Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. HIF Activation
3.2. p53 Dysfunction
3.3. Akt-mTOR Signaling
3.4. MEK–ERK Pathway
3.5. Wnt/β-Catenin Signaling
3.6. Other Pathways
3.7. “Turning on and off” Autophagy
3.8. Drug Removal by Transporters and Exosome Machinery
3.9. Ferroptosis Inhibition
3.10. Mechanisms Engaging lncRNAs and circRNAs in the Chemoresistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dell’Atti, L.; Bianchi, N.; Aguiari, G. New therapeutic interventions for kidney carcinoma: Looking to the future. Cancers 2022, 14, 3616. [Google Scholar] [CrossRef] [PubMed]
- Bellin, M.F.; Valente, C.; Bekdache, O.; Maxwell, F.; Balasa, C.; Savignac, A.; Meyrignac, O. Update on renal cell carcinoma diagnosis with novel imaging approaches. Cancers 2024, 16, 1926. [Google Scholar] [CrossRef] [PubMed]
- Adashek, J.J.; Breunig, J.J.; Posadas, E.; Bhowmick, N.A.; Ellis, L.; Freedland, S.J.; Kim, H.; Figlin, R.; Gong, J. First-line immune checkpoint inhibitor combinations in metastatic renal cell carcinoma: Where are we going, where have we Been? Drugs 2022, 82, 439–453. [Google Scholar] [CrossRef]
- Barragan-Carrillo, R.; Saad, E.; Saliby, R.M.; Sun, M.; Albiges, L.; Bex, A.; Heng, D.; Mejean, A.; Motzer, R.J.; Plimack, E.R.; et al. First and second-line treatments in metastatic renal cell carcinoma. Eur. Urol. 2025, 87, 143–154. [Google Scholar] [CrossRef]
- El Zarif, T.; Semaan, K.; Xie, W.; Eid, M.; Zarba, M.; Issa, W.; Zhang, T.; Nguyen, C.B.; Alva, A.; Fahey, C.C.; et al. First-line systemic therapy following adjuvant immunotherapy in renal cell carcinoma: An international multicenter study. Eur. Urol. 2024, 86, 503–512. [Google Scholar] [CrossRef]
- Liu, Q.; Guan, Y.; Li, S. Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers: The “all-around warrior” in immunotherapy. Mol. Cancer 2024, 23, 183. [Google Scholar] [CrossRef]
- Sweeney, P.L.; Suri, Y.; Basu, A.; Koshkin, V.S.; Desai, A. Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. Cancer Drug Resist. 2023, 6, 858–873. [Google Scholar] [CrossRef]
- Labrie, M.; Brugge, J.S.; Mills, G.B.; Zervantonakis, I.K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 2022, 22, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Baldewijns, M.M.; van Vlodrop, I.J.; Vermeulen, P.B.; Soetekouw, P.M.; van Engeland, M.; de Bruïne, A.P. VHL and HIF signalling in renal cell carcinogenesis. J. Pathol. 2010, 221, 125–138. [Google Scholar] [CrossRef]
- Toledo, R.A.; Jimenez, C.; Armaiz-Pena, G.; Arenillas, C.; Capdevila, J.; Dahia, P.L.M. Hypoxia-inducible factor 2 alpha (HIF2alpha) inhibitors: Targeting genetically driven tumor hypoxia. Endocr. Rev. 2023, 44, 312–322. [Google Scholar] [CrossRef]
- Courtney, K.D.; Ma, Y.; Diaz de Leon, A.; Christie, A.; Xie, Z.; Woolford, L.; Singla, N.; Joyce, A.; Hill, H.; Madhuranthakam, A.J.; et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 2020, 26, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Bernard-Tessier, A.; Grell, P.; Gao, X.; Kotecha, R.R.; Picus, J.; de Braud, F.; Takahashi, S.; Wong, A.; Suárez, C.; et al. A phase I dose escalation study of the HIF-2 alpha inhibitor DFF332 in patients with advanced clear cell renal cell carcinoma. Clin. Cancer Res. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Merchan, J.R.; Figlin, R.; McDermott, D.F.; Arrowsmith, E.; Michaelson, M.D.; Tykodi, S.S.; Heath, E.I.; Spigel, D.R.; D’Souza, A.; et al. Belzutifan plus cabozantinib as first-line treatment for patients with advanced clear cell renal cell carcinoma (LITESPARK-003): An open-label, single-arm, phase 2 study. Lancet Oncol. 2025, 26, 64–73. [Google Scholar] [CrossRef]
- Powles, T.; Choueiri, T.K.; Albiges, L.; Peltola, K.; de Velasco, G.; Burotto, M.; Suarez, C.; Ghatalia, P.; Iacovelli, R.; Lam, E.T.; et al. Health-related quality of life with belzutifan versus everolimus for advanced renal cell carcinoma (LITESPARK-005): Patient-reported outcomes from a randomised, open-label, phase 3 trial. Lancet Oncol. 2025, 26, 491–502. [Google Scholar] [CrossRef]
- McDermott, D.F.; Peer, A.; Agarwal, N.; Atkins, M.B.; Cornell, J.; Perini, R.F.; Grossmann, K.F.; Gurney, H. LITESPARK-024: A randomized phase 1/2 study of belzutifan with or without palbociclib for previously treated advanced renal cell carcinoma. Oncologist 2023, 28, S11. [Google Scholar] [CrossRef] [PubMed Central]
