Initial versus Staged Thyroidectomy for Differentiated Thyroid Cancer: A Retrospective Multi-Dimensional Cohort Analysis of Effectiveness and Safety
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Institutional Cohorts
2.1.1. Study Design
2.1.2. Study Population
2.1.3. Study Variables
2.1.4. Study Outcomes
2.2. NSQIP Database
2.2.1. Data Source
2.2.2. Study Population
2.2.3. Study Variables
2.2.4. Study Outcomes
2.2.5. Subgroup Analysis
2.3. TriNetX Database
2.3.1. Data Source
2.3.2. Study Population
2.3.3. Study Variables
2.3.4. Study Outcomes
2.3.5. Subgroup Analysis
2.4. Literature Screening
2.4.1. Systemic Search
2.4.2. Eligibility Criteria
2.4.3. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Institutional Cohort Analysis
3.1.1. Characteristics of the Study Population
3.1.2. Postoperative Complications and Disease Outcomes
3.1.3. Subgroup Analysis for Small Tumors
3.2. NSQIP Data Analysis
3.2.1. Cohort Selection Process from the NSQIP Dataset
3.2.2. Patient Characteristics
3.2.3. Outcomes Analysis
3.2.4. Subgroup Analysis Based on Neck Dissection
3.2.5. Hypocalcemia Predictor Analysis
3.2.6. Predictors of Overall Mortality
3.3. TriNetX Data Analysis
3.3.1. Cohort Selection Process from the TriNetX Dataset
3.3.2. Patient Characteristics
3.3.3. Risk of Postoperative Complications
3.3.4. Subgroup Analysis
3.3.5. Impact of Neck Dissection
3.3.6. Effect of Latency Period on Complication Rates
3.4. Literature Review
3.4.1. Risk of Complications
3.4.2. Impact of Timing of Completion Thyroidectomy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Houten, P.V.; Netea-Maier, R.T.; Smit, J.W. Differentiated thyroid carcinoma: An update. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101687. [Google Scholar] [CrossRef]
- Vaisman, F.; Shaha, A.; Fish, S.; Michael Tuttle, R. Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin. Endocrinol. 2011, 75, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Yoon, J.H. Lobectomy in patients with differentiated thyroid cancer: Indications and follow-up. Endocr. Relat. Cancer 2019, 26, R381–R393. [Google Scholar] [CrossRef]
- Heo, D.B.; Piao, Y.; Lee, J.H.; Ju, S.H.; Yi, H.S.; Kim, M.S.; Won, H.R.; Chang, J.W.; Koo, B.S.; Kang, Y.E. Completion thyroidectomy may not be required for papillary thyroid carcinoma with multifocality, lymphovascular invasion, extrathyroidal extension to the strap muscles, or five or more central lymph node micrometastasis. Oral. Oncol. 2022, 134, 106115. [Google Scholar] [CrossRef]
- Colombo, C.; De Leo, S.; Di Stefano, M.; Trevisan, M.; Moneta, C.; Vicentini, L.; Fugazzola, L. Total Thyroidectomy Versus Lobectomy for Thyroid Cancer: Single-Center Data and Literature Review. Ann. Surg. Oncol. 2021, 28, 4334–4344. [Google Scholar] [CrossRef]
