Holmium-166 Radioembolization Is a Safe and Effective Locoregional Treatment for Primary and Secondary Liver Tumors: A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Registration
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Selection Process
2.5. Data Extraction
2.6. Study Risk of Bias Assessment
2.7. Statistical Analysis
3. Results
3.1. Search and Selection
3.2. Basic Characteristics of Studies Included
3.3. Efficacy Assessment—Tumor Response
3.4. Survival
3.5. Safety Assessment—Clinical and Laboratory Adverse Events
3.6. Tumor-Absorbed Dose and Healthy Liver-Absorbed Dose
3.7. Risk of Bias and Study Heterogeneity Assessment
4. Discussion
4.1. Efficacy
4.2. Survival
4.3. Safety
4.4. Strengths and Limitations
4.5. Implications for Practice and Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICC | Intrahepatic cholangiocarcinoma |
CR | Complete response |
CRC | Colorectal cancer |
CTCAE | Common terminology criteria for adverse events |
DCR | Disease control rate |
GGT | Gamma-glutamyl transferase |
HCC | Hepatocellular carcinoma |
Ho-166-TARE | Transarterial radioembolization using Holmium-166 microspheres |
MINORS | Methodological index for non-randomized studies |
mRECIST | Modified response evaluation criteria in solid tumors |
OS | Overall survival |
PD | Progressive disease |
PFS | Progression-free survival |
PR | Partial response |
RECIST 1.1 | Response evaluation criteria in solid tumors version 1.1 |
REILD | Radioembolization-induced liver disease |
RP | Radiation pneumonitis |
SD | Stable disease |
TACE | Transarterial chemoembolization |
TAE | Transarterial embolization |
TARE | Transarterial radioembolization |
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Jiang, J.Y.; Goggins, W.B.; Liang, M.; Fang, Y.; Fung, F.D.H.; Leung, C.; Wang, H.H.X.; Wong, G.L.H.; Wong, V.W.S.; et al. International incidence and mortality trends of liver cancer: A global profile. Sci. Rep. 2017, 7, 45846. [Google Scholar] [CrossRef]
- Bouvry, C.; Palard, X.; Edeline, J.; Ardisson, V.; Loyer, P.; Garin, E.; Lepareur, N. Transarterial Radioembolization (TARE) Agents beyond (90)Y-Microspheres. BioMed Res. Int. 2018, 2018, 1435302. [Google Scholar] [CrossRef]
- Bargellini, I.; Bozzi, E.; Lorenzoni, G.; Boni, G.; Bianchi, F.; Traino, C.A.; Masi, G.; Cioni, R.; Crocetti, L. Role of Transhepatic Arterial Radioembolization in Metastatic Colorectal Cancer. CardioVasc. Interv. Radiol. 2022, 45, 1579–1589. [Google Scholar] [CrossRef]
- Zane, K.E.; Nagib, P.B.; Jalil, S.; Mumtaz, K.; Makary, M.S. Emerging curative-intent minimally-invasive therapies for hepatocellular carcinoma. World J. Hepatol. 2022, 14, 885–895. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, C.; Mahler, M.; Soulen, M.C. Curative-Intent Therapies in Localized Hepatocellular Carcinoma. Curr. Treat. Options Oncol. 2020, 21, 31. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; Smits, M.L.J.; van Roekel, C.; Braat, A.J.A.T. Holmium-166 Microsphere Radioembolization of Hepatic Malignancies. Semin. Nucl. Med. 2019, 49, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Lam, M.; Chiesa, C.; Konijnenberg, M.; Cremonesi, M.; Flamen, P.; Gnesin, S.; Bodei, L.; Kracmerova, T.; Luster, M.; et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1682–1699. [Google Scholar] [CrossRef]