- Motzer, R.J.; Schmidinger, M.; Eto, M.; Suarez, C.; Figlin, R.; Liu, Y.; Perini, R.; Zhang, Y.; Heng, D.Y. LITESPARK-011: Belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy. Future Oncol. 2023, 19, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Bedke, J.; Karam, J.A.; McKay, R.R.; Motzer, R.J.; Pal, S.K.; Suárez, C.; Uzzo, R.; Liu, H.; Joseph, E.; et al. LITESPARK-022: A phase 3 study of pembrolizumab + belzutifan as adjuvant treatment of clear cell renal cell carcinoma (ccRCC). Meeting Abstract: 2022 ASCO Annual Meeting I. J. Clin. Oncol. 2022, 40 (Suppl. 16). [Google Scholar] [CrossRef]
- Gstalder, C.; Ader, I.; Cuvillier, O. FTY720 (fingolimod) inhibits HIF1 and HIF2 signaling, promotes vascular remodeling, and chemosensitizes in renal cell carcinoma animal model. Mol. Cancer Ther. 2016, 15, 2465–2474. [Google Scholar] [CrossRef]
- Dufies, M.; Verbiest, A.; Cooley, L.S.; Ndiaye, P.D.; He, X.; Nottet, N.; Souleyreau, W.; Hagege, A.; Torrino, S.; Parola, J.; et al. Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun. Biol. 2021, 4, 166. [Google Scholar] [CrossRef]
- Qian, K.; Li, W.; Ren, S.; Peng, W.; Qing, B.; Liu, X.; Wei, X.; Zhu, L.; Wang, Y.; Jin, X. HDAC8 enhances the function of HIF-2α by deacetylating ETS1 to decrease the sensitivity of TKIs in ccRCC. Adv. Sci. 2024, 11, e2401142. [Google Scholar] [CrossRef]
- He, H.; Li, J.; Wang, W.; Cheng, J.; Zhou, J.; Li, Q.; Jin, J.; Chen, L. The SIRT7-mediated deacetylation of CHD1L amplifies HIF-2α-dependent signal that drives renal cell carcinoma progression and sunitinib resistance. Cell Biosci. 2023, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.M.; Watson, I.R.; Evans, A.J.; Foster, D.A.; Irwin, M.S.; Ohh, M. Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res. 2009, 69, 9056–9064. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Dai, S.; Sun, J.; Jiang, S.; Sui, C.; Meng, F.; Li, Y.; Fu, L.; Jiang, T.; Wang, Y.; et al. Inhibition of MDM2 re-sensitizes rapamycin resistant renal cancer cells via the activation of p53. Cell Physiol. Biochem. 2016, 39, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Vatsyayan, R.; Singhal, J.; Nagaprashantha, L.D.; Awasthi, S.; Singhal, S.S. Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol. Carcinog. 2013, 52, 39–48. [Google Scholar] [CrossRef]
- Sekino, Y.; Takemoto, K.; Murata, D.; Babasaki, T.; Kobatake, K.; Kitano, H.; Ikeda, K.; Goto, K.; Inoue, S.; Hayashi, T.; et al. P53 is involved in sunitinib resistance and poor progression-free survival after sunitinib treatment of renal cell carcinoma. Anticancer Res. 2021, 41, 4287–4294. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, C.; Lin, J.; Zeng, W.; Zhao, J.; Liang, Y.; Tan, Q.; Yang, C.; Li, H. Synergy between von Hippel-Lindau and P53 contributes to chemosensitivity of clear cell renal cell carcinoma. Mol. Med. Rep. 2016, 14, 2785–2790. [Google Scholar] [CrossRef]
- Simoni, M.; Menegazzi, C.; Fracassi, C.; Biffi, C.C.; Genova, F.; Tenace, N.P.; Lucianò, R.; Raimondi, A.; Tacchetti, C.; Brugarolas, J.; et al. PML restrains p53 activity and cellular senescence in clear cell renal cell carcinoma. EMBO Mol. Med. 2024, 16, 1324–1351. [Google Scholar] [CrossRef]
- Alvarado-Ortiz, E.; de la Cruz-López, K.G.; Becerril-Rico, J.; Sarabia-Sánchez, M.A.; Ortiz-Sánchez, E.; García-Carrancá, A. Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front. Cell Dev. Biol. 2021, 8, 607670. [Google Scholar] [CrossRef]
- Available online: https://www.pynnaclestudy.com/hcp/rezatapopt/ (accessed on 30 April 2025).
- Ma, Z.; Shen, Q.; Zhou, J. Rezatapopt (PC14586): A first-in-class small molecule p53 Y220C mutant protein stabilizer in clinical trials. J. Med. Chem. 2025, 68, 6847–6849. [Google Scholar] [CrossRef] [PubMed]
- Dumbrava, E.E.; Johnson, M.L.; Tolcher, A.W.; Shapiro, G.; Thompson, J.A.; El-Khoueiry, A.B.; Vandross, A.L.; Kummar, S.; Parikh, A.R.; Munster, P.N.; et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. Meeting Abstract: 2022 ASCO Annual Meeting I. J. Clin. Oncol. 2022, 40 (Suppl. 16), 3003. [Google Scholar] [CrossRef]
- Available online: https://ir.pmvpharma.com/news-releases/news-release-details/pmv-pharmaceuticals-announces-clinical-trial-collaboration-merck (accessed on 30 April 2025).
- Available online: https://www.jacobiopharma.com/en/news/Jacobio_Pharma_Receives_IND_Approval_for_P53_Y220C_Activator_JAB-30355_in_the_US (accessed on 30 April 2025).