- Kısaoğlu, A.; Özoğul, B.; Akçay, M.N.; Öztürk, G.; Atamanalp, S.S.; Aydınlı, B.; Kara, S. Completion thyroidectomy in differentiated thyroid cancer: When to perform? Ulus. Cerrahi Derg. 2014, 30, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, M.A.; Goldstein, D.P.; Rotstein, L.; Asa, S.L.; Panzarella, T.; Gullane, P.; Gilbert, R.W.; Brown, D.H.; Irish, J.C. Completion thyroidectomy versus total thyroidectomy: Is there a difference in complication rates? An analysis of 350 patients. J. Am. Coll. Surg. 2007, 205, 602–607. [Google Scholar] [CrossRef]
- Rigberg, D.; Chandler, C.; Ashley, S.; Zuckerbraun, L.; Thompson, J. Safety of completion thyroidectomy for multicentric carcinoma. Am. Surg. 1998, 64, 189–191. [Google Scholar]
- Unlu, M.T.; Kostek, M.; Caliskan, O.; Aygun, N.; Uludag, M. Does the Risk of Hypocalcemia Increase in Complementary Thyroidectomy Performed in Papillary Thyroid Cancer? Med. Bull. Sisli Etfal Hosp. 2022, 56, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Dedhia, P.H.; Stoeckl, E.M.; McDow, A.D.; Pitt, S.C.; Schneider, D.F.; Sippel, R.S.; Long, K.L. Outcomes after completion thyroidectomy versus total thyroidectomy for differentiated thyroid cancer: A single-center experience. J. Surg. Oncol. 2020, 122, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Gulcelik, M.A.; Dogan, L.; Akgul, G.G.; Güven, E.H.; Ersöz Gulcelik, N. Completion Thyroidectomy: Safer than Thought. Oncol. Res. Treat. 2018, 41, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Gulcelik, M.A.; Kuru, B.; Dincer, H.; Camlibel, M.; Yuksel, U.M.; Yenidogan, E.; Reis, E. Complications of completion versus total thyroidectomy. Asian Pac. J. Cancer Prev. 2012, 13, 5225–5228. [Google Scholar] [CrossRef] [PubMed]
- Kranthikumar, G.; Syed, N.; Nemade, H.; Pawar, S.; Chandra Sekhara Rao, L.M.; Subramanyeshwar Rao, T. Safety of Completion Thyroidectomy for Initially Misdiagnosed Thyroid Carcinoma. Rambam Maimonides Med. J. 2016, 7, e0022. [Google Scholar] [CrossRef] [PubMed]
- Bumber, B.; Potroško, V.; Vugrinec, O.; Ferenčaković, M.; Gršić, K. Hypocalcemia after Completion Thyroidectomy for Papillary Thyroid Carcinoma. Acta Clin. Croat. 2020, 59, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xing, T.; Wei, T.; Zhu, J. Completion thyroidectomy and total thyroidectomy for differentiated thyroid cancer: Comparison and prediction of postoperative hypoparathyroidism. J. Surg. Oncol. 2016, 113, 522–525. [Google Scholar] [CrossRef]
