PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Eligibility Criteria
2.2. Information Sources and Search Criteria
2.3. Study Selection
2.4. Data Collection Process and Data Items
2.5. Assessment of Risk of Bias of Individual Studies
2.6. Statistical Methods
3. Results
3.1. Search Sequence and Quality Assessment of Selected Publications
3.2. Studies Characteristics
3.3. Quantitative Synthesis
3.3.1. Prevalence of PD-L1 Expression in Endometrial Cancer
3.3.2. Analysis of PD-L1 Expression in Tumour Cells (TCs) of Endometrial Cancer
Age Group and PD-L1 Expression in TCs
Tumour Stages and PD-L1 Expression in TCs
Histology Types and PD-L1 Expression in TCs
Myometrial Invasion with PD-L1 Expression in TCs
Lympho-Vascular Invasion with PD-L1 Expression in TCs
3.3.3. Analysis of PD-L1 in Immune Cells (ICs) of Endometrial Cancer
Age Group and PD-L1 Expression in ICs
Tumour Stages and PD-L1 Expression in ICs
Histology Type and PD-L1 Expression in ICs
Myometrial Invasion with PD-L1 Expression in ICs
Lympho-Vascular Invasion with PD-L1 Expression in ICs
3.3.4. PD-L1 Expression and Survival Outcomes
3.3.5. Publication Bias and Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Gatius, S.; Cuevas, D.; Fernández, C.; Roman-Canal, B.; Adamoli, V.; Piulats, J.M.; Eritja, N.; Martin-Satue, M.; Moreno-Bueno, G.; Matias-Guiu, X. Tumor Heterogeneity in Endometrial Carcinoma: Practical Consequences. Pathobiology 2018, 85, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institue. Uterine Cancer—Cancer Stat Facts. Cancer Statistics Facts; 2020. Available online: https://seer.cancer.gov/statfacts/html/corp.html (accessed on 16 June 2022).
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-up. Int. J. Gynecol. Cancer 2016, 26, 2–30. [Google Scholar] [CrossRef]
- Trojano, G.; Olivieri, C.; Tinelli, R.; Damiani, G.R.; Pellegrino, A.; Cicinelli, E. Conservative treatment in early stage endometrial cancer: A review. Acta Bio Med. Atenei Parm. 2019, 90, 405. [Google Scholar] [CrossRef]
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015, 348, 124. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018, 48, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Deng, Y.; Jiang, H.; Li, W.; Wu, Q.; Zhou, Q. The prognostic role of programmed cell death-ligand 1 expression in non-small cell lung cancer patients: An updated meta-analysis. Clin. Chim. Acta 2018, 482, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, Q.; Gao, Z.; Yu, Z.; Wu, Y.; Lu, Q. Programmed death-ligand 1 and survival in colorectal cancers: A meta-analysis. Int. J. Biol. Markers 2019, 34, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Hong, M.H.; Park, S.Y.; Chae, S.; Hwang, D.; Ha, S.J.; Shim, H.S.; Kim, H.R. Overexpression of PVR and PD-L1 and its association with prognosis in surgically resected squamous cell lung carcinoma. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Vagios, S.; Yiannou, P.; Giannikaki, E.; Doulgeraki, T.; Papadimitriou, C.; Rodolakis, A.; Nonni, A.; Vlachos, A.; Pavlakis, K. The impact of programmed cell death-ligand 1 (PD-L1) and CD8 expression in grade 3 endometrial carcinomas. Int. J. Clin. Oncol. 2019, 24, 1419–1428. [Google Scholar] [CrossRef]