- van Kempen, P.M.; Verdam, F.J.; de Poel, E.; Braunius, W.W.; de Weger, R.A.; van Es, R.J.; Grolman, W.; Willems, S.M. TP53 Y220C is a hotspot mutation in oropharyngeal squamous cell carcinoma. Pathobiology 2015, 82, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Lin, S.; Hong, J.; Liu, F.; Guo, G.; Chen, S.; Zhou, Z.; Lin, W.; Li, J.; Ye, Y. Altered HLA-A2-restricted TP53 epitope induces specific CTL cytotoxicity against hepatocellular carcinoma. Eur. J. Immunol. 2023, 53, e2250054. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Butti, R.; Cohn, S.; Toffessi-Tcheuyap, V.; Mal, A.; Nguyen, M.; Stevens, C.; Christie, A.; Mishra, A.; Ma, Y.; et al. Unconventional mechanism of action and resistance to rapalogs in renal cancer. Proc. Natl. Acad. Sci. USA 2024, 121, e2310793121. [Google Scholar] [CrossRef]
- Brown, R.E.; Buryanek, J.; Tammisetti, V.S.; McGuire, M.F.; Csencsits-Smith, K. Morphoproteomics and biomedical analytics confirm the mTORC2/Akt pathway as a resistance signature and activated ERK and STAT3 as concomitant prosurvival/antiapoptotic pathways in metastatic renal cell carcinoma (RCC) progressing on rapalogs: Pathogenesis and therapeutic options. Oncotarget 2016, 7, 41612–41621. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Miyake, H.; Kumano, M.; Fujisawa, M. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br. J. Cancer 2013, 109, 2389–2395. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, L.; Liu, P.; Zhang, H.; Guo, F.; Jin, X. ZDHHC2-mediated AGK palmitoylation activates AKT-mTOR signaling to reduce sunitinib sensitivity in renal cell carcinoma. Cancer Res. 2023, 83, 2034–2051. [Google Scholar] [CrossRef]
- Kuroshima, K.; Yoshino, H.; Okamura, S.; Tsuruda, M.; Osako, Y.; Sakaguchi, T.; Sugita, S.; Tatarano, S.; Nakagawa, M.; Enokida, H. Potential new therapy of Rapalink-1, a new generation mammalian target of rapamycin inhibitor, against sunitinib-resistant renal cell carcinoma. Cancer Sci. 2020, 111, 1607–1618. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Yang, X.; Sato, K.; Lal, P.; Wang, Y.; Shinkle, A.T.; Wendl, M.C.; Primeau, T.M.; Zhao, Y.; et al. Combining the tyrosine kinase inhibitor cabozantinib and the mTORC1/2 inhibitor sapanisertib blocks ERK pathway activity and suppresses tumor growth in renal cell carcinoma. Cancer Res. 2023, 83, 4161–4178. [Google Scholar] [CrossRef]
- McGregor, B.A.; Xie, W.; Adib, E.; Stadler, W.M.; Zakharia, Y.; Alva, A.; Michaelson, M.D.; Gupta, S.; Lam, E.T.; Farah, S.; et al. Biomarker-based phase II study of sapanisertib (TAK-228): An mTORC1/2 inhibitor in patients with refractory metastatic renal cell carcinoma. JCO Precis. Oncol. 2022, 6, e2100448. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Porta, C.; Suárez, C.; Hainsworth, J.; Voog, E.; Duran, I.; Reeves, J.; Czaykowski, P.; Castellano, D.; Chen, J.; et al. Randomized phase II trial of sapanisertib ± TAK-117 vs. everolimus in patients with advanced renal cell carcinoma after VEGF-targeted therapy. Oncologist 2022, 27, 1048–1057. [Google Scholar] [CrossRef]
- Subbiah, V.; Coleman, N.; Piha-Paul, S.A.; Tsimberidou, A.M.; Janku, F.; Rodon, J.; Pant, S.; Dumbrava, E.E.I.; Fu, S.; Hong, D.S.; et al. Phase I stujondy of mTORC1/2 inhibitor sapanisertib (CB-228/TAK-228) in combination with metformin in patients with mTOR/AKT/PI3K pathway alterations and advanced solid malignancies. Cancer Res. Commun. 2024, 4, 378–387. [Google Scholar] [CrossRef]
- Alhalabi, O.; Groisberg, R.; Zinner, R.; Hahn, A.W.; Naing, A.; Zhang, S.; Tsimberidou, A.M.; Rodon, J.; Fu, S.; Yap, T.A.; et al. Phase I study of sapanisertib with carboplatin and paclitaxel in mTOR pathway altered solid malignancies. NPJ Precis. Oncol. 2023, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Yang, Z.; Dong, Y.; Hao, X.; Wang, K.; Xia, W.; Ren, L.; Li, T.; Xu, M.; Zhu, G.; et al. The positive feedback loop between SP1 and MAP2K2 significantly drives resistance to VEGFR inhibitors in clear cell renal cell carcinoma. Int. J. Biol. Sci. 2025, 21, 860–873. [Google Scholar] [CrossRef]
- Jeong, S.U.; Park, J.M.; Yoon, S.Y.; Hwang, H.S.; Go, H.; Shin, D.M.; Ju, H.; Sung, C.O.; Lee, J.L.; Jeong, G.; et al. IFITM3-mediated activation of TRAF6/MAPK/AP-1 pathways induces acquired TKI resistance in clear cell renal cell carcinoma. Investig. Clin. Urol. 2024, 65, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Chen, X.Q.; Zhang, M.N.; Chen, N.; Nie, L.; Xu, M.; Gong, J.; Shen, P.F.; Su, Z.Z.; Weng, X.; et al. SOX9 was involved in TKIs resistance in renal cell carcinoma via Raf/MEK/ERK signaling pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 3871–3881. [Google Scholar] [PubMed]