- Mirghani, H.; Altedlawi Albalawi, I.A. The Ongoing Debate Regarding Completion Thyroidectomy Versus Primary Thyroid Surgery for Low and Intermediate Differentiated Thyroid Carcinoma: A Meta-Analysis. Cureus 2020, 12, e12033. [Google Scholar] [CrossRef]
- Nicholson, K.J.; Teng, C.Y.; McCoy, K.L.; Carty, S.E.; Yip, L. Completion thyroidectomy: A risky undertaking? Am. J. Surg. 2019, 218, 695–699. [Google Scholar] [CrossRef]
- Salem, M.A.; Ahmed, B.M.; Elshoieby, M.H. Optimum timing and complication of completion thyroidectomy for differentiated thyroid cancer. J. Cancer Ther. 2017, 8, 518. [Google Scholar] [CrossRef]
- Glockzin, G.; Hornung, M.; Kienle, K.; Thelen, K.; Boin, M.; Schreyer, A.G.; Lighvani, H.R.; Schlitt, H.J.; Agha, A. Completion thyroidectomy: Effect of timing on clinical complications and oncologic outcome in patients with differentiated thyroid cancer. World J. Surg. 2012, 36, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ali Syed, A.; Khan, A.I.; Raza Hussain, S.; Zafar, W. Morbidity comparison of Primary and Completion Total thyroidectomy for differentiated thyroid cancer in relation to the extent of Redo surgery. Int. J. Surg. Open 2015, 1, 14–17. [Google Scholar] [CrossRef]
- Donatini, G.; Castagnet, M.; Desurmont, T.; Rudolph, N.; Othman, D.; Kraimps, J.L. Partial Thyroidectomy for Papillary Thyroid Microcarcinoma: Is Completion Total Thyroidectomy Indicated? World J. Surg. 2016, 40, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.S.; Sosa, J.A. Thyroid surgery for differentiated thyroid cancer—Recent advances and future directions. Nat. Rev. Endocrinol. 2018, 14, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and evaluation of the universal ACS NSQIP surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e3. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.S.; Naser, F.; Mohammed, E. Thyroidectomy With or Without Nerve Identification: A Personal Experience and Technique. Cureus 2023, 15, e40312. [Google Scholar] [CrossRef]
- Smith, J.; Douglas, J.; Smith, B.; Dougherty, T.; Ayshford, C. Assessment of recurrent laryngeal nerve function during thyroid surgery. Ann. R. Coll. Surg. Engl. 2014, 96, 130–135. [Google Scholar] [CrossRef]
Characteristics | Total (N = 148) | TT (N = 60) | cT (N = 88) | p-Value |
---|---|---|---|---|
Demographic | ||||
Age, years | 51.9 ± 14.9 | 51.7 ± 14.4 | 52.1 ± 15.2 | 0.70 |
Female sex | 121 (81.8) | 49 (81.7) | 72 (81.8) | 0.98 |
African American | 53 (35.8) | 19 (31.7) | 34 (38.6) | 0.48 |
BMI, Kg/m2 | 31.5 ± 8.0 | 30.6 ± 7.6 | 32.2 ± 8.3 | 0.24 |
Comorbidities | ||||
Hashimoto thyroiditis | 23 (15.5) | 11 (18.3) | 12 (13.6) | 0.49 |
Family history of thyroid cancer | 21 (14.2) | 12 (20) | 9 (10.2) | 0.15 |