- d’Abadie, P.; Hesse, M.; Louppe, A.; Lhommel, R.; Walrand, S.; Jamar, F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021, 26, 3966. [Google Scholar] [CrossRef]
- Stella, M.; Braat, A.; van Rooij, R.; de Jong, H.; Lam, M. Holmium-166 Radioembolization: Current Status and Future Prospective. CardioVasc. Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef]
- Smits, M.L.J.; Dassen, M.G.; Prince, J.F.; Braat, A.; Beijst, C.; Bruijnen, R.C.G.; de Jong, H.; Lam, M. The superior predictive value of (166)Ho-scout compared with (99m)Tc-macroaggregated albumin prior to (166)Ho-microspheres radioembolization in patients with liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 798–806. [Google Scholar] [CrossRef]
- Czibor, S.; Bibok, A.; Horváthy, D.; Fábián, K.; Györke, T. Radioembolization Planning With Dual-Isotope Acquisition of 166 Ho-Labeled Microparticles and 99m Tc-Mebrofenin. Clin. Nucl. Med. 2023, 48, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Serviddio, G.; Muscatiello, N. Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: A systematic review and meta-analysis. World J. Hepatol. 2016, 8, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, C.; Ciani, O.; Sommariva, S.; Facciorusso, A.; Tarricone, R.; Bhoori, S.; Mazzaferro, V. Trans-arterial radioembolization in intermediate-advanced hepatocellular carcinoma: Systematic review and meta-analyses. Oncotarget 2016, 7, 72343–72355. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4. 2023. Cochrane. Available online: https://training.cochrane.org/handbook (accessed on 20 August 2024).
- Schwartz, L.H.; Seymour, L.; Litière, S.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Standardisation and disease-specific adaptations: Perspectives from the RECIST Working Group. Eur. J. Cancer 2016, 62, 138–145. [Google Scholar] [CrossRef]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0.; National Institutes of Health: Bethesda, MD, USA, 2009.
- NiO Health. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03; US Department of Health and Human Services: Bethasda, MD, USA, 2010.
- UDO Health. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0; National Cancer Institute: Bethesda, MD, USA, 2017.
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- The R Foundation. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 3 November 2024).
- Schwarzer, G. Meta: General Package for Meta-Analysis. 2022. Available online: https://github.com/guido-s/meta/ (accessed on 3 November 2024).
- Cuijpers, P.; Furukawa, T.; Ebert, D.D. Dmetar: Companion R Package for the Guide Doing Meta-Analysis in R. 2023. Available online: https://dmetar.protectlab.org (accessed on 3 November 2024).
- Braat, A.; Bruijnen, R.C.G.; van Rooij, R.; Braat, M.; Wessels, F.J.; van Leeuwaarde, R.S.; van Treijen, M.J.C.; de Herder, W.W.; Hofland, J.; Tesselaar, M.E.T.; et al. Additional holmium-166 radioembolisation after lutetium-177-dotatate in patients with neuroendocrine tumour liver metastases (HEPAR PLuS): A single-centre, single-arm, open-label, phase 2 study. Lancet Oncol. 2020, 21, 561–570. [Google Scholar] [CrossRef]