- Siraj, A.K.; Parvathareddy, S.K.; Annaiyappanaidu, P.; Siraj, N.; Al-Rasheed, M.; Al-Badawi, I.A.; Al-Dayel, F.; Al-Kuraya, K.S. PD-L1 Expression Is an Independent Marker for Lymph Node Metastasis in Middle Eastern Endometrial Cancer. Diagnostics 2021, 11, 394. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, J.; Zhang, Q.; Chen, Z.; Mei, J.; Liu, L.; Yang, S.; Li, H.; Zhou, L.; You, Z. Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation status and histological type of endometrial cancer. Oncol. Lett. 2016, 12, 944–950. [Google Scholar] [CrossRef]
- Yamashita, H.; Nakayama, K.; Ishikawa, M.; Nakamura, K.; Ishibashi, T.; Sanuki, K.; Ono, R.; Sasamori, H.; Minamoto, T.; Iida, K.; et al. Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget 2018, 9, 5652–5664. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, 332–336. [Google Scholar] [CrossRef]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Minaguchi, T.; Xu, C.; Qi, N.; Itagaki, H.; Shikama, A.; Tasaka, N.; Akiyama, A.; Sakurai, M.; Ochi, H.; et al. PD-L1 and CD4 are independent prognostic factors for overall survival in endometrial carcinomas. BMC Cancer 2020, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Tawadros, A.I.F.; Khalafalla, M.M.M. Expression of programmed death-ligand 1 and hypoxia-inducible factor-1α proteins in endometrial carcinoma. J. Cancer Res. Ther. 2018, 14, S1063–S1069. [Google Scholar] [CrossRef]
- Sungu, N.; Yildirim, M.; Desdicioglu, R.; Aydoǧdu, Ö.B.; Kiliçarslan, A.; Doǧan, H.T.; Yazgan, A.K.; Akyol, M.; Erdoǧan, F. Expression of Immunomodulatory Molecules PD-1, PD-L1, and PD-L2, and their Relationship with Clinicopathologic Characteristics in Endometrial Cancer. Int. J. Gynecol. Pathol. 2019, 38, 404–413. [Google Scholar] [CrossRef]
- Pasanen, A.; Ahvenainen, T.; Pellinen, T.; Vahteristo, P.; Loukovaara, M.; Bützow, R. PD-L1 Expression in Endometrial Carcinoma Cells and Intratumoral Immune Cells: Differences across Histologic and TCGA-based Molecular Subgroups. Am. J. Surg. Pathol. 2020, 44, 174–181. [Google Scholar] [CrossRef]
- Kir, G.; Soylemez, T.; Olgun, Z.C.; Aydin, A.; McCluggage, W.G. Correlation of PD-L1 expression with immunohistochemically determined molecular profile in endometrial carcinomas. Virchows Arch. 2020, 477, 845–856. [Google Scholar] [CrossRef]
- Engerud, H.; Berg, H.F.; Myrvold, M.; Halle, M.K.; Bjorge, L.; Haldorsen, I.S.; Hoivik, E.A.; Trovik, J.; Krakstad, C. High degree of heterogeneity of PD-L1 and PD-1 from primary to metastatic endometrial cancer. Gynecol. Oncol. 2020, 157, 260–267. [Google Scholar] [CrossRef]
- Crumley, S.; Kurnit, K.; Hudgens, C.; Fellman, B.; Tetzlaff, M.T.; Broaddus, R. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod. Pathol. 2019, 32, 396–404. [Google Scholar] [CrossRef]
- Chew, M.; Wong, Y.P.; Karim, N.; Mustangin, M.; Alfian, N.; Tan, G.C. Programmed death ligand 1: A poor prognostic marker in endometrial carcinoma. Diagnostics 2020, 10, 394. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Lee, H.S.; Yang, W.; Cho, H.; Chay, D.B.; Cho, S.J.; Hong, S.; Kim, J.-H. Prognostic implication of programmed cell death 1 protein and its ligand expressions in endometrial cancer. Gynecol. Oncol. 2018, 149, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Quandt, D.; Jasinski-Bergner, S.; Müller, U.; Schulze, B.; Seliger, B. Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J. Transl. Med. 2014, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Abiko, K.; Matsumura, N.; Hamanishi, J.; Horikawa, N.; Murakami, R.; Yamaguchi, K.; Yoshioka, Y.; Baba, T.; Konishi, I.; Mandai, M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 2015, 112, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J. Thorac. Oncol. 2015, 10, 910–923. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Lim, K.S.; Mekhail, T.; Chang, C.C. Programmed Death Ligand-1 (PD-L1) Expression in the Programmed Death Receptor-1 (PD-1)/PD-L1 Blockade: A Key Player Against Various Cancers. Arch. Pathol. Lab. Med. 2017, 141, 851–861. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef]
- Boman, C.; Zerdes, I.; Mårtensson, K.; Bergh, J.; Foukakis, T.; Valachis, A.; Matikas, A. Discordance of PD-L1 status between primary and metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat. Rev. 2021, 99, 102257. [Google Scholar] [CrossRef]
- Jin, Z.; Yoon, H.H. The promise of PD-1 inhibitors in gastro-esophageal cancers: Microsatellite instability vs. PD-L1. J. Gastrointest. Oncol. 2016, 7, 771–788. [Google Scholar] [CrossRef]
- Fakhri, G.; Akel, R.; Khalifeh, I.; Chami, H.; Hajj Ali, A.; Al Assaad, M.; Atwi, H.; Kadara, H.; Tfayli, A. Prevalence of programmed death ligand-1 in patients diagnosed with non-small cell lung cancer in Lebanon. SAGE Open Med. 2021, 9, 205031212110437. [Google Scholar] [CrossRef]
- Kowanetz, M.; Zou, W.; Gettinger, S.N.; Koeppen, H.; Kockx, M.; Schmid, P.; Kadel, E.E.; Wistuba, I.; Chaft, J.; Rizvi, N.A.; et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). Proc. Natl. Acad. Sci. USA 2018, 115, E10119–E10126. [Google Scholar] [CrossRef]
- Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science 2017, 355, 1428. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, A.O.; Wieland, A.; Nasti, T.; Yang, S.; Zhang, R.; Barber, D.L.; Konieczny, B.T.; Daugherty, C.Z.; Koenig, L.; Yu, K.; et al. Rescue of exhausted CD8 T cells by PD-1 targeted therapies is CD28-dependent. Science 2017, 355, 1423. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, Y.; Luo, R.; Xu, J.; Feng, J.; Wang, M. Prognostic and Clinicopathological Role of PD-L1 in Endometrial Cancer: A Meta-Analysis. Front. Oncol. 2020, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Gu, L.; Mao, D.; Chen, M.; Jin, R. Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, W.; Yan, Z.; Ma, J.; Zhu, F.; Huo, J. Prognostic value of PD-L1 expression in patients with pancreatic cancer: A PRISMA-compliant meta-analysis. Medicine 2019, 98, e14006. [Google Scholar] [CrossRef] [PubMed]
- Stelloo, E.; Versluis, M.A.; Nijman, H.W.; De Bruyn, M.; Plat, A.; Osse, E.M.; Van Dijk, R.H.; Nout, R.A.; Creutzberg, C.L.; De Bock, G.H.; et al. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget 2016, 7, 39885–39893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, Y.; Zhang, J.; Zhang, B. Pd-l1 expression increased by ifn-γ via jak2-stat1 signaling and predicts a poor survival in colorectal cancer. Oncol. Lett. 2020, 20, 1127–1134. [Google Scholar] [CrossRef]
- Imai, D.; Yoshizumi, T.; Okano, S.; Itoh, S.; Ikegami, T.; Harada, N.; Aishima, S.; Oda, Y.; Maehara, Y. IFN-γ Promotes Epithelial-Mesenchymal Transition and the Expression of PD-L1 in Pancreatic Cancer. J. Surg. Res. 2019, 240, 115–123. [Google Scholar] [CrossRef]