Prior radiation exposure | 7 (4.7) | 3 (5) | 4 (4.5) | 0.89 |
Pathology | ||||
Max diameter, cm | 1.5 (0.55–2.4) | 1.2 (0.4–2.1) | 1.56 (0.9–2.4) | 0.14 |
≤2 cm | 93 (66.4) | 40 (71.4) | 53 (63.1) | 0.36 |
>2 cm | 47 (33.6) | 16 (28.6) | 31 (36.9) | |
T stage | ||||
T1/2 stage | 133 (89.9) | 51 (85) | 82 (93.2) | 0.16 |
T3/4 stage | 15 (10.1) | 9 (15.0) | 6 (6.8) | |
N stage | ||||
N0 stage | 138 (93.2) | 55 (91.7) | 83 (94.3) | 0.52 |
N1 stage | 10 (6.8) | 5 (8.3) | 5 (5.7) | |
Central LNM | 9 (6.1) | 4 (6.7) | 5 (5.7) | 0.81 |
Multifocal | 64 (43.2) | 27 (45) | 37 (42) | 0.74 |
Bilateral lesions | 39 (26.4) | 18 (30) | 21 (23.9) | 0.45 |
Capsular invasion | 29 (19.6) | 8 (13.3) | 21 (23.9) | 0.14 |
Extrathyroidal extension | 9 (6.1) | 4 (6.7) | 5 (5.7) | 0.81 |
Extranodal extension | 2 (1.4) | 1 (1.7) | 1 (1.1) | 0.78 |
Genomic screening | ||||
BRAF mutation | 43 (29.1) | 17 (28.3) | 26 (29.5) | 0.87 |
TERT mutation | 1 (0.7) | 1 (1.7) | 0 (0) | 0.41 |
RAS mutation | 12 (8.1) | 2 (3.3) | 10 (11.4) | 0.12 |
ATA risk stratification | ||||
Low risk | 107 (72.3) | 42 (70) | 65 (73.9) | 0.88 |
Intermediate risk | 32 (21.6) | 14 (23.3) | 18 (20.5) | |
High risk | 9 (6.1) | 4 (6.7) | 5 (5.7) | |
Laboratory data | ||||
Serum calcium, mg/dL | 7.9 ± 0.4 | 7.8 ± 0.4 | 8.1 ± 0.3 | 0.09 |
PTH level, pg/mL | 15.2 ± 10.1 | 12.6 ± 8.2 | 18.4 ± 11.5 | 0.14 |
Treatment | ||||
Postoperative RAI | 39 (26.4) | 18 (30) | 21 (23.9) | 0.45 |
Complications | ||||
Any complication | 17 (11.5) | 11 (18.3) | 6 (6.8) | 0.038 |
Hematoma/seroma | 0 (0) | 0 (0) | 0 (0) | NA |
Wound complications | 1 (0.7) | 1 (1.7) | 0 (0) | 0.41 |
Temporary RLN dysfunction | 12 (8.1) | 6 (10) | 6 (6.8) | 0.55 |
Permanent RLN dysfunction | 0 (0) | 0 (0) | 0 (0) | NA |
Temporary hypocalcemia | 6 (4.1) | 6 (10) | 0 (0) | 0.004 |
Permanent hypocalcemia | 0 (0) | 0 (0) | 0 (0) | NA |
Oncological outcomes | ||||
Recurrence | 2 (1.4) | 2 (3.3) | 0 (0) | 0.16 |
Disease-free survival, months | 24.4 (5.0–55.3) | 34.8 (5.2–58.9) | 20.5 (4.1–53.1) | 0.19 |
Overall survival time, months | 25.2 (5.03–55.6) | 35.1 (5.1–64.4) | 20.6 (4.2–53.0) | 0.16 |
Characteristics | Overall | TT | cT | p-Value |
---|---|---|---|---|
Number | 39,314 | 35,753 | 3561 | |
Demographics | ||||
Age, years | 50.5 ± 15.3 | 50.4 ± 15.3 | 50.8 ± 15.2 | 0.13 |
<30 | 4360 (11.09%) | 3974 (11.12%) | 386 (10.84%) | 0.23 |
30–49 | 15,075 (38.35%) | 13,759 (38.48%) | 1316 (36.96%) | |
50–69 | 15,860 (40.34%) | 14,381 (40.22%) | 1479 (41.53%) | |
≥70 | 4019 (10.22%) | 3639 (10.18%) | 380 (10.67%) | |
Male sex | 9995 (25.42%) | 9057 (25.33%) | 938 (26.34%) | 0.19 |
