TIA in the External Validation Cohort After AF (n = 8) | Patients Without IS/TIA After AF In the External Validation Cohort (n = 87) | p-Value for the External Validation Cohort * |
|---|---|---|---|---|---|---|---|---|
| Median Follow-Up after BC Diagnosis, median (IQR), in years | 2.37 (0.64–5.17) | 1.25 (0.39–2.61) | 2.54 (0.71–5.56) | 5.85 (2.74, 8.23) | 6.28 (3.32, 8.60) | 5.85 (2.74, 8.22) | ||
| Age at Diagnosis, median (IQR), in years | 74 (66–80) | 74 (68–82) | 74 (66–80) | 0.17 | 70 (64–74.5) | 70 (66–72) | 70 (64–76.5) | 0.75 |
| Race | ||||||||
| White | 724 (77.4) | 59 (67.8) | 665 (78.4) | 0.06 | 56 (58.95) | 2 (25.00) | 54 (62.07) | 0.06 1 |
| Black | 196 (19.9) | 24 (27.6) | 162 (19.1) | 36 (37.89) | 6 (75.00) | 30 (34.48) | 0.05 1 | |
| Other | 25 (2.7) | 4 (4.6) | 21 (2.5) | 3 (3.16) | 0 (0.00) | 3 (3.45) | 1.00 1 | |
| BMI at Diagnosis, median (IQR) | 31.8 (26.6–38.7) | 34 (28.3–41.7) | 31.7 (26.6–38.2) | 0.05 | 30 (24–36) | 24.2 (23–26.2) | 30 (25–36) | 0.15 |
| Smoking History | ||||||||
| Current | 290 (31) | 35 (40.2) | 255 (30.1) | 0.06 | 11 (11.58) | 2 (25.00) | 9 (10.34) | 0.23 1 |
| Prior Health Conditions | ||||||||
| Hypertension | 864 (92.4) | 84 (96.6) | 780 (92) | 0.18 | 72 (75.79) | 6 (75.00) | 66 (75.86) | 1.00 1 |
| Diabetes Mellitus | 392 (41.9) | 42 (48.3) | 350 (41.3) | 0.25 | 34 (35.79) | 3 (37.50) | 31 (35.63) | 1.00 1 |
| Dyslipidemia | 707 (75.6) | 75 (86.2) | 632 (74.5) | 0.02 * | 37 (38.95) | 3 (37.50) | 34 (39.08) | 1.00 1 |
| Chronic Kidney Disease | 328 (35.1) | 36 (41.4) | 292 (34.4) | 0.24 | 45 (47.37) | 5 (62.50) | 40 (45.98) | 0.47 1 |
| Heart Failure | 502 (53.7) | 52 (59.8) | 450 (53.1) | 0.27 | 4 (4.21) | 0 (0.00) | 4 (4.60) | 1.00 1 |
| Stroke/Transient Ischemic Attack/Embolism | 149 (15.9) | 33 (37.9) | 116 (13.7) | <0.001 * | 4 (4.21) | 0 (0.00) | 4 (4.60) | 1.00 1 |
| Depression | 303 (32.4) | 25 (28.7) | 278 (32.8) | 0.51 | 10 (10.53) | 0 (0.00) | 10 (11.49) | 0.59 1 |
| Cardiomyopathy | 164 (17.5) | 21 (24.1) | 143 (16.9) | 0.12 | - | - | - | - |
| Cognitive Decline/Dementia | 272 (29.1) | 26 (29.9) | 246 (29) | 0.96 | - | - | - | - |
| Anxiety | 331 (35.4) | 26 (29.9) | 305 (36) | 0.31 | - | - | - | - |
| Prior vascular disease | 394 (42.1) | 56 (64.4) | 338 (39.9) | <0.001 * | - | - | - | - |
| Medication Use | ||||||||
| Statin Use | 521 (55.7) | 66 (75.9) | 455 (53.7) | <0.001 * | 67 (70.53) | 8 (100.00) | 59 (67.82) | 0.10 1 |
| Antihypertensive Use | 790 (84.5) | 81 (93.1) | 709 (83.6) | 0.02 * | 88 (92.63) | 8 (100.00) | 80 (91.95) | 1.00 1 |
| Metformin Use | 104 (11.1) | 15 (17.2) | 89 (10.5) | 0.08 | - | - | - | - |
| Aspirin Use | 552 (59) | 69 (79.3) | 483 (57) | <0.001 * | - | - | - | - |
| Cancer Stage | ||||||||
| III/IV | 105 (11.2) | 6 (6.9) | 99 (11.7) | 0.24 | 7 (7.37) | 0 (0.00) | 7 (8.05) | 1.00 1 |
| Receptor Status | ||||||||
| ER+ | 372 (39.8) | 31 (35.6) | 341 (40.2) | 0.47 | 75 (78.95) | 7 (87.50) | 68 (78.16) | 1.00 1 |
| PR+ | 335 (35.8) | 32 (36.8) | 303 (35.7) | 0.93 | 75 (78.95) | 7 (87.50) | 68 (78.16) | 1.00 1 |
| HER2+ | 82 (8.8) | 9 (10.3) | 73 (8.6) | 0.72 | 12 (12.63) | 0 (0.00) | 12 (13.79) | 0.59 1 |