- Diaz-Montero, C.M.; Mao, F.J.; Barnard, J.; Parker, Y.; Zamanian-Daryoush, M.; Pink, J.J.; Finke, J.H.; Rini, B.I.; Lindner, D.J. MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model. Br. J. Cancer 2016, 115, 920–928. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Yang, Y.; Song, R.; Gu, S.; Cao, X.; Zhang, L.; Yang, Y.; Hou, T.; Qi, X.; et al. MAGI3 enhances sensitivity to sunitinib in renal cell carcinoma by suppressing the MAS/ERK axis and serves as a prognostic marker. Cell Death Dis. 2025, 16, 102. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, X.; Lu, W.; Zhang, D.; Huang, L.; Luo, Y.; Xiong, L.; Li, H.; Zhang, P.; Li, Q.; et al. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis. 2022, 13, 118. [Google Scholar] [CrossRef]
- Sherman, E.; Lee, J.L.; Debruyne, P.R.; Keam, B.; Shin, S.J.; Gramza, A.; Caro, I.; Amin, R.; Shah, K.; Yan, Y.; et al. Safety and efficacy of cobimetinib plus atezolizumab in patients with solid tumors: A phase II, open-label, multicenter, multicohort study. ESMO Open 2023, 8, 100877. [Google Scholar] [CrossRef]
- Xu, Q.; Krause, M.; Samoylenko, A.; Vainio, S. Wnt signaling in renal cell carcinoma. Cancers 2016, 8, 57. [Google Scholar] [CrossRef]
- Cai, F.; Li, J.; Zhang, Y.; Huang, S.; Liu, W.; Zhuo, W.; Qiu, C. Interaction between Wnt/β-catenin signaling pathway and EMT pathway mediates the mechanism of sunitinib resistance in renal cell carcinoma. BMC Cancer 2024, 24, 175. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.Y.; Hsu, R.J.; Wu, C.L.; Chang, W.L.; Cha, T.L.; Yu, D.S.; Yu, C.P. Ovatodiolide targets β-catenin signaling in suppressing tumorigenesis and overcoming drug resistance in renal cell carcinoma. Evid. Based Complement. Altern. Med. 2013, 2013, 161628. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Wang, X.; Zhang, H.; Chen, N.; Mai, Y.; Dai, S.; Yang, L.; Chen, D.; Zhong, W. BIRC6 modulates the protein stability of axin to regulate the growth, stemness, and resistance of renal cancer cells via the β-catenin pathway. ACS Omega 2024, 9, 7782–7792. [Google Scholar] [CrossRef]
- Huang, Y.; He, P.; Ding, J. Protein disulfide isomerase family 6 promotes the imatinib-resistance of renal cell carcinoma by regulation of Wnt3a-Frizzled1 axis. Bioengineered 2021, 12, 12157–12166. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Z.; Xu, Q.; Zhang, Y.; Zhai, Y.; Bai, J.; Liu, M.; Hui, Z.; Xu, N. Inhibition of STAT1 sensitizes renal cell carcinoma cells to radiotherapy and chemotherapy. Cancer Biol. Ther. 2012, 13, 401–407. [Google Scholar] [CrossRef]
- Lu, D.; Li, Y.; Niu, X.; Sun, J.; Zhan, W.; Shi, Y.; Yu, K.; Huang, S.; Liu, X.; Xie, L.; et al. STAT2/SLC27A3/PINK1-mediated mitophagy remodeling lipid metabolism contributes to pazopanib resistance in clear cell renal cell carcinoma. Research 2024, 7, 539. [Google Scholar] [CrossRef]
- Shou, Y.; Yue, C.; Wang, Q.; Liu, J.; Xu, J.; Miao, Q.; Liu, D.; Yang, H.; Liu, Y.; Zhang, X. circPTPN12 promotes the progression and sunitinib resistance of renal cancer via hnRNPM/IL-6/STAT3 pathway. Cell Death Dis. 2023, 14, 232. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Hong, T.; Cheng, B.; Gan, S.; Chen, L.; Zhang, J.; Zuo, L.; Li, J.; Cui, X. Blocking the autocrine regulatory loop of Gankyrin/STAT3/CCL24/CCR3 impairs the progression and pazopanib resistance of clear cell renal cell carcinoma. Cell Death Dis. 2020, 11, 117. [Google Scholar] [CrossRef]
- Marona, P.; Górka, J.; Kwapisz, O.; Jura, J.; Rys, J.; Hoffman, R.M.; Miekus, K. Resistance to tyrosine kinase inhibitors promotes renal cancer progression through MCPIP1 tumor-suppressor downregulation and c-Met activation. Cell Death Dis. 2022, 13, 814. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, X.D.; Sun, M.; Zhang, X.; German, P.; Bai, S.; Ding, Z.; Tannir, N.; Wood, C.G.; Matin, S.F.; et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 2016, 35, 2687–2697. [Google Scholar] [CrossRef]
- Ciamporcero, E.; Miles, K.M.; Adelaiye, R.; Ramakrishnan, S.; Shen, L.; Ku, S.; Pizzimenti, S.; Sennino, B.; Barrera, G.; Pili, R. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol. Cancer Ther. 2015, 14, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, L.; Liu, H.; Yang, Y.; Lu, W.; Cao, X.; Yang, X.; Qin, Q.; Song, R.; Feng, D.; et al. PDZK1 confers sensitivity to sunitinib in clear cell renal cell carcinoma by suppressing the PDGFR-β pathway. Br. J. Cancer. 2024, 131, 347–360. [Google Scholar] [CrossRef]
- Zhang, C.; Du, Z.; Gao, Y.; Lim, K.S.; Zhou, W.; Huang, H.; He, H.; Xiao, J.; Xu, D.; Li, Q. methionine secreted by tumor-associated pericytes supports cancer stem cells in clear cell renal carcinoma. Cell Metab. 2024, 36, 778–792.e10. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Sun, X.; Jin, L.; Zhou, Z.; Liu, X.; Li, W.; Mei, W.; Zhang, J.; Zhang, B.; Yao, X.; et al. Identifying the potential role and prognostic value of the platelet-derived growth factor pathway in kidney renal clear cell carcinoma. J. Oncol. 2022, 2022, 9498010. [Google Scholar] [CrossRef]
