KRAS G12A Identifies a High-Risk Subset in Resected Stage II–III Colorectal Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics by KRAS Genotype in Two Independent Cohorts of Stage II–III CRC
3.2. KRAS G12A Demonstrated the Worst Survival Outcomes Among KRAS Mutant Subgroups
3.3. Independent Prognostic Significance of KRAS G12A in Stage II–III CRC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRC | colorectal cancer |
| mCRC | metastatic CRC |
| EGFR | epidermal growth factor receptor |
| FMU | Fukushima Medical University |
| RFS | relapse-free survival |
| OS | overall survival |
| PFS | progression-free survival |
| MMR/MSI | mismatch repair or microsatellite instability |
| dMMR/MSI-H | deficient mismatch repair or microsatellite instability-High |
| HR | hazard ratio |
| CI | confidence interval |
| WT | wild-type |
| MT | mutant |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Yoshino, T.; Ruíz-García, E.; Mostafa, N.; Cann, C.G.; O’Brian, B.; Benny, A.; Perez, R.O.; Cremolini, C. Colorectal cancer. Lancet 2024, 404, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, e240029. [Google Scholar] [CrossRef]
- Cox, A.D.; Der, C.J. “Undruggable KRAS”: Druggable after all. Genes Dev. 2025, 39, 132–162. [Google Scholar] [CrossRef]
- Takeda, M.; Yoshida, S.; Inoue, T.; Sekido, Y.; Hata, T.; Hamabe, A.; Ogino, T.; Miyoshi, N.; Uemura, M.; Yamamoto, H.; et al. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers 2025, 17, 428. [Google Scholar] [CrossRef]
- Mondal, K.; Posa, M.K.; Shenoy, R.P.; Roychoudhury, S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024, 13, 1221. [Google Scholar] [CrossRef]
- Lee, J.K.; Sivakumar, S.; Schrock, A.B.; Madison, R.; Fabrizio, D.; Gjoerup, O.; Ross, J.S.; Frampton, G.M.; Napalkov, P.; Montesion, M.; et al. Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors. npj Precis. Oncol. 2022, 6, 91. [Google Scholar] [CrossRef]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef]
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Morikawa, T.; Liao, X.; Lochhead, P.; Kuchiba, A.; Yamauchi, M.; Qian, Z.R.; Nishihara, R.; Meyerhardt, J.A.; Haigis, K.M.; et al. Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin. Cancer Res. 2012, 18, 4753–4763. [Google Scholar] [CrossRef] [PubMed]
- Margonis, G.A.; Kim, Y.; Spolverato, G.; Ejaz, A.; Gupta, R.; Cosgrove, D.; Anders, R.; Karagkounis, G.; Choti, M.A.; Pawlik, T.M. Association Between Specific Mutations in KRAS Codon 12 and Colorectal Liver Metastasis. JAMA Surg. 2015, 150, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Lochhead, P.; Yamauchi, M.; Kuchiba, A.; Qian, Z.R.; Liao, X.; Nishihara, R.; Jung, S.; Wu, K.; Nosho, K.; et al. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: Cohort study and literature review. Mol. Cancer 2014, 13, 135. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.N.; Norman, A.R.; Cunningham, D.; Oates, J.; Dix, B.R.; Iacopetta, B.J.; Young, J.; Walsh, T.; Ward, R.; Hawkins, N.; et al. Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br. J. Cancer 2001, 85, 692–696. [Google Scholar] [CrossRef]
