Effect of Pre-Existent Sarcopenia on Oncological Outcome of Advanced Thyroid Cancer Patients Treated with Tyrosine Kinase Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessments and Definitions
2.3. Statistical Analysis
3. Results
3.1. Clinical-Pathological Features of the Whole Cohort of Patients
3.2. Sarcopenia before Starting TKI Treatment
3.3. Baseline Sarcopenia and Response to TKI Treatment
3.4. Sarcopenia Prevalence Variation during TKI Treatment
3.5. Prognostic Factors of Sarcopenia Development during TKI Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meza-Valderrama, D.; Marco, E.; Dávalos-Yerovi, V.; Muns, M.D.; Tejero-Sánchez, M.; Duarte, E.; Sánchez-Rodríguez, D. Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients 2021, 13, 761. [Google Scholar] [CrossRef]
- Gingrich, A.; Volkert, D.; Kiesswetter, E.; Thomanek, M.; Bach, S.; Sieber, C.C.; Zopf, Y. Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients. BMC Geriatr. 2019, 19, 120. [Google Scholar] [CrossRef] [PubMed]
- Shachar, S.S.; Williams, G.R.; Muss, H.B.; Nishijima, T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Handorf, E.; Khare, V.; Blau, M.; Chertock, Y.; Hall, M.J. Impact of Baseline Nutrition and Exercise Status on Toxicity and Outcomes in Phase I and II Oncology Clinical Trial Participants. Oncologist 2020, 25, 161–169. [Google Scholar] [CrossRef]
- Bullock, A.F.; Greenley, S.L.; McKenzie, G.A.G.; Paton, L.W.; Johnson, M.J. Relationship between markers of malnutrition and clinical outcomes in older adults with cancer: Systematic review, narrative synthesis and meta-analysis. Eur. J. Clin. Nutr. 2020, 74, 1519–1535. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Hwang, I.G.; Cho, C.H.; Kang, H.; Kim, B.G.; Park, B.K.; Cha, S.J.; Jang, J.S.; Choi, J.H. Sarcopenia is poor prognostic factor in older patients with locally advanced rectal cancer who received preoperative or postoperative chemoradiotherapy. Medicine 2018, 97, e13363. [Google Scholar] [CrossRef]
- Ota, T.; Ishikawa, T.; Endo, Y.; Matsumura, S.; Yoshida, J.; Yasuda, T.; Okayama, T.; Inoue, K.; Dohi, O.; Yoshida, N.; et al. Skeletal muscle mass as a predictor of the response to neoadjuvant chemotherapy in locally advanced esophageal cancer. Med. Oncol. 2019, 36, 15. [Google Scholar] [CrossRef] [PubMed]
- Shiroyama, T.; Nagatomo, I.; Koyama, S.; Hirata, H.; Nishida, S.; Miyake, K.; Fukushima, K.; Shirai, Y.; Mitsui, Y.; Takata, S.; et al. Impact of sarcopenia in patients with advanced nonsmall cell lung cancer treated with PD-1 inhibitors: A preliminary retrospective study. Sci. Rep. 2019, 9, 2447. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in: Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef]
- Pamoukdjian, F.; Bouillet, T.; Lévy, V.; Soussan, M.; Zelek, L.; Paillaud, E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin Nutr. 2018, 37, 1101–1113. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Ponziani, F.R.; Pompili, M.; Pozzo, C.; Strippoli, A.; Bria, E.; Tortora, G.; Gasbarrini, A.; et al. Prognostic value of skeletal muscle mass during tyrosine kinase inhibitor (TKI) therapy in cancer patients: A systematic review and meta-analysis. Intern Emerg. Med. 2021, 16, 1341–1356. [Google Scholar] [CrossRef]