- Gao, H.; Deng, L. Sphingosine kinase-1 activation causes acquired resistance against sunitinib in renal cell carcinoma cells. Cell Biochem. Biophys. 2014, 68, 419–425. [Google Scholar] [CrossRef]
- Li, H.; Jin, X.; Zhang, Z.; Xing, Y.; Kong, X. Inhibition of autophagy enhances apoptosis induced by the PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells. Cell Biochem. Funct. 2013, 31, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.; Coffelt, S.B.; Cho, C.H.; Wang, X.J.; Lee, C.W.; Chan, F.K.; Yu, J.; Sung, J.J. The autophagic paradox in cancer therapy. Oncogene 2012, 31, 939–953. [Google Scholar] [CrossRef]
- Radovanovic, M.; Vidicevic, S.; Tasic, J.; Tomonjic, N.; Stanojevic, Z.; Nikic, P.; Vuksanovic, A.; Dzamic, Z.; Bumbasirevic, U.; Isakovic, A.; et al. Role of AMPK/mTOR-independent autophagy in clear cell renal cell carcinoma. J. Investig. Med. 2020, 68, 1386–1393. [Google Scholar] [CrossRef]
- Liu, X.D.; Yao, J.; Tripathi, D.N.; Ding, Z.; Xu, Y.; Sun, M.; Zhang, J.; Bai, S.; German, P.; Hoang, A.; et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene 2015, 34, 2450–2460. [Google Scholar] [CrossRef]
- Chow, P.M.; Liu, S.H.; Chang, Y.W.; Kuo, K.L.; Lin, W.C.; Huang, K.H. The covalent CDK7 inhibitor THZ1 enhances temsirolimus-induced cytotoxicity via autophagy suppression in human renal cell carcinoma. Cancer Lett. 2020, 471, 27–37. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, X.; Wang, Q.; He, W.; Fan, J.; Gou, X. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells. Drug Des. Dev. Ther. 2018, 12, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Haas, N.B.; Appleman, L.J.; Stein, M.; Redlinger, M.; Wilks, M.; Xu, X.; Onorati, A.; Kalavacharla, A.; Kim, T.; Zhen, C.J.; et al. Autophagy inhibition to augment mTOR inhibition: A phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res. 2019, 25, 2080–2087. [Google Scholar] [CrossRef]
- Giuliano, S.; Cormerais, Y.; Dufies, M.; Grépin, R.; Colosetti, P.; Belaid, A.; Parola, J.; Martin, A.; Lacas-Gervais, S.; Mazure, N.M.; et al. Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 2015, 11, 1891–1904. [Google Scholar] [CrossRef] [PubMed]
- Patergnani, S.; Guzzo, S.; Mangolini, A.; dell’Atti, L.; Pinton, P.; Aguiari, G. The induction of AMPK-dependent autophagy leads to P53 degradation and affects cell growth and migration in kidney cancer cells. Exp. Cell Res. 2020, 395, 112190. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, M.; Ye, L.; Zhou, Q.; Duan, Y.; Jiang, H.; Wang, L.; Ouyang, Y.; Zhang, H.; Shen, Y.; et al. VHL suppresses autophagy and tumor growth through PHD1-dependent Beclin1 hydroxylation. EMBO J. 2024, 43, 931–955. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.M.; Carew, J.S.; Nawrocki, S.T. Therapeutic targeting of autophagy for renal cell carcinoma therapy. Cancers 2020, 12, 1185. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, R.; Yan, H.; Zhang, J.; Lin, Z. ZHX2 drives cell growth and migration via activating MEK/ERK signal and induces Sunitinib resistance by regulating the autophagy in clear cell renal cell carcinoma. Cell Death Dis. 2020, 11, 337. [Google Scholar] [CrossRef]
- Zang, Y.; Yang, C.; Dai, M.S.; Zhang, W.; Zou, L.; Hu, J.; Hu, Y.; Xu, C.; Liu, R.; Wang, H.; et al. Protective autophagy attenuates the cytotoxicity of MTI-31 in renal cancer cells by activating the ERK pathway. Appl. Biochem. Biotechnol. 2024, 196, 2233–2245. [Google Scholar] [CrossRef]
- Shin, G.C.; Lee, H.M.; Kim, N.; Yoo, S.K.; Park, H.S.; Choi, L.S.; Kim, K.P.; Lee, A.R.; Seo, S.U.; Kim, K.H. Paraoxonase-2 contributes to promoting lipid metabolism and mitochondrial function via autophagy activation. Sci. Rep. 2022, 12, 21483. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Campagna, R.; Cecati, M.; Sartini, D.; Milanese, G.; Galosi, A.B.; Pozzi, V.; Salvolini, E. Paraoxonase-2 shRNA-mediated gene silencing suppresses proliferation and migration, while promotes chemosensitivity in clear cell renal cell carcinoma cell lines. J. Cell Biochem. 2024, 125, e30572. [Google Scholar] [CrossRef]
- Demir, Y.; Türkeş, C.; Beydemir, Ş. Molecular docking studies and inhibition properties of some antineoplastic agents against Paraoxonase-I. Anticancer Agents Med. Chem. 2020, 20, 887–896. [Google Scholar] [CrossRef]