- Bastiaannet, R.; van Roekel, C.; Smits, M.L.J.; Elias, S.G.; van Amsterdam, W.A.C.; Doan, D.; Prince, J.F.; Bruijnen, R.C.G.; de Jong, H.; Lam, M. First Evidence for a Dose-Response Relationship in Patients Treated with (166)Ho Radioembolization: A Prospective Study. J. Nucl. Med. 2020, 61, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Dökdök, M.; Berberoğlu, K. Holmium-166 Radioembolization of Hepatic Metastases in Salvage Setting: Preliminary Findings from a Single Center Experience. J. Clin. Interv. Radiol. ISVIR 2024, 8, 003–010. [Google Scholar] [CrossRef]
- Drescher, R.; Köhler, A.; Seifert, P.; Aschenbach, R.; Ernst, T.; Rauchfuß, F.; Freesmeyer, M. Clinical Results of Transarterial Radioembolization (TARE) with Holmium-166 Microspheres in the Multidisciplinary Oncologic Treatment of Patients with Primary and Secondary Liver Cancer. Biomedicines 2023, 11, 1831. [Google Scholar] [CrossRef]
- Ebbers, S.C.; Brabander, T.; Tesselaar, M.E.T.; Hofland, J.; Braat, M.; Wessels, F.J.; Barentsz, M.W.; Lam, M.; Braat, A. Inflammatory markers and long term hematotoxicity of holmium-166-radioembolization in liver-dominant metastatic neuroendocrine tumors after initial peptide receptor radionuclide therapy. EJNMMI Res. 2022, 12, 7. [Google Scholar] [CrossRef]
- Prince, J.F.; van den Bosch, M.; Nijsen, J.F.W.; Smits, M.L.J.; van den Hoven, A.F.; Nikolakopoulos, S.; Wessels, F.J.; Bruijnen, R.C.G.; Braat, M.; Zonnenberg, B.A.; et al. Efficacy of Radioembolization with (166)Ho-Microspheres in Salvage Patients with Liver Metastases: A Phase 2 Study. J. Nucl. Med. 2018, 59, 582–588. [Google Scholar] [CrossRef]
- Radosa, C.G.; Radosa, J.C.; Grosche-Schlee, S.; Zöphel, K.; Plodeck, V.; Kühn, J.P.; Kotzerke, J.; Hoffmann, R.T. Holmium-166 Radioembolization in Hepatocellular Carcinoma: Feasibility and Safety of a New Treatment Option in Clinical Practice. CardioVasc. Interv. Radiol. 2019, 42, 405–412. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; van Erpecum, K.J.; Smits, M.L.J.; Braat, A.; Bruijne, J.; Bruijnen, R.; Sprengers, D.; Man, R.A.; Vegt, E.; JNM, I.J.; et al. Safety and Efficacy of (166)Ho Radioembolization in Hepatocellular Carcinoma: The HEPAR Primary Study. J. Nucl. Med. 2022, 63, 1891–1898. [Google Scholar] [CrossRef]
- Roosen, J.; Westlund Gotby, L.E.L.; Arntz, M.J.; Fütterer, J.J.; Janssen, M.J.R.; Konijnenberg, M.W.; van Wijk, M.W.M.; Overduin, C.G.; Nijsen, J.F.W. Intraprocedural MRI-based dosimetry during transarterial radioembolization of liver tumours with holmium-166 microspheres (EMERITUS-1): A phase I trial towards adaptive, image-controlled treatment delivery. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4705–4715. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.L.; Nijsen, J.F.; van den Bosch, M.A.; Lam, M.G.; Vente, M.A.; Mali, W.P.; van Het Schip, A.D.; Zonnenberg, B.A. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol. 2012, 13, 1025–1034. [Google Scholar] [CrossRef]
- van Roekel, C.; Jongen, J.M.J.; Smits, M.L.J.; Elias, S.G.; Koopman, M.; Kranenburg, O.; Borel Rinkes, I.H.M.; Lam, M. Mode of progression after radioembolization in patients with colorectal cancer liver metastases. EJNMMI Res. 2020, 10, 107. [Google Scholar] [CrossRef]
- van Roekel, C.; Smits, M.L.J.; Prince, J.F.; Bruijnen, R.C.G.; van den Bosch, M.; Lam, M. Quality of life in patients with liver tumors treated with holmium-166 radioembolization. Clin. Exp. Metastasis 2020, 37, 95–105. [Google Scholar] [CrossRef]
