A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Increased Proportion of Treg Cells in Th Cells of PBMCs and TILs from CRC Patients
2.3. CIPS of Peripheral Blood T Cells Represents CIPS of Tumor infiltrating T Cells
2.4. CIPS of Peripheral Blood T Cells Co-Cultured with Colon Cancer Cells
2.5. Distinct CIPS Signatures of Peripheral Blood T Cells from CRC Patients
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Sample Collection and Preprocessing
4.3. Immunophenotyping
4.4. STAT Phosphorylation Before and After Cytokine Stimulation
4.5. In Vitro Co-Culture of PBMCs with a Cancer Cell Line
4.6. Cluster Analysis, Classification Using Logistic Regression, and Validation
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naishadham, D.; Lansdorp-Vogelaar, I.; Siegel, R.; Cokkinides, V.; Jemal, A. State disparities in colorectal cancer mortality patterns in the United States. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2011, 20, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.B. Strategies and resources to address colorectal cancer screening rates and disparities in the United States and globally. Annu. Rev. Public Health 2013, 34, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Zauber, A.G.; Lansdorp-Vogelaar, I.; Knudsen, A.B.; Wilschut, J.; van Ballegooijen, M.; Kuntz, K.M. Evaluating test strategies for colorectal cancer screening: A decision analysis for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2008, 149, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Prevention. Vital signs: Colorectal cancer screening test use—United States, 2012. MMWR. Morb. Mortal. Wkly. Rep. 2013, 62, 881–888. [Google Scholar]
- Zhu, M.M.; Xu, X.T.; Nie, F.; Tong, J.L.; Xiao, S.D.; Ran, Z.H. Comparison of immunochemical and guaiac-based fecal occult blood test in screening and surveillance for advanced colorectal neoplasms: A meta-analysis. J. Dig. Dis. 2010, 11, 148–160. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Monahan, P.O.; Stump, T.E.; Glowinski, E.A.; Ransohoff, D.F. Derivation and Validation of a Scoring System to Stratify Risk for Advanced Colorectal Neoplasia in Asymptomatic Adults: A Cross-sectional Study. Ann. Intern. Med. 2015, 163, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabieres, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Pantel, K. Tumor cell dissemination: Emerging biological insights from animal models and cancer patients. Cancer Cell 2013, 23, 573–581. [Google Scholar] [CrossRef]
- Chi, K.R. The tumour trail left in blood. Nature 2016, 532, 269–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitzer, E.; Ulz, P.; Geigl, J.B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 2015, 61, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Mortarini, R.; Vegetti, C.; Molla, A.; Arienti, F.; Ravagnani, F.; Maurichi, A.; Patuzzo, R.; Santinami, M.; Anichini, A. Impaired STAT phosphorylation in T cells from melanoma patients in response to IL-2: Association with clinical stage. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 4085–4094. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.T.; Jeong, Y.H.; Park, H.J.; Ha, S.J. Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 2011, 44, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Schultze, J.L. Regulatory T cells in cancer. Blood 2006, 108, 804–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, M.B.; Krutzik, P.O.; Samra, S.S.; Crane, J.M.; Nolan, G.P. Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLoS ONE 2009, 4, e6756. [Google Scholar] [CrossRef] [PubMed]
- Abroun, S.; Saki, N.; Ahmadvand, M.; Asghari, F.; Salari, F.; Rahim, F. STATs: An Old Story, Yet Mesmerizing. Cell J. 2015, 17, 395–411. [Google Scholar]
- Finbloom, D.S.; Winestock, K.D. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J. Immunol. 1995, 155, 1079–1090. [Google Scholar]
- Bottcher, J.P.; Schanz, O.; Garbers, C.; Zaremba, A.; Hegenbarth, S.; Kurts, C.; Beyer, M.; Schultze, J.L.; Kastenmuller, W.; Rose-John, S.; et al. IL-6 trans-signaling-dependent rapid development of cytotoxic CD8+ T cell function. Cell Rep. 2014, 8, 1318–1327. [Google Scholar] [CrossRef]
- Pellegrini, M.; Calzascia, T.; Toe, J.G.; Preston, S.P.; Lin, A.E.; Elford, A.R.; Shahinian, A.; Lang, P.A.; Lang, K.S.; Morre, M.; et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 2011, 144, 601–613. [Google Scholar] [CrossRef]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Fourcade, J.; Pagliano, O.; Chauvin, J.M.; Sander, C.; Kirkwood, J.M.; Zarour, H.M. IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells. Cancer Res. 2015, 75, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Gplots: Various R Programming Tools for Plotting Data. R Package Version 2.11.0 ed. 2012. Available online: http://cran.r-project.org/web/packages/gplots/index.html (accessed on 11 August 2019).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 11 August 2019).
Features | Case Number (Proportion) | |
---|---|---|
Age (Mean and SD) | 67 ± 9 | |
Gender | Female | 23 (46%) |
Male | 27 (54%) | |
Differentiation | Well | 12 (24%) |
Moderately | 34 (68%) | |
Poorly | 4 (8%) | |
Location | Ascending colon | 8 (16%) |
Descending colon | 1 (2%) | |
Rectosigmoid junction | 4 (8%) | |
Sigmoid colon | 14 (28%) | |
Transverse colon | 4 (8%) | |
Rectum | 18 (36%) | |
Cecum | 1 (2%) | |
Side | Left | 13 (26%) |
Right | 37 (74%) | |
TNM stage | I | 6 (12%) |
II | 16 (32%) | |
IIIa | 0 (0%) | |
IIIb | 9 (18%) | |
IIIc | 9 (18%) | |
IVa | 6 (12%) | |
IVb | 4 (8%) | |
Invasion | Lymphatic | 22 (44%) |
Venous | 14 (28%) | |
Perineural | 9 (18%) | |
Tumor budding | Negative | 24 (48%) |
Positive (5–9) | 19 (38%) | |
Positive (≥10) | 7 (14%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.W.; Lee, S.; Kim, H.M.; Chun, S.; Engleman, E.G.; Kim, H.C.; Kang, E.-S. A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals. Cancers 2019, 11, 1157. https://doi.org/10.3390/cancers11081157
Yun JW, Lee S, Kim HM, Chun S, Engleman EG, Kim HC, Kang E-S. A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals. Cancers. 2019; 11(8):1157. https://doi.org/10.3390/cancers11081157
Chicago/Turabian StyleYun, Jae Won, Sejoon Lee, Hye Mi Kim, Sejong Chun, Edgar G. Engleman, Hee Cheol Kim, and Eun-Suk Kang. 2019. "A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals" Cancers 11, no. 8: 1157. https://doi.org/10.3390/cancers11081157
APA StyleYun, J. W., Lee, S., Kim, H. M., Chun, S., Engleman, E. G., Kim, H. C., & Kang, E.-S. (2019). A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals. Cancers, 11(8), 1157. https://doi.org/10.3390/cancers11081157