- Işık, M.; Beydemir, Ş.; Demir, Y.; Durgun, M.; Türkeş, C.; Nasır, A.; Necip, A.; Akkuş, M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int. J. Biol. Macromol. 2020, 146, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Singh, K.P. Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech. Dis. 2022, 14, e1575. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.; Thévenod, F. Oncogenic PITX2 facilitates tumor cell drug resistance by inverse regulation of hOCT3/SLC22A3 and ABC drug transporters in colon and kidney cancers. Cancer Lett. 2019, 449, 237–251. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, N.M.; Lowerison, M.R.; Raven, P.A.; Tan, Z.; Roberts, M.E.; Shrestha, R.; Urban, M.W.; Monjaras-Avila, C.U.; Oo, H.Z.; Hurtado-Coll, A.; et al. Y-box binding protein-1 is crucial in acquired drug resistance development in metastatic clear-cell renal cell carcinoma. J. Exp. Clin. Cancer Res. 2020, 39, 33. [Google Scholar] [CrossRef]
- Lee, W.K.; Maaß, M.; Quach, A.; Poscic, N.; Prangley, H.; Pallott, E.C.; Kim, J.L.; Pierce, J.S.; Ogretmen, B.; Futerman, A.H.; et al. Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and -6 in chemoresistant renal cancer. J. Biol. Chem. 2022, 298, 101492. [Google Scholar] [CrossRef]
- Reustle, A.; Fisel, P.; Renner, O.; Büttner, F.; Winter, S.; Rausch, S.; Kruck, S.; Nies, A.T.; Hennenlotter, J.; Scharpf, M.; et al. Characterization of the breast cancer resistance protein (BCRP/ABCG2) in clear cell renal cell carcinoma. Int. J. Cancer 2018, 143, 3181–3193. [Google Scholar] [CrossRef]
- Boussios, S.; Ovsepian, S.V. Exosomes in renal cell cancer: Diagnostic and therapeutic nanovehicles. Technol. Cancer Res. Treat. 2024, 23, 15330338241275403. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.; Liu, Z.; Zhang, N.; Pang, S.; Liu, J.; Liu, C.; Fan, Y. Sunitinib treatment promotes metastasis of drug-resistant renal cell carcinoma via TFE3 signaling pathway. Cell Death Dis. 2021, 12, 220. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Kim, H.; Moustafa, A.A.; Datta, A.; Barata, P.C.; Boulares, A.H.; Abdel-Mageed, A.B.; Krane, L.S. Repurposing ketoconazole as an exosome directed adjunct to sunitinib in treating renal cell carcinoma. Sci. Rep. 2021, 11, 10200. [Google Scholar] [CrossRef]
- Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 2016, 29, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Stone, L. Kidney cancer: Exosome transmission of sunitinib resistance. Nat. Rev. Urol. 2016, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Tsuruda, M.; Yoshino, H.; Okamura, S.; Kuroshima, K.; Osako, Y.; Sakaguchi, T.; Sugita, S.; Tatarano, S.; Nakagawa, M.; Enokida, H. Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS ONE 2020, 15, e0232545. [Google Scholar] [CrossRef]
- Irep, N.; Inci, K.; Tokgun, P.E.; Tokgun, O. Exosome inhibition improves response to first-line therapy in small cell lung cancer. J. Cell Mol. Med. 2024, 28, e18138. [Google Scholar] [CrossRef]
- Grange, C.; Tapparo, M.; Collino, F.; Vitillo, L.; Damasco, C.; Deregibus, M.C.; Tetta, C.; Bussolati, B.; Camussi, G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011, 71, 5346–5356. [Google Scholar] [CrossRef]
- Xuan, Z.; Chen, C.; Tang, W.; Ye, S.; Zheng, J.; Zhao, Y.; Shi, Z.; Zhang, L.; Sun, H.; Shao, C. Corrigendum: TKI-resistant renal cancer secretes low-level exosomal miR-549a to induce vascular permeability and angiogenesis to promote tumor metastasis. Front. Cell Dev. Biol. 2021, 9, 726535. [Google Scholar] [CrossRef]
- Song, S.; Long, M.; Yu, G.; Cheng, Y.; Yang, Q.; Liu, J.; Wang, Y.; Sheng, J.; Wang, L.; Wang, Z.; et al. Urinary exosome miR-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting HSPA5. J. Cell. Mol. Med. 2019, 23, 6755–6765. [Google Scholar] [CrossRef]
- Kleibert, M.; Majka, M.; Łakomska, K.; Czystowska-Kuźmicz, M. Extracellular vesicles-a new potential player in the immunology of renal cell carcinoma. J. Pers. Med. 2022, 12, 772. [Google Scholar] [CrossRef]
- Qin, Z.; Hu, H.; Sun, W.; Chen, L.; Jin, S.; Xu, Q.; Liu, Y.; Yu, L.; Zeng, S. MiR-224-5p contained in urinary extracellular vesicles regulates PD-L1 expression by inhibiting cyclin D1 in renal cell carcinoma cells. Cancers 2021, 13, 618. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Ren, Z.; Li, Y.; Zou, W.; Chen, J.; Wang, H. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist. Updat. 2023, 66, 100916. [Google Scholar] [CrossRef]