- van Roekel, C.; Bastiaannet, R.; Smits, M.L.J.; Bruijnen, R.C.; Braat, A.; de Jong, H.; Elias, S.G.; Lam, M. Dose-Effect Relationships of (166)Ho Radioembolization in Colorectal Cancer. J. Nucl. Med. 2021, 62, 272–279. [Google Scholar] [CrossRef] [PubMed]
- van Roekel, C.; van den Hoven, A.F.; Bastiaannet, R.; Bruijnen, R.C.G.; Braat, A.; de Keizer, B.; Lam, M.; Smits, M.L.J. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.L.; Elschot, M.; van den Bosch, M.A.; van de Maat, G.H.; van het Schip, A.D.; Zonnenberg, B.A.; Seevinck, P.R.; Verkooijen, H.M.; Bakker, C.J.; de Jong, H.W.; et al. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J. Nucl. Med. 2013, 54, 2093–2100. [Google Scholar] [CrossRef]
- Stella, M.; van Rooij, R.; Lam, M.; de Jong, H.; Braat, A. Automatic healthy liver segmentation for holmium-166 radioembolization dosimetry. EJNMMI Res. 2023, 13, 68. [Google Scholar] [CrossRef]
- van Roekel, C.; Harlianto, N.I.; Braat, A.; Prince, J.F.; van den Hoven, A.F.; Bruijnen, R.C.G.; Lam, M.; Smits, M.L.J. Evaluation of the Safety and Feasibility of Same-Day Holmium-166-Radioembolization Simulation and Treatment of Hepatic Metastases. J. Vasc. Interv. Radiol. 2020, 31, 1593–1599. [Google Scholar] [CrossRef]
- Wagemans, M.; Kunnen, B.; Stella, M.; van Rooij, R.; Smits, M.; Bruijnen, R.; Lam, M.; de Jong, H.; Braat, A. Comparison of 3 Different Therapeutic Particles in Radioembolization of Locally Advanced Intrahepatic Cholangiocarcinoma. J. Nucl. Med. 2024, 65, 272–278. [Google Scholar] [CrossRef]
- Hendriks, P.; Rietbergen, D.D.D.; van Erkel, A.R.; Coenraad, M.J.; Arntz, M.J.; Bennink, R.J.; Braat, A.E.; Crobach, S.; van Delden, O.M.; Dibbets-Schneider, P.; et al. Adjuvant holmium-166 radioembolization after radiofrequency ablation in early-stage hepatocellular carcinoma patients: A dose-finding study (HORA EST HCC trial). Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2085–2097. [Google Scholar] [CrossRef]
- Ramdhani, K.; Beijer-Verduin, J.; Ebbers, S.C.; van Rooij, R.; Smits, M.L.J.; Bruijnen, R.C.G.; de Jong, H.; Lam, M.; Braat, A. Dose-effect relationships in neuroendocrine tumour liver metastases treated with [(166)Ho]-radioembolization. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2114–2123. [Google Scholar] [CrossRef]
- Wagemans, M.; Braat, A.; van Rooij, R.; Smits, M.L.J.; Bruijnen, R.C.G.; Prince, J.F.; Bol, G.M.; de Jong, H.; Lam, M. Lung Mean Dose Prediction in Transarterial Radioembolization (TARE): Superiority of [(166)Ho]-Scout Over [(99m)Tc]MAA in a Prospective Cohort Study. CardioVasc. Interv. Radiol. 2024, 47, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kis, B.; Gyano, M. Radiation Pneumonitis after Yttrium-90 Radioembolization: A Systematic Review. J. Vasc. Interv. Radiol. 2025, 36, 207–218. [Google Scholar] [CrossRef]
- Braat, M.N.; van Erpecum, K.J.; Zonnenberg, B.A.; van den Bosch, M.A.; Lam, M.G. Radioembolization-induced liver disease: A systematic review. Eur. J. Gastroenterol. Hepatol. 2017, 29, 144–152. [Google Scholar] [CrossRef]
- Sivananthan, G.; Tabori, N.E. Principles of Radioembolization. Semin. Interv. Radiol. 2021, 38, 393–396. [Google Scholar] [CrossRef]