Race | ||||
White | 33,249 (84.57%) | 30,309 (84.77%) | 2940 (82.56%) | <0.001 |
Black | 2843 (7.23%) | 2469 (6.91%) | 374 (10.5%) | |
Asian | 3048 (7.75%) | 2818 (7.88%) | 230 (6.46%) | |
AI/AN | 174 (0.44%) | 157 (0.44%) | 17 (0.48%) | |
Hispanic/Latino | 3372 (8.58%) | 3101 (8.67%) | 271 (7.61%) | 0.031 |
BMI, Kg/m2 | 30.2 ± 7.5 | 30.1 ± 7.4 | 30.5 ± 7.7 | <0.001 |
Comorbidities | ||||
Obesity (BMI > 30 Kg/m2) | 17,209 (43.77%) | 15,546 (43.48%) | 1663 (46.7%) | <0.001 |
Smoking within one year | 4431 (11.27%) | 4083 (11.42%) | 348 (9.77%) | 0.003 |
Diabetes | 5094 (12.96%) | 4626 (12.94%) | 468 (13.14%) | 0.37 |
Hypertension requiring medication | 14,213 (36.15%) | 12,864 (35.98%) | 1349 (37.88%) | 0.024 |
Severe COPD | 702 (1.79%) | 647 (1.81%) | 55 (1.54%) | 0.29 |
Current pneumonia | 8 (0.02%) | 8 (0.02%) | 0 (0%) | 0.37 |
Congestive heart failure within 30 d | 78 (0.2%) | 75 (0.21%) | 3 (0.08%) | 0.16 |
Transient ischemic attack | 113 (0.29%) | 101 (0.28%) | 12 (0.34%) | 0.51 |
CVA/stroke with deficit | 76 (0.19%) | 71 (0.2%) | 5 (0.14%) | 0.55 |
CVA/stroke without deficit | 66 (0.17%) | 61 (0.17%) | 5 (0.14%) | 0.83 |
Acute renal failure | 17 (0.04%) | 14 (0.04%) | 3 (0.08%) | 0.19 |
On dialysis | 141 (0.36%) | 132 (0.37%) | 9 (0.25%) | 0.31 |
Bleeding disorders | 448 (1.14%) | 418 (1.17%) | 30 (0.84%) | 0.09 |
Immunosuppressive or Steroid | 893 (2.27%) | 817 (2.29%) | 76 (2.13%) | 0.59 |
Weight loss in last 6 months | 184 (0.47%) | 179 (0.5%) | 5 (0.14%) | 0.003 |
ASA classification | ||||
ASA Class I | 2360 (6%) | 2199 (6.15%) | 161 (4.52%) | <0.001 |
ASA Class II | 24,018 (61.09%) | 21,878 (61.19%) | 2140 (60.1%) | |
ASA Class III | 12,429 (31.61%) | 11,205 (31.34%) | 1224 (34.37%) | |
ASA Class IV | 463 (1.18%) | 432 (1.21%) | 31 (0.87%) | |
ASA Class V | 1 (0%) | 1 (0%) | 0 (0%) | |
Pathological extension | ||||
Disseminated cancer | 890 (2.26%) | 822 (2.3%) | 68 (1.91%) | 0.14 |
Surgical data | ||||
Elective surgery | 31,788 (80.86%) | 28,880 (80.78%) | 31,788 (80.86%) | 0.20 |
Surgery specialty | ||||
General surgery | 27,459 (69.85%) | 25,173 (70.41%) | 2286 (64.2%) | <0.001 |
Otolaryngology | 11,855 (30.15%) | 10,580 (29.59%) | 1275 (35.8%) | |
Operative procedure | ||||
Operative time, min | 125 (90–174) | 129 (94–178) | 89 (65.5–121) | <0.001 |
Transfusions | 80 (0.2%) | 79 (0.22%) | 1 (0.03%) | 0.010 |
Return to OR | 540 (1.37%) | 511 (1.43%) | 29 (0.81%) | 0.003 |
Complications | ||||
Local complications | ||||
Superficial incisional infection | 172 (0.44%) | 152 (0.43%) | 20 (0.56%) | 0.23 |
Deep incisional infection | 40 (0.1%) | 38 (0.11%) | 2 (0.06%) | 0.58 |