| Cancer Therapy | ||||||||
| Endocrine therapy | 357 (38.1) | 32 (36.8) | 325 (38.3) | 0.86 | 67 (70.53) | 5 (62.50) | 62 (71.26) | 0.69 1 |
| SERM use 2 | 120 (12.8) | 7 (8.0) | 113 (13.3) | 0.21 | 15 (15.79) | 1 (12.50) | 14 (16.09) | 1.00 1 |
| AI use 2 | 365 (39.0) | 34 (39.1) | 331 (39.0) | 1.00 | 45 (47.37) | 5 (62.50) | 40 (45.98) | 0.47 1 |
| Immunotherapy | 38 (4) | 3 (3.4) | 35 (4.1) | 0.98 | 7 (7.37) | 0 (0.00) | 7 (8.05) | 1.00 1 |
| Chemotherapy 2 | 224 (23.9) | 13 (14.9) | 211 (24.9) | 0.05 | 24 (25.26) | 1 (12.50) | 23 (26.44) | 0.67 1 |
| Anthracycline use | 90 (9.6) | 5 (5.7) | 85 (10.0) | 0.27 | 8 (8.42) | 0 (0.00) | 8 (9.20) | 1.00 1 |
| Use of HER-2 agents | 47 (5.0) | 5 (5.7) | 42 (5.0) | 0.94 | 11 (11.58) | 0 (0.00) | 11 (12.64) | 0.59 1 |
| Radiation | 264 (28.2) | 21 (24.1) | 243 (28.7) | 0.44 | 58 (61.05) | 3 (37.50) | 55 (63.22) | 0.25 |
| Surgery | ||||||||
| Mastectomy | 142 (15.2) | 12 (13.8) | 130 (15.3) | 0.82 | 31 (32.63) | 2 (25.00) | 29 (33.33) | 1.00 1 |
| Lumpectomy | 213 (22.8) | 19 (21.8) | 194 (22.9) | 0.93 | 60 (63.16) | 6 (75.00) | 54 (62.07) | 0.71 1 |
| Internal Validation Cohort | |||
|---|---|---|---|
| B-S2CALED C-Index | CHA2DS2-VASc C-Index | NRI | |
| Categorical Model | 0.64 [95% CI: 0.59, 0.70] | 0.54 [95% CI: 0.51, 0.56] | 0.188 |
| Continuous Model | 0.68 [95% CI: 0.62, 0.73] | 0.64 [95% CI: 0.58, 0.70] | 0.150 |
| External Validation Cohort | |||
| B-S2CALED C-index | CHA2DS2-VASc C-index | NRI | |
| Categorical Model | 0.77 [95% CI: 0.72, 0.83] | 0.53 [95% CI: 0.51, 0.56] | 0.563 |
| Continuous Model | 0.86 [95% CI: 0.79, 0.94] | 0.70 [95% CI: 0.51, 0.89] | 0.695 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seth, L.; Stabellini, N.; Bhave, A.; Gopu, G.; Yerraguntla, S.; Shetewi, A.; Lester, J.; Patel, V.; Jiang, S.; James, M.; et al. The B-S2CALED Score’s Utility in Predicting Stroke Risk in Breast Cancer Patients with Atrial Fibrillation. Cancers 2025, 17, 3600. https://doi.org/10.3390/cancers17223600
Seth L, Stabellini N, Bhave A, Gopu G, Yerraguntla S, Shetewi A, Lester J, Patel V, Jiang S, James M, et al. The B-S2CALED Score’s Utility in Predicting Stroke Risk in Breast Cancer Patients with Atrial Fibrillation. Cancers. 2025; 17(22):3600. https://doi.org/10.3390/cancers17223600
Chicago/Turabian StyleSeth, Lakshya, Nickolas Stabellini, Aditya Bhave, Gaurav Gopu, Sandeep Yerraguntla, Ahmed Shetewi, John Lester, Vraj Patel, Stephanie Jiang, Madison James, and et al. 2025. "The B-S2CALED Score’s Utility in Predicting Stroke Risk in Breast Cancer Patients with Atrial Fibrillation" Cancers 17, no. 22: 3600. https://doi.org/10.3390/cancers17223600
APA StyleSeth, L., Stabellini, N., Bhave, A., Gopu, G., Yerraguntla, S., Shetewi, A., Lester, J., Patel, V., Jiang, S., James, M., Joseph, S., Kollapaneni, S., Shah, V., Dent, S., Fradley, M. G., Køber, L., Blaes, A., & Guha, A. (2025). The B-S2CALED Score’s Utility in Predicting Stroke Risk in Breast Cancer Patients with Atrial Fibrillation. Cancers, 17(22), 3600. https://doi.org/10.3390/cancers17223600