- Sangro, B. Chemoembolization and radioembolization. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Lewandowski, R.J.; Mulcahy, M.F.; Riaz, A.; Ryu, R.K.; Ibrahim, S.; Atassi, B.; Baker, T.; Gates, V.; Miller, F.H.; et al. Radioembolization for Hepatocellular Carcinoma Using Yttrium-90 Microspheres: A Comprehensive Report of Long-term Outcomes. Gastroenterology 2010, 138, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Ayuso, C.; Varela, M.; Rimola, J.; Hessheimer, A.J.; de Lope, C.R.; Reig, M.; Bianchi, L.; Llovet, J.M.; Bruix, J. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: Are response evaluation criteria in solid tumors reliable? Cancer 2009, 115, 616–623. [Google Scholar] [CrossRef]
- Yu, H.; Bai, Y.; Xie, X.; Feng, Y.; Yang, Y.; Zhu, Q. RECIST 1.1 versus mRECIST for assessment of tumour response to molecular targeted therapies and disease outcomes in patients with hepatocellular carcinoma: A systematic review and meta-analysis. BMJ Open 2022, 12, e052294. [Google Scholar] [CrossRef]
- Bozkurt, M.F.; Salanci, B.V.; Uğur, Ö. Intra-Arterial Radionuclide Therapies for Liver Tumors. Semin. Nucl. Med. 2016, 46, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.C.; Kokabi, N.; Xing, M.; Prajapati, H.J.; El-Rayes, B.; Kim, H.S. Modified response evaluation criteria in solid tumors and European Association for The Study of the Liver criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J. Vasc. Interv. Radiol. 2014, 25, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Choi, H.J.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; Baek, S.E.; Chung, Y.E.; Park, M.S.; et al. The Modified Response Evaluation Criteria in Solid Tumors (RECIST) Yield a More Accurate Prognoses Than the RECIST 1.1 in Hepatocellular Carcinoma Treated with Transarterial Radioembolization. Gut Liver 2020, 14, 765–774. [Google Scholar] [CrossRef]
- Memon, K.; Lewandowski, R.J.; Kulik, L.; Riaz, A.; Mulcahy, M.F.; Salem, R. Radioembolization for primary and metastatic liver cancer. Semin. Radiat. Oncol. 2011, 21, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, R.J.; Salem, R. Yttrium-90 radioembolization of hepatocellular carcinoma and metastatic disease to the liver. Semin. Interv. Radiol. 2006, 23, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Moris, D.; Palta, M.; Kim, C.; Allen, P.J.; Morse, M.A.; Lidsky, M.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J. Clin. 2023, 73, 198–222. [Google Scholar] [CrossRef]
- Ness, J.R.; Molvar, C. Radioembolization of Intrahepatic Cholangiocarcinoma: Patient Selection, Outcomes, and Competing Therapies. Semin. Interv. Radiol. 2021, 38, 438–444. [Google Scholar] [CrossRef]
- Prajapati, H.J.; Spivey, J.R.; Hanish, S.I.; El-Rayes, B.F.; Kauh, J.S.; Chen, Z.; Kim, H.S. mRECIST and EASL responses at early time point by contrast-enhanced dynamic MRI predict survival in patients with unresectable hepatocellular carcinoma (HCC) treated by doxorubicin drug-eluting beads transarterial chemoembolization (DEB TACE). Ann. Oncol. 2013, 24, 965–973. [Google Scholar] [CrossRef]
- Lobo, L.; Yakoub, D.; Picado, O.; Ripat, C.; Pendola, F.; Sharma, R.; ElTawil, R.; Kwon, D.; Venkat, S.; Portelance, L.; et al. Unresectable Hepatocellular Carcinoma: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. CardioVasc. Interv. Radiol. 2016, 39, 1580–1588. [Google Scholar] [CrossRef]