- Jones, R.P.; Sutton, P.A.; Evans, J.P.; Clifford, R.; McAvoy, A.; Lewis, J.; Rousseau, A.; Mountford, R.; McWhirter, D.; Malik, H.Z. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br. J. Cancer 2017, 116, 923–929. [Google Scholar] [CrossRef]
- Tejpar, S.; Celik, I.; Schlichting, M.; Sartorius, U.; Bokemeyer, C.; Van Cutsem, E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. 2012, 30, 3570–3577. [Google Scholar] [CrossRef]
- Wu, X.G.; Liu, W.; Wang, Y.Y.; Wang, K.; Xing, B.C. Association of various RAS codon mutations and prognostic outcomes of patients with colorectal liver metastases after hepatectomy. Cancer Med. 2024, 13, e70168. [Google Scholar] [CrossRef]
- Strickler, J.H.; Yoshino, T.; Stevinson, K.; Eichinger, C.S.; Giannopoulou, C.; Rehn, M.; Modest, D.P. Prevalence of KRAS G12C Mutation and Co-mutations and Associated Clinical Outcomes in Patients with Colorectal Cancer: A Systematic Literature Review. Oncologist 2023, 28, e981–e994. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- Peeters, M.; Douillard, J.Y.; Van Cutsem, E.; Siena, S.; Zhang, K.; Williams, R.; Wiezorek, J. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: Assessment as prognostic and predictive biomarkers of response to panitumumab. J. Clin. Oncol. 2013, 31, 759–765. [Google Scholar] [CrossRef]
- Fiala, O.; Buchler, T.; Mohelnikova-Duchonova, B.; Melichar, B.; Matejka, V.M.; Holubec, L.; Kulhankova, J.; Bortlicek, Z.; Bartouskova, M.; Liska, V.; et al. G12V and G12A KRAS mutations are associated with poor outcome in patients with metastatic colorectal cancer treated with bevacizumab. Tumor Biol. 2016, 37, 6823–6830. [Google Scholar] [CrossRef]
- Japanese Society for Cancer of the Colon and Rectum. Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: The 3d English Edition [Secondary Publication]. J. Anus Rectum Colon 2019, 3, 175–195. [Google Scholar] [CrossRef]
- Noda, M.; Okayama, H.; Tachibana, K.; Sakamoto, W.; Saito, K.; Thar Min, A.K.; Ashizawa, M.; Nakajima, T.; Aoto, K.; Momma, T.; et al. Glycosyltransferase Gene Expression Identifies a Poor Prognostic Colorectal Cancer Subtype Associated with Mismatch Repair Deficiency and Incomplete Glycan Synthesis. Clin. Cancer Res. 2018, 24, 4468–4481. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Okayama, H.; Nakajima, S.; Saito, K.; Kanoda, R.; Maruyama, Y.; Matsuishi, A.; Matsumoto, T.; Ito, M.; Chida, S.; et al. GALNT7 stratifies dMMR/MSI colorectal cancer into distinct molecular subsets associated with prognosis and PD-L1 expression. Cancer Res. Commun. 2025, 5, 1530–1540. [Google Scholar] [CrossRef]