- Mimura, K.; Teh, J.L.; Okayama, H.; Shiraishi, K.; Kua, L.F.; Koh, V.; Smoot, D.T.; Ashktorab, H.; Oike, T.; Suzuki, Y.; et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018, 109, 43–53. [Google Scholar] [CrossRef]
- Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014, 5, 5241. [Google Scholar] [CrossRef]
- Theodoraki, M.N.; Yerneni, S.S.; Hoffmann, T.K.; Gooding, W.E.; Whiteside, T.L. Clinical significance of PD-L1 þ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 2018, 24, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, C.W.; Chan, L.C.; Wei, Y.; Hsu, J.M.; Xia, W.; Cha, J.H.; Hou, J.; Hsu, J.L.; Sun, L.; et al. Exosomal PD-L1 harbors active defense function to suppress t cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018, 28, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y.; Wakui, H.; Utsumi, H.; Sagawa, Y.; Hosomi, Y.; Kuwano, K.; Homma, S. Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non–Small-cell Lung Cancer. Clin. Lung Cancer 2018, 19, 410–417.e1. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y.; Hosomi, Y.; Nakahara, Y.; Watanabe, K.; Sagawa, Y.; Homma, S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer 2017, 104, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.-J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef]
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727. [Google Scholar]
- Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Watari, H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: Beyond immune evasion. Front. Oncol. 2018, 8, 386. [Google Scholar] [CrossRef]
- Al-Hussaini, M.; Lataifeh, I.; Jaradat, I.; Abdeen, G.; Otay, L.; Badran, O.; Abu Sheikha, A.; Dayyat, A.; El Khaldi, M.; Ashi Al-Loh, S. Undifferentiated Endometrial Carcinoma, an Immunohistochemical Study Including PD-L1 Testing of a Series of Cases from a Single Cancer Center. Int. J. Gynecol. Pathol. 2018, 37, 564–574. [Google Scholar] [CrossRef]
- Eskander, R.N.; Powell, M.A. Immunotherapy as a treatment strategy in advanced stage and recurrent endometrial cancer: Review of current phase III immunotherapy clinical trials. Ther. Adv. Med. Oncol. 2021, 13, 175883592110011. [Google Scholar] [CrossRef] [PubMed]
- Halla, F.-C.K. Emerging Treatment Options for Advanced or Recurrent Endometrial Cancer. J. Adv. Pract. Oncol. 2022, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Thallinger, C.; Füreder, T.; Preusser, M.; Heller, G.; Müllauer, L.; Höller, C.; Prosch, H.; Frank, N.; Swierzewski, R.; Berger, W.; et al. Review of cancer treatment with immune checkpoint inhibitors: Current concepts, expectations, limitations and pitfalls. Wien. Klin. Wochenschr. 2018, 130, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Gubens, M.A.; Sequist, L.V.; Stevenson, J.P.; Powell, S.F.; Villaruz, L.C.; Gadgeel, S.M.; Langer, C.J.; Patnaik, A.; Borghaei, H.; Jalal, S.I.; et al. Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non–small-cell lung cancer: KEYNOTE-021 cohorts D and H. Lung Cancer 2019, 130, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Fashoyin-Aje, L.; Donoghue, M.; Chen, H.; He, K.; Veeraraghavan, J.; Goldberg, K.B.; Keegan, P.; McKee, A.E.; Pazdur, R. FDA Approval Summary: Pembrolizumab for Recurrent Locally Advanced or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma Expressing PD-L1. Oncologist 2019, 24, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Makker, V.; Taylor, M.H.; Aghajanian, C.; Oaknin, A.; Mier, J.; Cohn, A.L.; Romeo, M.; Bratos, R.; Brose, M.S.; DiSimone, C.; et al. Lenvatinib Plus Pembrolizumab in Patients with Advanced Endometrial Cancer. J. Clin. Oncol. 2020, 38, 2981–2992. [Google Scholar] [CrossRef]
- Oaknin, A.; Leon-Castillo, A.; Lorusso, D. Progress in the management of endometrial cancer (subtypes, immunotherapy, alterations in PIK3CA pathway): Data and perspectives. Curr. Opin. Oncol. 2020, 32, 471–480. [Google Scholar] [CrossRef]
Authors | Domains | Results | |||
---|---|---|---|---|---|
Selection | Comparability | Outcome | Score | Risk | |
Chew 2020 [31] | **** | ** | ** | 8 | Low |
Crumley 2019 [30] | **** | * | ** | 7 | Low |
Engerud 2020 [29] | **** | ** | ** | 8 | Low |
Kim 2018 [32] | **** | * | * | 6 | Low |
Kir 2020 [28] | **** | * | ** | 7 | Low |
Mo 2016 [19] | **** | ** | ** | 8 | Low |
Pasanen 2019 [27] | **** | ** | ** | 8 | Low |
Siraj 2021 [18] | **** | * | ** | 7 | Low |
Sungu 2019 [26] | **** | ** | ** | 8 | Low |
Tawadros 2018 [25] | **** | * | ** | 7 | Low |
Vagios 2019 [17] | **** | * | ** | 7 | Low |
Zhang 2020 [24] | **** | * | ** | 7 | Low |
Author/Year | Country | Study Design | No. of Sample | No. of PD-L1+ (%) | Age of Diagnosis | Tumour Stage | Histology Type | Myometrial Invasion | Lympho- Vascular Invasion | |
---|---|---|---|---|---|---|---|---|---|---|
Chew 2020 [31] | Malaysia | Retrospective | 59 | TC | 28.8 | <60 = 7/39 | I/II = 12/48 | EEC = 14/52 | NA | NA |
≥60 = 10/23 | III/IV = 5/11 | nEEC = 3/7 | ||||||||
IC | 62.7 | <60 = 24/39 | I/II = 29/48 | EEC = 33/52 | NA | NA | ||||
≥60 = 13/23 | III/IV = 8/11 | nEEC = 4/7 | ||||||||
Crumley 2019 [30] | USA | Retrospective | 132 | TC | 47.7 | NA | I/II = 51/117 | EEC = 63/132 | <50 = 28/65 | yes = 22/30 |
III/IV = 12/15 | ≥50 = 23/30 | no = 41/102 | ||||||||
Engerud 2020 [29] | Norway | Prospective | 689 | TC | 59.1 | <66 = 203/350 | I/II = 342/580 | EEC = 322/557 | <50 = 254/428 | NA |
≥66 = 204/339 | III/IV = 65/109 | nEEC = 85/132 | ≥50 = 151/258 | |||||||
Kim 2018 [32] | Korea | Retrospective | 183 | IC | 58.6 | ≤55 = 42/110 | I/II = 62/154 | EEC = 67/168 | <50 = 48/130 | yes = 18/31 |
>55 = 34/73 | III/IV = 13/25 | nEEC = 9/15 | ≥50 = 24/44 | no = 53/142 | ||||||
Kir 2020 [28] | Turkey | Retrospective | 59 | TC | 10.2 | <60 = 3/26 | NA | NA | NA | yes = 1/14 |
≥60 = 3/33 | no = 5/45 | |||||||||
IC | 67.8 | <60 = 19/26 | NA | NA | NA | yes = 10/14 | ||||
≥60 = 21/33 | no = 30/45 | |||||||||
Mo 2016 [19] | USA | Retrospective | 75 | TC | 17.3 | <60 = 7/45 | NA | EEC = 9/63 | NA | yes = 2/7 |
≥60 = 6/30 | nEEC = 4/12 | no = 11/68 | ||||||||
IC | 60.0 | <60 = 24/45 | NA | EEC = 33/63 | NA | yes = 3/7 | ||||
≥60 = 21/30 | nEEC = 12/12 | no = 42/68 | ||||||||
Pasanen 2019 [27] | Finland | Retrospective | 842 | TC | 8.6 | NA | I/II = 60/804 | NA | NA | NA |
III/IV = 109/804 | ||||||||||
IC | 27.7 | NA | I/II = 210/804 | NA | NA | NA | ||||
III/IV = 279/804 | ||||||||||