- Venerito, M.; Pech, M.; Canbay, A.; Donghia, R.; Guerra, V.; Chatellier, G.; Pereira, H.; Gandhi, M.; Malfertheiner, P.; Chow, P.K.H.; et al. NEMESIS: Noninferiority, Individual-Patient Metaanalysis of Selective Internal Radiation Therapy with (90)Y Resin Microspheres Versus Sorafenib in Advanced Hepatocellular Carcinoma. J. Nucl. Med. 2020, 61, 1736–1742. [Google Scholar] [CrossRef]
- Schartz, D.A.; Porter, M.; Schartz, E.; Kallas, J.; Gupta, A.; Butani, D.; Cantos, A. Transarterial Yttrium-90 Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. J. Vasc. Interv. Radiol. 2022, 33, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Frilling, A.; Clift, A.K.; Braat, A.J.A.T.; Alsafi, A.; Wasan, H.S.; Al-Nahhas, A.; Thomas, R.; Drymousis, P.; Habib, N.; Tait, P.N. Radioembolisation with 90Y microspheres for neuroendocrine liver metastases: An institutional case series, systematic review and meta-analysis. HPB 2019, 21, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Naymagon, S.; Warner, R.R.P.; Patel, K.; Harpaz, N.; Machac, J.; Weintraub, J.L.; Kim, M.K. Gastroduodenal Ulceration Associated with Radioembolization for the Treatment of Hepatic Tumors: An Institutional Experience and Review of the Literature. Dig. Dis. Sci. 2010, 55, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Elschot, M.; Nijsen, J.F.; Lam, M.G.; Smits, M.L.; Prince, J.F.; Viergever, M.A.; van den Bosch, M.A.; Zonnenberg, B.A.; de Jong, H.W. (99m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: A quantitative evaluation in patients treated with 166Ho-microspheres. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1965–1975. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kozaka, K.; Gabata, T.; Matsui, O.; Koda, W.; Okuda, M.; Okumura, K.; Sugiura, T.; Ogi, T. Pathophysiology and Imaging Findings of Bile Duct Necrosis: A Rare but Serious Complication of Transarterial Therapy for Liver Tumors. Cancers 2020, 12, 2596. [Google Scholar] [CrossRef]
- Young, S.; Ragulojan, R.; Chen, T.; Owen, J.; D’Souza, D.; Sanghvi, T.; Golzarian, J.; Flanagan, S. Dynamic Lymphocyte Changes Following Transarterial Radioembolization: Association with Normal Liver Dose and Effect on Overall Survival. J. Hepatocell. Carcinoma 2022, 9, 29–39. [Google Scholar] [CrossRef]
- Li, X.; Montazeri, S.A.; Paz-Fumagalli, R.; Padula, C.A.; Wang, W.; Mody, K.; Roberts, L.R.; Patel, T.; Krishnan, S.; Toskich, B. Prognostic Significance of Neutrophil to Lymphocyte Ratio Dynamics in Patients with Hepatocellular Carcinoma Treated with Radioembolization Using Glass Microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2624–2634. [Google Scholar] [CrossRef]
- Estrade, F.; Lescure, C.; Muzellec, L.; Pedrono, M.; Palard, X.; Pracht, M.; Le Sourd, S.; Rolland, Y.; Uguen, T.; Garin, E.; et al. Lymphocytes and Neutrophil-to-Lymphocyte Ratio Variations After Selective Internal Radiation Treatment for HCC: A Retrospective Cohort Study. CardioVasc. Interv. Radiol. 2020, 43, 1175–1181. [Google Scholar] [CrossRef]
- Venkatesulu, B.P.; Mallick, S.; Lin, S.H.; Krishnan, S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. Hematol. 2018, 123, 42–51. [Google Scholar] [CrossRef]