- Ashizawa, M.; Okayama, H.; Ishigame, T.; Thar Min, A.K.; Saito, K.; Ujiie, D.; Murakami, Y.; Kikuchi, T.; Nakayama, Y.; Noda, M.; et al. miRNA-148a-3p Regulates Immunosuppression in DNA Mismatch Repair-Deficient Colorectal Cancer by Targeting PD-L1. Mol. Cancer Res. 2019, 17, 1403–1413. [Google Scholar] [CrossRef]
- Roelands, J.; Kuppen, P.J.K.; Ahmed, E.I.; Mall, R.; Masoodi, T.; Singh, P.; Monaco, G.; Raynaud, C.; de Miranda, N.F.; Ferraro, L.; et al. An integrated tumor, immune and microbiome atlas of colon cancer. Nat. Med. 2023, 29, 1273–1286. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- van de Haar, J.; Ma, X.; Ooft, S.N.; van der Helm, P.W.; Hoes, L.R.; Mainardi, S.; Pinato, D.J.; Sun, K.; Salvatore, L.; Tortora, G.; et al. Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer. Nat. Med. 2023, 29, 605–614. [Google Scholar] [CrossRef]
- Van’t Erve, I.; Wesdorp, N.J.; Medina, J.E.; Ferreira, L.; Leal, A.; Huiskens, J.; Bolhuis, K.; van Waesberghe, J.T.M.; Swijnenburg, R.J.; van den Broek, D.; et al. KRAS A146 Mutations Are Associated with Distinct Clinical Behavior in Patients with Colorectal Liver Metastases. JCO Precis. Oncol. 2021, 5, 1758–1767. [Google Scholar] [CrossRef]
- Tonello, M.; Baratti, D.; Sammartino, P.; Di Giorgio, A.; Robella, M.; Sassaroli, C.; Framarini, M.; Valle, M.; Macrì, A.; Graziosi, L.; et al. Prognostic value of specific KRAS mutations in patients with colorectal peritoneal metastases. ESMO Open 2024, 9, 102976. [Google Scholar] [CrossRef] [PubMed]
- Burns, T.F.; Borghaei, H.; Ramalingam, S.S.; Mok, T.S.; Peters, S. Targeting KRAS-Mutant Non-Small-Cell Lung Cancer: One Mutation at a Time, with a Focus on KRAS G12C Mutations. J. Clin. Oncol. 2020, 38, 4208–4218. [Google Scholar] [CrossRef] [PubMed]

| Total | KRAS WT | KRAS MT G12A | KRAS MT G12D | KRAS MT G12V | KRAS MT G13D | KRAS MT Other | ||
|---|---|---|---|---|---|---|---|---|
| n = 299 | n = 166 (55.5%) | n = 9 (3.0%) | n = 41 (13.7%) | n = 32 (10.7%) | n = 23 (7.7%) | n = 28 (9.4%) | ||
| Age | ||||||||
| Mean ± SD | 70.1 ± 11.1 | 69.4 ± 11.4 | 67.0 ± 13.8 | 72.2 ± 9.6 | 72.6 ± 10.8 | 69.0 ± 9.8 | 70.6 ± 12.0 | |
| Sex | ||||||||
| Male | 175 (58.5%) | 97 (58.4%) | 4 (44.4%) | 23 (56.1%) | 18 (56.3%) | 16 (69.6%) | 17 (60.7%) | |
| Female | 124 (41.5%) | 69 (41.6%) | 5 (55.6%) | 18 (43.9%) | 14 (43.8%) | 7 (30.4%) | 11 (39.3%) | |
| Tumor location | ||||||||
| Right | 118 (39.5%) | 64 (38.6%) | 3 (33.3%) | 14 (34.1%) | 17 (53.1%) | 11 (47.8%) | 9 (32.1%) | |
| Left | 181 (60.5%) | 102 (61.4%) | 6 (66.7%) | 27 (65.9%) | 15 (46.9%) | 12 (52.2%) | 19 (67.9%) | |
| Histological type | ||||||||
| Well/Moderately differentiated | 263 (88.0%) | 148 (89.2%) | 8 (88.9%) | 35 (85.4%) | 26 (81.3%) | 20 (87.0%) | 26 (92.9%) | |
| Poorly differentiated | 7 (2.3%) | 5 (3.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (4.3%) | 1 (3.6%) | |