Organ/space infection | 25 (0.06%) | 24 (0.07%) | 1 (0.03%) | 0.72 |
Wound disruption | 10 (0.03%) | 10 (0.03%) | 0 (0%) | 0.32 |
Thyroid-specific complications | ||||
Post-op hypocalcemia | 245 (0.62%) | 235 (0.66%) | 10 (0.28%) | 0.007 |
Temporary RLN paresis | 6 (0.02%) | 5 (0.01%) | 1 (0.03%) | 0.43 |
General complications | ||||
Sepsis/septic shock | 112 (0.28%) | 106 (0.3%) | 6 (0.17%) | 0.25 |
Pulmonary embolism | 33 (0.08%) | 30 (0.08%) | 3 (0.08%) | 0.99 |
Deep venous thrombosis | 42 (0.11%) | 38 (0.11%) | 4 (0.11%) | 0.79 |
Pneumonia | 111 (0.28%) | 111 (0.31%) | 0 (0%) | <0.001 |
Unplanned intubations | 172 (0.44%) | 165 (0.46%) | 7 (0.2%) | 0.028 |
Ventilator > 48 h | 94 (0.24%) | 88 (0.25%) | 6 (0.17%) | 0.47 |
Urinary tract infection | 105 (0.27%) | 95 (0.27%) | 10 (0.28%) | 0.86 |
Acute renal failure | 7 (0.02%) | 6 (0.02%) | 1 (0.03%) | 0.49 |
Progressive Renal Insufficiency | 11 (0.03%) | 11 (0.03%) | 0 (0%) | 0.61 |
Cardiac arrest requiring CPR | 24 (0.06%) | 21 (0.06%) | 3 (0.08%) | 0.47 |
Myocardial Infarction | 19 (0.05%) | 18 (0.05%) | 1 (0.03%) | 0.56 |
CVA/stroke | 17 (0.04%) | 17 (0.05%) | 0 (0%) | 0.39 |
Hospital admission | ||||
Outpatient procedure | 23,860 (60.69%) | 21,398 (59.85%) | 2462 (69.14%) | <0.001 |
Length of stay | ||||
1 day | 32,861 (83.6%) | 29,613 (82.8%) | 3248 (91.2%) | <0.001 |
>1 day | 6453 (10.4%) | 313 (8.8%) | 5140 (17.2%) | |
Still in hospital > 30 days | 53 (0.13%) | 48 (0.13%) | 5 (0.14%) | 0.81 |
Post-discharge | ||||
Reoperation | 433 (1.1%) | 410 (1.1%) | 23 (0.6%) | 0.007 |
Unplanned reoperation | 361 (0.92%) | 342 (0.96%) | 19 (0.53%) | 0.012 |
Readmission | 992 (2.5%) | 935 (2.6%) | 57 (1.6%) | <0.001 |
Unplanned readmission | 641 (1.6%) | 609 (1.7%) | 32 (0.9%) | <0.001 |
Survival outcomes | ||||
30-day mortality | 39 (0.1%) | 36 (0.1%) | 3 (0.08%) | 0.77 |
Group | Total Count | Hypocalcemia | p-Value | Relative Risk | p-Value | |
---|---|---|---|---|---|---|
Negative | Positive | RR (95%CI) | ||||
Comparison 1 | ||||||
Completion thyroidectomy | 3561 | 3551 (9.7) | 10 (0.3) | -- | Reference | -- |
TT without neck dissection | 21,335 | 21,199 (99.4) | 136 (0.6) | 0.009 | 2.27 (1.19–4.31) | 0.012 |
TT with neck dissection | 14,418 | 14,319 (99.3) | 99 (0.7) | 0.005 | 2.44 (1.27–4.68) | 0.007 |
TT with central lymphadenectomy | 12,548 | 12,459 (99.3) | 89 (0.7) | 0.003 | 2.52 (1.31–4.85) | 0.005 |
TT with lateral lymphadenectomy | 1870 | 1860 (9.5) | 10 (0.5) | 0.14 | 1.90 (0.79–4.56) | 0.15 |
Comparison 2 | ||||||
TT without neck dissection | 21,335 | 21,199 (99.4) | 136 (0.6) | -- | Reference | -- |