- Huillard, O.; Jouinot, A.; Tlemsani, C.; Brose, M.S.; Arrondeau, J.; Meinhardt, G.; Fellous, M.; De Sanctis, Y.; Schlumberger, M.; Goldwasser, F. Body Composition in Patients with Radioactive Iodine-Refractory, Advanced Differentiated Thyroid Cancer Treated with Sorafenib or Placebo: A Retrospective Analysis of the Phase III DECISION Trial. Thyroid 2019, 29, 1820–1827. [Google Scholar] [CrossRef]
- Massicotte, M.H.; Borget, I.; Broutin, S.; Baracos, V.E.; Leboulleux, S.; Baudin, E.; Paci, A.; Deroussent, A.; Schlumberger, M.; Antoun, S. Body composition variation and impact of low skeletal muscle mass in patients with advanced medullary thyroid carcinoma treated with vandetanib: Results from a placebo-controlled study. J. Clin. Endocrinol. Metab. 2013, 98, 2401–2408. [Google Scholar] [CrossRef]
- Yamazaki, H.; Sugino, K.; Matsuzu, K.; Masaki, C.; Akaishi, J.; Hames, K.; Tomoda, C.; Suzuki, A.; Uruno, T.; Ohkuwa, K.; et al. Sarcopenia is a prognostic factor for TKIs in metastatic thyroid carcinomas. Endocrine 2020, 68, 132–137. [Google Scholar] [CrossRef]
- Nishiyama, A.; Staub, Y.; Suga, Y.; Fujita, M.; Tanimoto, A.; Ohtsubo, K.; Yano, S. Sarcopenia may Influence the Prognosis in Advanced Thyroid Cancer Patients Treated With Molecular Targeted Therapy. In Vivo 2021, 35, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; De Villar, N.G.; González, P.; Gonzalez, B.; Mancha, A.; Rodriguez, F.; Fernandez, G. CONUT: A tool for Controlling Nutritional Status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Surov, A.; Wienke, A. Prevalence of sarcopenia in patients with solid tumors: A meta-analysis based on 81,814 patients. JPEN J. Parenter Enteral Nutr. 2022. [Google Scholar] [CrossRef]
- Fearon, K.C.; Glass, D.J.; Guttridge, D.C. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef]
- Roubenoff, R.; Parise, H.; Payette, H.A.; Abad, L.W.; D’Agostino, R.; Jacques, P.F.; Wilson, P.W.; Dinarello, C.A.; Harris, T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: The Framingham Heart Study. Am. J. Med. 2003, 115, 429–435. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Takahashi, S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Semin Oncol. 2019, 46, 57–64. [Google Scholar] [CrossRef]
- Krajewska, J.; Paliczka-Cieslik, E.; Jarzab, B. Managing tyrosine kinase inhibitors side effects in thyroid cancer. Expert Rev. Endocrinol. Metab. 2017, 12, 117–127. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Pozzo, C.; Strippoli, A.; Ponziani, F.R.; Pompili, M.; Bria, E.; Tortora, G.; Gasbarrini, A.; et al. Skeletal Muscle Loss during Multikinase Inhibitors Therapy: Molecular Pathways, Clinical Implications, and Nutritional Challenges. Nutrients 2020, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Colombo, C.; Di Stefano, M.; Dubini, A.; Cozzi, S.; Persani, L.; Fugazzola, L. Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. Eur. Thyroid J. 2020, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Scappaticcio, L. Radioiodine therapy of advanced differentiated thyroid cancer: Clinical considerations and multidisciplinary approach. Q. J. Nucl. Med. Mol. Imaging 2019, 63, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [Green Version]
All patients (n = 58) | Sarcopenia Group (n = 12) | Non-Sarcopenia Group (n = 46) | p Value | |