- He, C.; Li, Q.; Wu, W.; Liu, K.; Li, X.; Zheng, H.; Lai, Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front. Immunol. 2024, 15, 1473203. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Pan, X.W.; Song, X.; Liu, Z.C.; Xu, D.; Chen, J.X.; Dong, K.Q.; Di, S.C.; Ye, J.Q.; Gan, S.S.; et al. Preoperative neoadjuvant targeted therapy remodels intra-tumoral heterogeneity of clear-cell renal cell carcinoma and ferroptosis inhibition induces resistance progression. Cancer Lett. 2024, 593, 216963. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jia, X.; Wang, Z.; Cai, Y.; Xu, A.; Han, C.; Cheng, S.; Liu, M. TRIB3 knockdown increases the sensitivity of clear cell renal cell carcinoma to sunitinib by inducing ferroptosis. Cell Signal. 2024, 124, 111421. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Shou, Y.; Jia, Y.; Wei, Z.; Liu, Y.; Shi, J.; Miao, D.; Miao, Q.; Zhao, C.; et al. AIM2 promotes renal cell carcinoma progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis. Int. J. Biol. Sci. 2023, 19, 1266–1283. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, V.; Emanuelli, M.; Milanese, G.; Galosi, A.B.; Pompei, V.; Salvolini, E.; Campagna, R. Nrf2 signaling in renal cell carcinoma: A potential candidate for the development of novel therapeutic strategies. Int. J. Mol. Sci. 2024, 25, 13239. [Google Scholar] [CrossRef]
- Chang, K.; Chen, Y.; Zhang, X.; Zhang, W.; Xu, N.; Zeng, B.; Wang, Y.; Feng, T.; Dai, B.; Xu, F.; et al. DPP9 stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma. Cancer Res. 2023, 83, 3940–3955. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kamai, T.; Higashi, S.; Murakami, S.; Arai, K.; Shirataki, H.; Yoshida, K.I. Nrf2 gene mutation and single nucleotide polymorphism rs6721961 of the Nrf2 promoter region in renal cell cancer. BMC Cancer 2019, 19, 1137. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, R.; Han, J. Ginsenoside Rh4 facilitates the sensitivity of renal cell carcinoma to ferroptosis via the NRF2 pathway. Arch. Esp. Urol. 2024, 77, 119–128. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, S.; Shu, G.; Chen, M.; Fu, L.; Chen, C.; Chen, Y.; Zhuang, Q.; Xue, D.; He, X. STX17-DT facilitates axitinib resistance in renal cell carcinoma by inhibiting mitochondrial ROS accumulation and ferroptosis. Cell Death Dis. 2025, 16, 125. [Google Scholar] [CrossRef]
- Franzese, O.; Ancona, P.; Bianchi, N.; Aguiari, G. Apoptosis, a Metabolic “Head-to-Head” between tumor and T cells: Implications for immunotherapy. Cells 2024, 13, 924. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct. Target Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Zhu, H.X.; Zheng, W.C.; Chen, H.; Chen, J.Y.; Lin, F.; Chen, S.H.; Xue, X.Y.; Zheng, Q.S.; Liang, M.; Xu, N.; et al. Exploring novel genome instability-associated lncRNAs and their potential function in pan-renal cell carcinoma. Comb. Chem. High Throughput Screen. 2024, 27, 1788–1807. [Google Scholar] [CrossRef]
- Xing, Q.; Li, R.; Xu, A.; Qin, Z.; Tang, J.; Zhang, L.; Tang, M.; Han, P.; Wang, W.; Qin, C.; et al. Genetic variants in a long noncoding RNA related to sunitinib resistance predict risk and survival of patients with renal cell carcinoma. Cancer Med. 2019, 8, 2886–2896. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Chen, X.; Kang, S.; Cao, F.; Zhao, Y.; Zhang, L.; Bao, X.; Wang, L.; Li, H.; Li, C. Long noncoding RNA GPRC5D-AS1 in renal cell carcinoma: A molecular mechanism study. Transl. Androl. Urol. 2024, 13, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chang, X.; Zhu, G.; Gao, X.; Chang, L. Depletion of lncRNA MALAT1 inhibited sunitinib resistance through regulating miR-362-3p-mediated G3BP1 in renal cell carcinoma. Cell Cycle 2020, 19, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, P.; Tan, C.; Cheng, X.; Zhang, W.; Shen, C.; Zhang, D. LncRNA LINC00667 gets involved in clear cell renal cell carcinoma development and chemoresistance by regulating the miR-143-3p/ZEB1 axis. Aging 2023, 15, 10057–10071. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Li, S.; Fang, J.; Yan, Z.J.; Luo, G.C. LncRNA FAM13A-AS1 promotes renal carcinoma tumorigenesis through sponging miR-141-3p to upregulate NEK6 expression. Front. Mol. Biosci. 2022, 9, 738711. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, G.; Huang, Z.; Bao, L.; Liu, J.; Wang, C.; Xiong, Z.; Zhou, L.; Xu, T.; Liu, D.; et al. Long noncoding RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis. 2020, 11, 515. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, X.; Shu, G.; Cen, J.; Lu, J.; Zhou, M.; Huang, K.; Dong, J.; Li, J.; Lin, H.; et al. Extracellular vesicle-mediated transfer of lncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma. Cancer Res. 2023, 83, 103–116. [Google Scholar] [CrossRef]
- Huang, K.B.; Pan, Y.H.; Shu, G.N.; Yao, H.H.; Liu, X.; Zhou, M.; Wei, J.H.; Chen, Z.H.; Lu, J.; Feng, Z.H.; et al. Circular RNA circSNX6 promotes sunitinib resistance in renal cell carcinoma through the miR-1184/GPCPD1/lysophosphatidic acid axis. Cancer Lett. 2021, 523, 121–134. [Google Scholar] [CrossRef]