TT with neck dissection | 14,418 | 14,319 (99.3) | 99 (0.7) | 0.61 | 1.07 (0.83–1.39) | 0.57 |
Comparison 3 | ||||||
TT with central lymphadenectomy | 12,548 | 12,459 (99.3) | 89 (0.7) | -- | Reference | -- |
TT with lateral lymphadenectomy | 1870 | 1860 (9.5) | 10 (0.5) | 0.48 | 0.75 (0.39–1.44) | 0.39 |
Complications | TT | cT | p-Value | RR | 95%CI | p-Value |
---|---|---|---|---|---|---|
Overall | TT versus cT | |||||
Transient hypocalcemia | 10,636 (34.4%) | 999 (20.1%) | <0.001 | 1.72 | 1.62–1.81 | <0.001 |
Permanent hypocalcemia | 4205 (13.6%) | 541 (10.9%) | <0.001 | 1.25 | 1.15–1.36 | <0.001 |
Transient RLN injury | 1603 (5.2%) | 279 (5.6%) | 0.12 | 0.93 | 0.82–1.05 | 0.22 |
Permanent RLN injury | 759 (2.5%) | 134 (2.7%) | 0.16 | 0.91 | 0.76–1.09 | 0.32 |
Non-obese | ||||||
Transient hypocalcemia | 8560 (35.2%) | 807 (20.9%) | <0.001 | 1.68 | 1.57–1.79 | <0.001 |
Permanent hypocalcemia | 1478 (6.1%) | 190 (4.9%) | 0.004 | 1.23 | 1.06–1.43 | 0.005 |
Transient RLN injury | 1218 (5%) | 199 (5.2%) | 0.34 | 0.97 | 0.84–1.12 | 0.67 |
Permanent RLN injury | 2677 (11%) | 375 (9.7%) | 0.017 | 1.13 | 1.02–1.25 | 0.018 |
Obese | ||||||
Transient hypocalcemia | 2076 (31.7%) | 192 (17.1%) | <0.001 | 1.85 | 1.62–2.11 | <0.001 |
Permanent hypocalcemia | 1098 (16.8%) | 127 (11.3%) | <0.001 | 1.48 | 1.25–1.76 | <0.001 |
Transient RLN injury | 385 (5.9%) | 80 (7.1%) | 0.06 | 0.82 | 0.65–1.04 | 0.10 |
Permanent RLN injury | 173 (2.6%) | 37 (3.3%) | 0.11 | 0.80 | 0.56–1.14 | 0.21 |
Complications | Group 1 | Group 2 | p-Value | RR | 95%CI | p-Value |
---|---|---|---|---|---|---|
TT with ND | cT | TT with ND versus cT | ||||
Transient hypocalcemia | 5027 (39.6%) | 999 (20.1%) | 0.002 | 1.97 | 1.86–2.09 | <0.001 |
Permanent hypocalcemia | 1956 (15.49%) | 541 (10.9%) | 0.032 | 1.42 | 1.30–1.55 | <0.001 |
Transient RLN injury | 913 (7.2%) | 279 (5.6%) | <0.001 | 1.28 | 1.13–1.46 | 0.002 |
Permanent RLN injury | 427 (3.4%) | 134 (2.7%) | <0.001 | 1.24 | 1.03–1.51 | 0.022 |
Limited ND | Radical ND | Limited versus radical ND | ||||
Transient hypocalcemia | 4422 (38.3%) | 605 (53.7%) | <0.001 | 1.41 | 1.32–1.49 | <0.001 |
Permanent hypocalcemia | 1761 (15.2%) | 195 (17.3%) | 0.06 | 1.14 | 0.99–1.3 | 0.06 |
Transient RLN injury | 786 (6.8%) | 127 (11.3%) | <0.001 | 1.66 | 1.39–1.98 | <0.001 |
Permanent RLN injury | 359 (3.1%) | 68 (6%) | <0.001 | 1.95 | 1.51–2.5 | <0.001 |
Complications | Timing of cT | Count | Complication Rate | RR (95%CI) | p-Value |
---|---|---|---|---|---|
Transient hypocalcemia | 1–15 days | 48 | 18 (37.5%) | 1.5 (0.95–2.32) | 0.08 |
16–30 days | 41 | 13 (31.7%) | 1.25 (0.75–2.1) | 0.39 | |
1–3 months | 150 | 32 (21.3%) | 0.84 (0.56–1.26) | 0.41 | |