| Mucinous | 27 (9.0%) | 12 (7.2%) | 1 (11.1%) | 6 (14.6%) | 6 (18.8%) | 1 (4.3%) | 1 (3.6%) | |
| Signet-ring cell/Undifferentiated | 2 (0.7%) | 1 (0.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (4.3%) | 0 (0.0%) | |
| pathological stage | ||||||||
| stage II | 141 (47.2%) | 76 (45.8%) | 5 (55.6%) | 23 (56.1%) | 15 (46.9%) | 8 (34.8%) | 14 (50.0%) | |
| stage III | 158 (52.8%) | 90 (54.2%) | 4 (44.4%) | 18 (43.9%) | 17 (53.1%) | 15 (65.2%) | 14 (50.0%) | |
| Adjuvant chemotherapy | ||||||||
| No | 144 (48.2%) | 77 (46.4%) | 4 (44.4%) | 22 (53.7%) | 17 (53.1%) | 8 (34.8%) | 16 (57.1%) | |
| Yes | 155 (51.8%) | 89 (53.6%) | 5 (55.6%) | 19 (46.3%) | 15 (46.9%) | 15 (65.2%) | 12 (42.9%) | |
| MMR/MSI status | ||||||||
| dMMR/MSI-H | 30 (10.0%) | 24 (14.5%) | 0 (0.0%) | 3 (7.3%) | 0 (0.0%) | 3 (13.0%) | 0 (0.0%) | |
| pMMR/MSS | 257 (86.0%) | 136 (81.9%) | 7 (77.8%) | 37 (90.2%) | 31 (96.9%) | 19 (82.6%) | 27 (96.4%) | |
| undetermined | 12 (4.0%) | 6 (3.6%) | 2 (22.2%) | 1 (2.4%) | 1 (3.1%) | 1 (4.3%) | 1 (3.6%) | |
| 5-year RFS rate | ||||||||
| % | 70.9% | 74.0% | 27.8% | 58.8% | 64.4% | 71.5% | 89.0% | |
| Total | KRAS/BRAF WT | KRAS MT G12A | KRAS MT G12D | KRAS MT G12V | KRAS MT G13D | KRAS MT other | BRAF MT | ||
|---|---|---|---|---|---|---|---|---|---|
| n = 178 | n = 81 (45.5%) | n = 6 (3.4%) | n = 17 (9.6%) | n = 12 (6.7%) | n = 8 (4.5%) | n = 15 (8.4%) | n = 39 (21.9%) | ||
| Age | |||||||||
| Mean ± SD | 68 ± 11.7 | 66.1 ± 12.5 | 66.3 ± 16.4 | 66.9 ± 14.4 | 71.0 ± 8.5 | 65.9 ± 12.1 | 69.9 ± 8.3 | 71.6 ± 8.9 | |
| Sex | |||||||||
| Male | 94 (52.8%) | 49 (60.5%) | 4 (66.7%) | 6 (35.3%) | 8 (66.7%) | 5 (62.5%) | 10 (66.7%) | 12 (30.8%) | |
| Female | 84 (47.2%) | 32 (39.5%) | 2 (33.3%) | 11 (64.7%) | 4 (33.3%) | 3 (37.5%) | 5 (33.3%) | 27 (69.2%) | |
| Tumor location | |||||||||
| Right | 103 (57.9%) | 31 (38.3%) | 3 (50.0%) | 13 (76.5%) | 6 (50.0%) | 4 (50.0%) | 9 (60.0%) | 37 (94.9%) | |
| Left | 75 (42.1%) | 50 (61.7%) | 3 (50.0%) | 4 (23.5%) | 6 (50.0%) | 4 (50.0%) | 6 (40.0%) | 2 (5.1%) | |
| Histological type | |||||||||
| Adenocarcinoma | 143 (80.3%) | 72 (88.9%) | 6 (100.0%) | 14 (82.4%) | 10 (83.3%) | 7 (87.5%) | 11 (73.3%) | 23 (59.0%) | |
| Mucinous adenocarcinoma | 31 (17.4%) | 8 (9.9%) | 0 (0%) | 2 (11.8%) | 2 (16.7%) | 0 (0.0%) | 3 (20.0%) | 16 (41.0%) | |
| Signet-ring cell/Cribriform carcinoma | 4 (2.2%) | 1 (1.2%) | 0 (0%) | 1 (5.9%) | 0 (0.0%) | 1 (12.5%) | 1 (6.7%) | 0 (0.0%) | |
| pathological stage | |||||||||
| stage II | 97 (54.5%) | 41 (50.6%) | 4 (66.7%) | 7 (41.2%) | 6 (50.0%) | 5 (62.5%) | 7 (46.7%) | 27 (69.2%) | |
| stage III | 81 (45.5%) | 40 (49.4%) | 2 (33.3%) | 10 (58.8%) | 6 (50.0%) | 3 (37.5%) | 8 (53.3%) | 12 (30.8%) | |
| Adjuvant chemotherapy | |||||||||
| No | 119 (66.9%) | 50 (61.7%) | 4 (66.7%) | 11 (64.7%) | 7 (58.3%) | 6 (75.0%) | 9 (60.0%) | 32 (82.1%) | |