- Li, W.; Li, G.; Cao, L. Circular RNA Eps15-homology domain-containing protein 2 induce resistance of renal cell carcinoma to sunitinib via microRNA-4731-5p/ABCF2 axis. Bioengineered 2022, 13, 9729–9740. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.I.; Wang, G.; Hong, Y.I.; Zhu, T.; Qin, S.; Sun, S.; Wang, Y.; Liu, Y.; Zhang, Q.; Ma, C.; et al. Circular RNA circAGAP1 promotes sunitinib sensitivity in renal cell carcinoma via sponging multiple PDGFR-targeted miRNAs. Oncol. Res. 2025, 33, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Huang, R.; Xia, Y.; Huang, C.; Qiu, F.; Pu, J.; He, X.; Zhao, X. Long Noncoding RNA KIF9-AS1 regulates transforming growth factor-β and autophagy signaling to enhance renal cell carcinoma chemoresistance via microRNA-497-5p. DNA Cell Biol. 2020, 39, 1096–1103. [Google Scholar] [CrossRef]
- Li, W.; Yang, D.; Zhang, Y.; Zhao, S.; Li, D.; Liu, M. Long non-coding RNA PLK1S1 was associated with renal cell carcinoma progression by interacting with microRNA-653 and altering C-X-C chemokine receptor 5 expression. Oncol. Rep. 2020, 44, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, F.; Wei, D.; Liu, B.; Chen, C.; Bao, Y.; Wu, Z.; Wu, D.; Tan, H.; Li, J.; et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 2017, 36, 1965–1977. [Google Scholar] [CrossRef]
- Song, E.L.; Xing, L.; Wang, L.; Song, W.T.; Li, D.B.; Wang, Y.; Gu, Y.W.; Liu, M.M.; Ni, W.J.; Zhang, P.; et al. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis. Aging 2019, 11, 5705–5725. [Google Scholar] [CrossRef] [PubMed]
Pathway | Drug | Resistance Mechanism | Alternative Target/Drugs |
---|---|---|---|
HIF | PT2385, PT2399 | Gatekeeper mutation (G323E) in HIF2α; mutations in HIF1α and HIF2α binding site | S1P; FTY720 |
HIF | sunitinib | Plk1 activation | Plk1 |
HIF | sunitinib | ETS1 deacetylation | HDAC8 |
HIF | sunitinib | VEGFA increase | CHD1L |
p53 | chemotherapy/rapamycin | MDM2/Hdm2-mediated p53 suppression | Hdm2; HIF2α |
p53 | sorafenib/sunitinib | MDM2 activation | MDM2; nutlin-3 |
p53 | adriamycin/sunitinib | HIF activation | HIF |
p53 | chemotherapy | PML expression | PML; arsenic trioxide |
mTOR | rapalogs | mTORC2/Akt | ERK, STAT3 |
mTOR | rapalogs | mTORC1 via TME | TME factors |
mTOR | TKIs | AGK activation | PI3K–Akt–mTOR |
mTOR | rapalink-1 | not yet observed | |
mTOR | sapanisertib/cabozantinib | not yet observed | |
MAP2K2 | sunitinib/axitinib/sorafenib | MEK/ERK activation | SP1 |
MAPK/AP-1 | TKIs | IFITM3 | IFITM3 |
Raf/MEK/ERK | sorafenib/sunitinib | SOX9 expression | SOX9 |
MAPK | sunitinib | MDSC accumulation | MEK; PD-0325901 |
ERK | sunitinib | MAGI3 downregulation | Ang-(1-7)/MAS/ERK |
Akt/ERK | sorafenib | PGK1 upregulation | C-X-C chemokine CXCR4 |
Wnt/β-catenin | sorafenib/sunitinib | β-catenin phosphorylation | β-catenin; ovatodiolide |
CXCR4 and β-catenin | sunitinib | BIRC6 overexpression | Wnt/β-catenin; XAV-939 |
Wnt3a/FZD1 | imatinib | PDIA6 upregulation | PDIA6 |
STAT1 | radiotherapy/Taxol | STAT1 overexpression | |
STAT2 | pazopanib | SLC27A3 increase | SLC27A3 |
STAT3 | sunitinib | circular RNA circPTPN12 | |
STAT3 | pazopanib | Gankyrin | Gankyrin/CCR3 |
cMet | sorafenib/sunitinib | IRAK1 receptor activation | IRAK1 |
MET/AXL | sunitinib | MET/AXL activation | cabozantinib |
cMet | sunitinib | cMet activation | axitinib; crizotinib |
PDGFR-β | sunitinib | PDZK1 protein downregulation | PDZK1 induction |
PDGFR-β | TKIs | GPCR91 activation | PDGFR-β/GPCR91 |
ncRNA | Drug | Targeted microRNAs | Downstream Genes |
---|---|---|---|
MALAT1 | sunitinib | miR-362-3p | G3BP1 |
LINC00667 | sunitinib | miR-143-3p | ZEB1 |
FAM13A-AS1 | sunitinib | miR-141-3p | NEK6 |
SNHG12 | sunitinib | SP1 | CDCA3 |
IGFL2-AS1 | sunitinib | hnRNPC | TP53INP2 |
circSNX6 | sunitinib | miR-1184 | GPCPD1 |
circEHD2 | sunitinib | miR-4731-5p | ABCF2 |
circAGAP1 | sunitinib | miR-149-5p, miR-455-5p, miR-15a-5p | PDGFR |
KIF9-AS1 | sorafenib | miR-497-5p | TGF-β |
PLK1S1 | sorafenib | miR-653 | CXCR5 |
lncRNA-SRLR | sorafenib | NF-κB | IL-6, STAT3 |
ADAMTS9-AS2 | 5-Fu | miR-27a-3p | FOXO1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, N.; Ancona, P.; Aguiari, G. Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma. Cancers 2025, 17, 1613. https://doi.org/10.3390/cancers17101613
Bianchi N, Ancona P, Aguiari G. Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma. Cancers. 2025; 17(10):1613. https://doi.org/10.3390/cancers17101613
Chicago/Turabian StyleBianchi, Nicoletta, Pietro Ancona, and Gianluca Aguiari. 2025. "Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma" Cancers 17, no. 10: 1613. https://doi.org/10.3390/cancers17101613
APA StyleBianchi, N., Ancona, P., & Aguiari, G. (2025). Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma. Cancers, 17(10), 1613. https://doi.org/10.3390/cancers17101613