3–6 months | 100 | 27 (27%) | 1.07 (0.71–1.61) | 0.76 | |
>6 months | 170 | 43 (25.3%) | Reference | ||
Permanent hypocalcemia | 1–15 days | 48 | 17 (35.4%) | 1.15 (0.72–1.73) | 0.48 |
16–30 days | 41 | 11 (26.8%) | 0.84 (0.49–1.47) | 0.55 | |
1–3 months | 150 | 27 (18%) | 0.57 (0.38–0.85) | 0.006 | |
3–6 months | 100 | 15 (15%) | 0.47 (0.28–0.79) | 0.004 | |
>6 months | 170 | 54 (31.8%) | Reference | ||
Transient RLN injury | 1–15 days | 48 | 9 (18.8%) | 1.52 (0.74–3.1) | 0.25 |
16–30 days | 41 | 4 (9.8%) | 0.79 (0.29–2.18) | 0.46 | |
1–3 months | 150 | 12 (8%) | 0.65 (0.33–1.27) | 0.21 | |
3–6 months | 100 | 6 (6%) | 0.49 (0.2–1.16) | 0.11 | |
>6 months | 170 | 21 (12.4%) | Reference | ||
Permanent RLN injury | 1–15 days | 48 | 3 (6.3%) | 0.41 (0.13–1.29) | 0.13 |
16–30 days | 41 | 3 (7.3%) | 0.48 (0.15–1.5) | 0.21 | |
1–3 months | 150 | 9 (6%) | 0.39 (0.19–0.81) | 0.012 | |
3–6 months | 100 | 5 (5%) | 0.33 (0.13–0.82) | 0.018 | |
>6 months | 170 | 26 (15.3%) | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toraih, E.A.; Hussein, M.H.; Jishu, J.A.; Landau, M.B.; Abdelmaksoud, A.; Bashumeel, Y.Y.; AbdAlnaeem, M.A.; Vutukuri, R.; Robbie, C.; Matzko, C.; et al. Initial versus Staged Thyroidectomy for Differentiated Thyroid Cancer: A Retrospective Multi-Dimensional Cohort Analysis of Effectiveness and Safety. Cancers 2024, 16, 2250. https://doi.org/10.3390/cancers16122250
Toraih EA, Hussein MH, Jishu JA, Landau MB, Abdelmaksoud A, Bashumeel YY, AbdAlnaeem MA, Vutukuri R, Robbie C, Matzko C, et al. Initial versus Staged Thyroidectomy for Differentiated Thyroid Cancer: A Retrospective Multi-Dimensional Cohort Analysis of Effectiveness and Safety. Cancers. 2024; 16(12):2250. https://doi.org/10.3390/cancers16122250
Chicago/Turabian StyleToraih, Eman A., Mohammad H. Hussein, Jessan A. Jishu, Madeleine B. Landau, Ahmed Abdelmaksoud, Yaser Y. Bashumeel, Mahmoud A. AbdAlnaeem, Rithvik Vutukuri, Christine Robbie, Chelsea Matzko, and et al. 2024. "Initial versus Staged Thyroidectomy for Differentiated Thyroid Cancer: A Retrospective Multi-Dimensional Cohort Analysis of Effectiveness and Safety" Cancers 16, no. 12: 2250. https://doi.org/10.3390/cancers16122250
APA StyleToraih, E. A., Hussein, M. H., Jishu, J. A., Landau, M. B., Abdelmaksoud, A., Bashumeel, Y. Y., AbdAlnaeem, M. A., Vutukuri, R., Robbie, C., Matzko, C., Linhuber, J., Shama, M., Noureldine, S. I., & Kandil, E. (2024). Initial versus Staged Thyroidectomy for Differentiated Thyroid Cancer: A Retrospective Multi-Dimensional Cohort Analysis of Effectiveness and Safety. Cancers, 16(12), 2250. https://doi.org/10.3390/cancers16122250