- Bibok, A.; Sólymos, P.; Czibor, S.; Korda, D.A.; Nádasdy-Horváth, D.; Demeter, G.; Taba, G.; Deak, P.A.; Horváthy, D.B. Closed System Injection of Two Separate Vials of 166 Holmium-Labeled Microspheres in a Large Hepatocellular Carcinoma. CardioVasc. Interv. Radiol. 2024, 47, 1804–1807. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; Braat, A.; van Erpecum, K.J.; de Bruijne, J.; Bruijnen, R.C.G.; Sprengers, D.; de Man, R.; Vegt, E.; JNM, I.J.; Elias, S.G.; et al. Holmium-166 radioembolisation dosimetry in HCC. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Zachau, V.; Verset, G.; De Bondt, P.; De Keukeleire, K.; Gühne, F.; Heuschkel, M.; Hoffmann, R.T.; Bozzi, E.; Sciuto, R.; Lam, M.; et al. Safety and efficacy of Holmium-166 selective internal radiotherapy of primary and secondary liver cancer confirmed by real-world data. Front. Oncol. 2024, 14, 1404621. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Schrag, D. The Evolving Uses of “Real-World” Data. JAMA 2019, 321, 1359–1360. [Google Scholar] [CrossRef]
- Bastiaannet, R.; Kappadath, S.C.; Kunnen, B.; Braat, A.; Lam, M.; de Jong, H. The physics of radioembolization. EJNMMI Phys. 2018, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Vente, M.A.; Wondergem, M.; van der Tweel, I.; van den Bosch, M.A.; Zonnenberg, B.A.; Lam, M.G.; van Het Schip, A.D.; Nijsen, J.F. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: A structured meta-analysis. Eur. Radiol. 2009, 19, 951–959. [Google Scholar] [CrossRef]
- Hegyi, P.; Petersen, O.H.; Holgate, S.; Erőss, B.; Garami, A.; Szakács, Z.; Dobszai, D.; Balaskó, M.; Kemény, L.; Peng, S.; et al. Academia Europaea Position Paper on Translational Medicine: The Cycle Model for Translating Scientific Results into Community Benefits. J. Clin. Med. 2020, 9, 1532. [Google Scholar] [CrossRef]
- Hegyi, P.; Erőss, B.; Izbéki, F.; Párniczky, A.; Szentesi, A. Accelerating the translational medicine cycle: The Academia Europaea pilot. Nat. Med. 2021, 27, 1317–1319. [Google Scholar] [CrossRef]
First Author, Publication Date | Country, Centers | Study Period | Study Design | Number of Patients | Age, Years (Mean (SD) or Median (Range)) | Sex, Female % of Total | Primary Tumor | Tumor Response Evaluation Criteria |
---|---|---|---|---|---|---|---|---|
Braat et al., 2020 [30] | The Netherlands, single center | October 2014–September 2018 | Prospective, nonrandomized, noncomparative clinical trial | 30 | 62 (8) | 27 | Pancreas, ileum/jejunum, CRC, bronchus/lung, unknown | RECIST 1.1 mRECIST |
Bastiaannet et al., 2019 [31] | The Netherlands, single center | 2009–2015 | Prospective, nonrandomized, noncomparative clinical trial | 36 | 64 (40–84) | 53 | Breast, ICC, melanoma, neuroendocrine neoplasm, thymus, pancreas, CRC | Not included in the response analysis |
Dökdök et al., 2023 [32] | Turkey, single center | January 2019–February 2020 | Retrospective case cohort | 9 | 56 (12) | 78 | Breast, melanoma, pancreas, CRC, gastric, ovary | RECIST 1.1 mRECIST |
Drescher et al., 2023 [33] | Germany, single center | February 2019–March 2021 | Prospective cohort | 20 | 69.5 (57–82) | 25 | HCC, ICC, CRC, liver haemangioendothelioma, | mRECIST |
Ebbers et al., 2022 [34] | The Netherlands, single center | Not reported | Prospective cohort | 31 | 65.1 (IQR: 57.6–70.2) | 26 | Pancreas, ileum/jejunum, CRC, bronchus/lung, unknown | Not included in the response analysis |
Prince et al., 2018 [35] | The Netherlands, single center | May 2012–March 2015 | Prospective, nonrandomized, noncomparative clinical trial | 38 | 66 (41–84) | 42 | Breast, ICC, melanoma, neuroendocrine neoplasm, thymus, pancreas, CRC, gastric | RECIST 1.1 |