| Yes | 59 (33.1%) | 31 (38.3%) | 2 (33.3%) | 6 (35.3%) | 5 (41.7%) | 2 (25.0%) | 6 (40.0%) | 7 (17.9%) | |
| MSI status | |||||||||
| MSI-H | 33 (18.5%) | 5 (6.2%) | 0 (0.0%) | 1 (5.9%) | 0 (0.0%) | 2 (25.0%) | 0 (0.0%) | 25 (64.1%) | |
| MSS | 145 (81.5%) | 76 (93.8%) | 6 (100.0%) | 16 (94.1%) | 12 (100.0%) | 6 (75.0%) | 15 (100.0%) | 14 (35.9%) | |
| 5-year RFS rate | |||||||||
| % | 75.4% | 81.0% | 50.0% | 75.0% | 50.0% | 75.0% | 80.0% | 74.9% | |
| RFS | OS | |||||||
|---|---|---|---|---|---|---|---|---|
| Univariable | Multivariable | Univariable | Multivariable | |||||
| HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
| FMU cohort (n = 299) | ||||||||
| KRAS WT | 1 (Referent) | 1 (Referent) | 1 (Referent) | 1 (Referent) | ||||
| KRAS MT G12A | 4.04 (1.38–9.46) | 0.004 | 5.23 (1.50–14.11) | 0.003 | 6.37 (2.11–15.74) | <0.001 | 10.64 (2.39–34.00) | <0.001 |
| KRAS MT non-G12A | 1.28 (0.78–2.08) | 0.324 | 1.09 (0.66–1.80) | 0.737 | 1.54 (0.85–2.81) | 0.152 | 1.35 (0.73–2.51) | 0.344 |
| AC-ICAM cohort (n = 178) | ||||||||
| KRAS/BRAF WT | 1 (Referent) | 1 (Referent) | 1 (Referent) | 1 (Referent) | ||||
| KRAS MT G12A | 4.16 (0.96–12.64) | 0.024 | 5.13 (1.15–16.44) | 0.013 | 3.54 (1.03–9.33) | 0.021 | 3.83 (1.08–10.61) | 0.018 |
| KRAS MT non-G12A | 1.64 (0.80–3.38) | 0.176 | 2.05 (0.94–4.46) | 0.069 | 1.73 (0.93–3.21) | 0.081 | 1.80 (0.93–3.47) | 0.079 |
| BRAF MT | 1.35 (0.57–3.02) | 0.481 | 2.68 (0.83–8.03) | 0.087 | 1.33 (0.65–2.63) | 0.416 | 2.60 (1.02–6.23) | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momma, T.; Okayama, H.; Hayashishita, S.; Yamaguchi, D.; Fujii, A.; Katagata, M.; Matsumoto, T.; Ujiie, D.; Chida, S.; Saze, Z.; et al. KRAS G12A Identifies a High-Risk Subset in Resected Stage II–III Colorectal Cancer. Cancers 2025, 17, 3599. https://doi.org/10.3390/cancers17223599
Momma T, Okayama H, Hayashishita S, Yamaguchi D, Fujii A, Katagata M, Matsumoto T, Ujiie D, Chida S, Saze Z, et al. KRAS G12A Identifies a High-Risk Subset in Resected Stage II–III Colorectal Cancer. Cancers. 2025; 17(22):3599. https://doi.org/10.3390/cancers17223599
Chicago/Turabian StyleMomma, Tomoyuki, Hirokazu Okayama, Sohei Hayashishita, Daiki Yamaguchi, Ayumi Fujii, Masanori Katagata, Takuro Matsumoto, Daisuke Ujiie, Shun Chida, Zenichiro Saze, and et al. 2025. "KRAS G12A Identifies a High-Risk Subset in Resected Stage II–III Colorectal Cancer" Cancers 17, no. 22: 3599. https://doi.org/10.3390/cancers17223599
APA StyleMomma, T., Okayama, H., Hayashishita, S., Yamaguchi, D., Fujii, A., Katagata, M., Matsumoto, T., Ujiie, D., Chida, S., Saze, Z., Nakajima, S., Mimura, K., Saito, M., Sakamoto, W., & Kono, K. (2025). KRAS G12A Identifies a High-Risk Subset in Resected Stage II–III Colorectal Cancer. Cancers, 17(22), 3599. https://doi.org/10.3390/cancers17223599