---|---|---|---|---|
Age, years | 0.51 | |||
Median (range) | 67 (25–96) | 64.97 (34.3–87.1) | 67.13 (25.2–96.2) | |
Mean (SD) | 64 (15.9) | 66.8 (16.12) | 63.34 (15.97) | |
Gender, n (%) | 0.33 | |||
Female | 28 (48.2%) | 4 (33.3%) | 24 (52.2%) | |
Male | 30 (51.8%) | 8 (66.7%) | 22 (47.8%) | |
ECOG PS, n (%) | 0.29 | |||
0 | 50 (86.2%) | 12 (100%) | 38 (82.6%) | |
1 | 6 (10.3%) | 0 (0%) | 6 (13%) | |
2 | 2 (3.5%) | 0 (0%) | 2 (4.4%) | |
Histology, n (%) | 0.73 | |||
DTC | 35 (60.34%) | 6 (50%) | 29 (63.04%) | |
PDTC | 11 (18.96%) | 3 (25%) | 8 (17.39%) | |
MTC | 12 (20.68%) | 3 (25%) | 9 (19.56%) | |
Weight, kg | 0.052 | |||
Median (range) | 74.7 (44–131) | 70.5 (44–89.5) | 76.5 (47.8–131) | |
Mean (SD) | 75.9 (17.3) | 68.58 (12.75) | 77.86 (18) | |
BMI, kg/m2 | 0.004 | |||
Median (range) | 26.0 (18–46.9) | 23.4 (18.1–31.1) | 26.9 (18.7–46.9) | |
Mean (SD) | 26 (5.9) | 23.86 (3.7) | 28.2 (6.08) | |
BMI categories, n (%) | 0.01 | |||
<18.5 kg/m2 | 1 (1.72%) | 1 (8.33%) | 0 (0%) | |
18.5–24.9 kg/m2 | 21 (36.20%) | 8 (66.67%) | 13 (28.26%) | |
25–29.9 kg/m2 | 19 (32.76%) | 2 (16.67%) | 17 (36.95%) | |
≥30 kg/m2 | 17 (29.31%) | 1 (8.33%) | 16 (34.78%) | |
CONUT score * | 0.49 | |||
0–1 | 19 (45.2%) | 3 (30%) | 16 (48.5%) | |
2–4 | 18 (42.9%) | 4 (40%) | 14 (42.4%) | |
5–7 | 5 (11.9%) | 3 (30%) | 3 (9.1%) | |
SMI value, cm2/m2 | 0.0002 | |||
Median (range) | 46.1 (28.6–78.4) | 38.85 (28.6–45.3) | 49.6 (32.5–78.4) | |
Mean (SD) | 48.0 (10.4) | 38.9 (5.65) | 50.3 (10.1) | |
Number of anatomical sites involved n (%) | 0.48 | |||
1 | 11 (18.96%) | 3 (25%) | 8 (17.39%) | |
2 | 15 (25.86%) | 1 (8.33%) | 14 (30.43%) | |
≥3 | 32 (55.18%) | 8 (66.67%) | 24 (52.17%) | |
Number of patients with bone metastasis, n (%) | 25 (43%) | 8 (66.7%) | 17 (36.9%) | 0.10 |
Sum of Target Lesions **, cm | 0.83 | |||
Median (range) | 62.95 (25–218) | 60 (25–128) | 65 (26–192) | |
Mean (SD) | 76.45 (47.88) | 81.22 (62.78) | 75.34 (44.72) | |
Time since diagnosis, months | 0.29 | |||
Median (range) | 5.57 (0.06–18.8) | 7.99 (0.80–13.87) | 5.36 (0.06–18.8) | |
Mean (SD) | 6.38 (5.04) | 7.76 (4.46) | 6.02 (5.17) |
Progression Free Survival | Overall Survival | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age at TKI start | 1.05 (1.02–1.09) | 0.006 | 1.06 (1.03–1.09) | < 0.001 |
Sarcopenia Yes vs. No | 4.29 (1.21–15.11) | 0.02 | - | - |
N. of anatomical site involved | 1.55 (1.09–2.20) | 0.014 | 1.41 (1.01–1.96) | 0.044 |
Sum of Target Lesions diameters | 1.01 (1.002–1.019) | 0.014 | 1.01 (1.002–1.02) | 0.012 |
Number of TKI treatment >1 vs. 1 | 3.10 (1.23–7.78) | 0.016 | - | - |
All Patients (n = 33) | Sarcopenia Group (n = 9) | Non-Sarcopenia Group (n = 24) | p Value | |
---|---|---|---|---|
Age at TKI start, years | 0.51 | |||
Median (range) | 67.1 (25.2–96.2) | 72 (25.2–79.8) | 65.8 (30.0–96.2) | |
Mean (SD) | 63.3 (15.9) | 63.9 (18.0) | 62.7 (16.2) | |
Gender, n (%) | 0.47 | |||
Female | 18 (54.5%) | 4 (22.2%) | 14 (77.8%) | |
Male | 15 (45.5%) | 5 (33.3%) | 10 (66.7%) | |
ECOG PS, n (%) | 0.66 | |||
0 | 27 (81.8%) | 7 (25.9%) | 20 (74.1%) | |
1 | 5 (15.2%) | 2 (40.0%) | 3 (60.0%) | |
2 | 1 (3%) | 0 (0.0%) | 1 (100.0%) | |
Histology, n (%) | 0.67 | |||
DTC | 19 (57.6%) | 6 (31.6%) | 13 (68.4%) | |