Radosa et al., 2019 [36] | Germany, single center | March 2017–April 2018 | Retrospective cohort | 9 | 73 (64–78) | 11 | HCC | mRECIST |
Reinders et al., 2022 [37] | Multicentre | December 2017–January 2020 | Prospective nonrandomized, noncomparative clinical trial | 31 | 73 (44–85) | 10 | Unknown | mRECIST |
Roosen et al., 2022 [38] | The Netherlands, single center | Not reported | Prospective nonrandomized, noncomparative clinical trial | 6 | 67 (32–81) | 67 | HCC, breast, ICC, CRC | RECIST 1.1 |
Smits et al., 2012 [39] | The Netherlands, single center | November 2009–September 2011 | Prospective nonrandomized, noncomparative clinical trial | 15 | 55 (38–87) | 40 | Breast, ICC, melanoma, CRC | RECIST 1.1 |
Roekel et al., 2021 [42] | The Netherlands, single center | Not reported | Retrospective cohort | 40 | 64 (37–84) | 37.5 | CRC | RECIST 1.1 |
Smits et al., 2013 [44] | The Netherlands, single center | Not reported | Prospective nonrandomized, noncomparative clinical trial | 15 | 56 (38–87) | 40 | Breast, ICC, melanoma, CRC | Not included in the response analysis |
Stella et al., 2023 [45] | The Netherlands, single center | Not reported | Prospective nonrandomized, noncomparative clinical trial | 31 | 65.1 (IQR: 57.6–70.2) | 26 | Pancreas, ileum/jejunum, CRC, bronchus/lung, unknown | Not included in the response analysis |
Wagemans et al., 2024 [47] | The Netherlands, single center | June 2011–March 2020 | Retrospective cohort | 7 | 59 (45–83) | 71 | ICC | RECIST 1.1 |
Hendricks et al., 2024 [48] | Multicentre | April 2018–March 2021 | Prospective nonrandomized, noncomparative clinical trial | 12 | 66.5 (IQR: 64.3–71.7) | 17 | HCC | Not included in the response analysis |
Randhani et al., 2024 [49] | The Netherlands, single center | 2012–2022 | Retrospective cohort | 29 | 60 (mean) (25–80) | 45 | Neuroendocrine neoplasm | RECIST 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sólymos, P.; Rédei, M.; Turan, C.; Szabó, B.; Ádám, A.; Molnár, Z.; Duray, G.; Hegyi, P.; Horváthy, D.B. Holmium-166 Radioembolization Is a Safe and Effective Locoregional Treatment for Primary and Secondary Liver Tumors: A Systematic Review and Meta-Analysis. Cancers 2025, 17, 1841. https://doi.org/10.3390/cancers17111841
Sólymos P, Rédei M, Turan C, Szabó B, Ádám A, Molnár Z, Duray G, Hegyi P, Horváthy DB. Holmium-166 Radioembolization Is a Safe and Effective Locoregional Treatment for Primary and Secondary Liver Tumors: A Systematic Review and Meta-Analysis. Cancers. 2025; 17(11):1841. https://doi.org/10.3390/cancers17111841
Chicago/Turabian StyleSólymos, Petra, Mátyás Rédei, Caner Turan, Bence Szabó, Alexandra Ádám, Zsolt Molnár, Gábor Duray, Péter Hegyi, and Dénes B. Horváthy. 2025. "Holmium-166 Radioembolization Is a Safe and Effective Locoregional Treatment for Primary and Secondary Liver Tumors: A Systematic Review and Meta-Analysis" Cancers 17, no. 11: 1841. https://doi.org/10.3390/cancers17111841
APA StyleSólymos, P., Rédei, M., Turan, C., Szabó, B., Ádám, A., Molnár, Z., Duray, G., Hegyi, P., & Horváthy, D. B. (2025). Holmium-166 Radioembolization Is a Safe and Effective Locoregional Treatment for Primary and Secondary Liver Tumors: A Systematic Review and Meta-Analysis. Cancers, 17(11), 1841. https://doi.org/10.3390/cancers17111841