Siraj 2021 [18] | Saudi Arabia | Retrospective | 440 | TC | 18.9 | <60 = 42/236 | I/II = 58/333 | EEC = 63/387 | <50 = 34/219 | NA |
≥60 = 41/204 | III/IV = 25/107 | nEEC = 20/53 | ≥50 = 49/221 | |||||||
Sungu 2019 [26] | Turkey | Retrospective | 127 | TC | 36.2 | NA | NA | EEC = 37/113 | NA | yes = 13/27 |
nEEC = 9/14 | no = 23/67 | |||||||||
IC | 72.4 | NA | NA | EEC = 81/113 | NA | yes = 23/27 | ||||
nEEC = 11/14 | no = 49/67 | |||||||||
Tawadros 2018 [25] | Egypt | Retrospective | 95 | TC | 48.4 | <50 = 17/41 | NA | EEC = 39/78 | ≥50 = 28/62 | yes = 6/10 |
≥50 = 29/54 | nEEC = 7/17 | <50 = 18/33 | no = 40/85 | |||||||
Vagios 2019 [17] | Greece | Retrospective | 101 | TC | 44.6 | NA | I/II = 28/62 | EEC = 26/47 | ≥50 = 20/49 | yes = 13/26 |
III/IV = 17/39 | nEEC = 19/54 | <50 = 25/52 | no = 32/75 | |||||||
Zhang 2020 [24] | Japan | Retrospective | 221 | TC | 70.1 | <60 = 98/155 | NA | EEC = 141/155 | ≥50 = 47/155 | yes = 52/155 |
≥60 = 57/155 | nEEC = 14/155 | <50 = 108/155 | no = 103/155 | |||||||
IC | 16.3 | <60 = 24/36 | NA | EEC = 27/36 | ≥50 = 21/36 | yes = 24/36 | ||||
≥60 = 12/36 | nEEC = 9/36 | <50 = 15/36 | no = 12/36 |
Analysis of PD-L1 Positive Expression | Overall ES | Leave-One-Out Result | |||
---|---|---|---|---|---|
Lowest Study Range | p-Value | Highest Study Range | p-Value | ||
Proportion | |||||
TC | 0.34 | 0.20–0.45 | 0.000 | 0.26–0.50 | 0.000 |
IC | 0.52 | 0.31–0.66 | 0.000 | 0.39–0.73 | 0.000 |
Clinicopathological factor and TC | |||||
Age group | 0.99 | 0.34–1.07 | 0.000 | 0.58–1.72 | 0.000 |
Tumour stage | 0.65 | 0.44–0.75 | 0.000 | 0.60–1.03 | 0.000 |
Histology type | 0.70 | 0.30–0.73 | 0.000 | 0.59–1.06 | 0.000 |
Myometrial invasion | 1.02 | 0.61–1.08 | 0.000 | 0.63–1.65 | 0.000 |
Lympho-vascular invasion | 0.76 | 0.36–0.76 | 0.000 | 0.76–1.97 | 0.000 |
Clinicopathological factor and IC | |||||
Age group | 1.39 | 0.42–1.45 | 0.000 | 0.56–1.92 | 0.000 |
Tumour stage | 0.75 | 0.60–0.90 | 0.000 | 0.26–1.31 | 0.003 |
Histology type | 0.69 | 0.24–1.05 | 0.002 | 0.34–1.33 | 0.001 |
Myometrial invasion | 0.92 | 0.25–1.11 | 0.002 | 0.21–2.59 | 0.021 |
Lympho-vascular invasion | 1.22 | 0.56–1.70 | 0.000 | 0.76–1.86 | 0.000 |
Survival analysis, OS | |||||
TC | 0.52 | 0.06–0.86 | 0.024 | −0.76–2.28 | 0.326 |
IC | 2.04 | −2.63–4.31 | 0.635 | 0.55–3.95 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamat @ Yusof, M.N.; Chew, K.T.; Kampan, N.; Abd. Aziz, N.H.; Md Zin, R.R.; Tan, G.C.; Shafiee, M.N. PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3911. https://doi.org/10.3390/cancers14163911
Mamat @ Yusof MN, Chew KT, Kampan N, Abd. Aziz NH, Md Zin RR, Tan GC, Shafiee MN. PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis. Cancers. 2022; 14(16):3911. https://doi.org/10.3390/cancers14163911
Chicago/Turabian StyleMamat @ Yusof, Mohd Nazzary, Kah Teik Chew, Nirmala Kampan, Nor Haslinda Abd. Aziz, Reena Rahayu Md Zin, Geok Chin Tan, and Mohamad Nasir Shafiee. 2022. "PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis" Cancers 14, no. 16: 3911. https://doi.org/10.3390/cancers14163911
APA StyleMamat @ Yusof, M. N., Chew, K. T., Kampan, N., Abd. Aziz, N. H., Md Zin, R. R., Tan, G. C., & Shafiee, M. N. (2022). PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis. Cancers, 14(16), 3911. https://doi.org/10.3390/cancers14163911