PDTC | 7 (21.2%) | 2 (28.6%) | 5 (71.4%) | |
MTC | 7 (21.2%) | 1 (14.3%) | 6 (85.7%) | |
Weight, kg | 0.04 | |||
Median (range) | 76.5 (47.8–131) | 67 (50–87) | 83 (47.8–131) | |
Mean (SD) | 77.9 (18) | 65.9 (11.98) | 81.4 (21.15) | |
BMI, kg/m2 | 0.02 | |||
Median (range) | 26.9 (18.7–46.9) | 24.5 (18.7–30.8) | 28.7 (20.6–46.9) | |
Mean (SD) | 28.2 (6.1) | 24.5 (3.7) | 30.1 (7.1) | |
SMI value, cm2/m2 | 0.003 | |||
Median (range) | 49.6 (32.5–78.4) | 45.8 (32.5–53) | 49.7 (34.5–78.4) | |
Mean (SD) | 50.4 (10.1) | 42.7 (7.7) | 51.8 (10.8) | |
Number of anatomical sites involved n (%) | 0.14 | |||
1 | 5 (15.2%) | 1 (20.0%) | 4 (80.0%) | |
2 | 10 (30.3%) | 1 (10.0%) | 9 (90.0%) | |
≥3 | 18 (54.5%) | 7 (38.9%) | 11 (61.1%) | |
Bone metastasis, n (%) | 0.02 | |||
Yes | 12 (36.4%) | 6 (50.0%) | 6 (50.0%) | |
No | 21 (63.6%) | 3 (14.0%) | 18 (76%) | |
TKI, n (%) | 0.8 | |||
Lenvatinib | 12 (36.3%) | 3 (25%) | 9 (75%) | |
Others TKI * | 21 (63.7%) | 6 (28.6%) | 15 (71.4%) | |
Sum of Target Lesions **, cm | 0.17 | |||
Median, range) | 65 (26–192) | 75 (35–192) | 50 (26–171) | |
Mean (SD) | 75.3 (44.7) | 92.2 (54.6) | 70.8 (48.1) | |
Time since diagnosis, years | 0.77 | |||
Median (range) | 5.4 (0.07–18.8) | 4.7 (0.5–9.6) | 5.5 (0.1–18.8) | |
Mean (SD) | 6 (5.17) | 5.1 (3.42) | 6.6 (5.84) | |
Duration of treatment with first TKI, months | 0.29 | |||
Median (range) | 27.5 (0.9–131) | 32.1 (9.9–57.1) | 36 (10–131) | |
Mean (SD) | 33.5 (26.6) | 30.4 (16.78) | 44.2 (30.3) | |
Best Response | 0.64 | |||
PD | 2 (6.1%) | 0 (0.0%) | 2 (100.0%) | |
PR | 15 (45.4%) | 4 (26.7%) | 11 (73.3%) | |
SD | 16 (48.5%) | 5 (31.2%) | 11 (68.8%) | |
Number of treatment lines, n (%) | 0.27 | |||
Only 1 TKI | 23 (69.7%) | 5 (21.7%) | 18 (78.3%) | |
More than 1 TKI | 10 (30.3%) | 4 (40.0%) | 6 (60.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalmiglio, C.; Brilli, L.; Ciuoli, C.; Maino, F.; Valerio, L.; Sannino, I.; Cartocci, A.; Guerrini, S.; Zanoni, M.; Marrazzo, G.; et al. Effect of Pre-Existent Sarcopenia on Oncological Outcome of Advanced Thyroid Cancer Patients Treated with Tyrosine Kinase Inhibitors. Cancers 2022, 14, 4569. https://doi.org/10.3390/cancers14194569
Dalmiglio C, Brilli L, Ciuoli C, Maino F, Valerio L, Sannino I, Cartocci A, Guerrini S, Zanoni M, Marrazzo G, et al. Effect of Pre-Existent Sarcopenia on Oncological Outcome of Advanced Thyroid Cancer Patients Treated with Tyrosine Kinase Inhibitors. Cancers. 2022; 14(19):4569. https://doi.org/10.3390/cancers14194569
Chicago/Turabian StyleDalmiglio, Cristina, Lucia Brilli, Cristina Ciuoli, Fabio Maino, Laura Valerio, Ida Sannino, Alessandra Cartocci, Susanna Guerrini, Matteo Zanoni, Giuseppe Marrazzo, and et al. 2022. "Effect of Pre-Existent Sarcopenia on Oncological Outcome of Advanced Thyroid Cancer Patients Treated with Tyrosine Kinase Inhibitors" Cancers 14, no. 19: 4569. https://doi.org/10.3390/cancers14194569
APA StyleDalmiglio, C., Brilli, L., Ciuoli, C., Maino, F., Valerio, L., Sannino, I., Cartocci, A., Guerrini, S., Zanoni, M., Marrazzo, G., Mazzei, M. A., & Castagna, M. G. (2022). Effect of Pre-Existent Sarcopenia on Oncological Outcome of Advanced Thyroid Cancer Patients Treated with Tyrosine Kinase Inhibitors. Cancers, 14(19), 4569. https://doi.org/10.3390/cancers14194569