Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subject Recruitment
4.2. Calculation of DII
4.3. Measurement of Covariates
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shah, V.; Vyas, S.; Singh, A.; Shrivastava, M. Awareness and knowledge of cervical cancer and its prevention among the nursing staff of a tertiary health institute in Ahmedabad, Gujarat, India. Ecancer 2012, 6, 1–6. [Google Scholar]
- Ardahan, M. Incidence, Risk Factors, Diagnostic Criteria and Prevention Methods in Cervical Cancer. In Recent Advances in Cervical Cancer; Department of Public Health Nursing, Ege University: Polnova, Turkey, 2016; pp. 2–31. [Google Scholar]
- World Cancer Research Fund Homepage. Available online: http://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data (accessed on 21 July 2019).
- Kweon, S.S. Updates on Cancer Epidemiology in Korea. Chonnam. Med. J. 2018, 54, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Ouh, Y.T.; Lee, J.K. Proposal for cervical cancer screening in the era of HPV vaccination. Obs. Gynecol. Sci. 2018, 61, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Burger, R.A.; Monk, B.J.; Kurosaki, T.; Anton-Culver, H.; Vasilev, S.A.; Berman, M.L.; Wilczynski, S.P. Human papillomavirus type 18: Association with poor prognosis in early stage cervical cancer. J. Natl. Cancer Inst. 1996, 61, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Sogukpınar, N.; Saydam, B.K.; Can, H.O.; Hadımlı, A.; Bozkurt, O.D.; Yücel, U.; Kocak, Y.C.; Akmese, Z.B.; Demir, D.; Ceber, E.; et al. Assessment of Cervical Cancer Risk in Women between 15 and 49 Years of Age: Case of Izmir. Asian Pac. J. Cancer Prev. 2013, 14, 2119–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, N.; Beji, N.K.; Kilic, D. Risk Factors for Cervical Cancer: Results from a Hospital-Based Case-Control Study. Int. J. Hematol. Oncol. 2011, 21, 153–159. [Google Scholar] [CrossRef]
- Opoku, C.A.; Browne, E.N.; Spangenberg, K.; Moyer, C.; Kolbilla, D.; Gold, K.J. Perception and risk factors for cervical cancer among women in northern Ghana. Ghana Med. J. 2016, 50, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Laura, S.; Laura, D.R.; Emilio, J.; Paolo, A.A.; Francesco, M.M.; Antonio, D.L. The influence of diet on anti-cancer immune responsiveness. J. Transl. Med. 2018, 16, 1–18. [Google Scholar]
- Nicola, D.D.; Annalisa, N.; Maria, F.V.; Eleonora, M.; Giulia, M.; Margherita, A.P.; Gabriele, D.U.; Manfredi, T.; Valentina, R.; Antonino, D.L. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar]
- Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 2004, 3, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Hardman, W.E. Diet components can suppress inflammation and reduce cancer risk. Nutr. Res. Pract. 2014, 8, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Merchant, A.T.; Wirth, M.D.; Zhang, J.; Antwi, S.O.; Shoaibi, A.; Shivappa, N.; Stolzenberg-Solomon, R.Z.; Hebert, J.R.; Steck, S.E. Inflammatory potential of diet and risk of pancreatic cancer in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Int. J. Cancer 2018, 142, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Steck, S.E.; Shivappa, N.; Tabung, F.K.; Harmon, B.E.; Wirth, M.D.; Hurley, T.G.; Hebert, J.R. The Dietary Inflammatory Index: A New Tool for Assessing Diet Quality Based on Inflammatory Potential. Acad. Nutr. Diet. 2014, 49, 1–9. [Google Scholar]
- Shivappa, N.; Hebert, J.R.; Rosato, V.; Rossi, M.; Libra, M.; Montella, M.; Serraino, D.; Vecchia, C.L. Dietary inflammatory index and risk of bladder cancer in a large Italian case-control study. Urology 2017, 100, 84–89. [Google Scholar] [CrossRef]
- Fowler, M.E.; Akinyemiju, T.F. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int. J. Cancer 2017, 141, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Stefani, E.D.; Acosta, G.; Pellegrini, H.D.; Ronco, A.L.; Mendilaharsu, M.; Lando, G.; Luaces, M.E.; Silva, C. Dietary patterns and risk of cervical cancer: A case-control study in Uruguay. Obstet. Gynecol. 2011, 1, 25–30. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Quattrocchi, A.; Agrifoglio, O.; Scalisi, A.; Agodi, A. The Association of Dietary Patterns with High-Risk Human Papillomavirus Infection and Cervical Cancer: A Cross-Sectional Study in Italy. Nutrients 2018, 10, 469. [Google Scholar] [CrossRef]
- Gonzalez, C.A.; Travier, N.; Barroso, L.L.; Castellsague, X.; Bosch, F.X.; Roura, E.; Mesquita, H.B.; Palli, D.; Boeing, H.; Pala, V.; et al. Dietary factors and in situ and invasive cervical cancer risk in the European prospective investigation into cancer and nutrition study. Int. J. Cancer 2011, 129, 449–459. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Zhou, L.; Zhao, M.; Zhu, X. Effect of vitamin E supplementation on uterine cervical neoplasm: A meta-analysis of case-control studies. PLoS ONE 2017, 12, e0183395. [Google Scholar] [CrossRef]
- Labani, L.; Andallu, B.; Meera, M.; Asthana, S.; Satyanarayana, L. Food consumption pattern in cervical carcinoma patients and controls. Indian J. Med. Paediatr. Oncol. 2009, 30, 71–75. [Google Scholar] [PubMed]
- Jalali, S.; Shivappa, N.; Hébert, J.R.; Heidari, Z.; Hekmatdoost, A.; Rashidkhani, B. Dietary Inflammatory Index and Odds of Breast Cancer in a Case-Control Study from Iran. Nutr. Cancer 2018, 70, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; Bassett, J.K.; Shivappa, N.; Hébert, J.R.; English, D.R.; Giles, G.G.; Severi, G. Dietary inflammatory index, Mediterranean diet score, and lung cancer: A prospective study. Cancer Causes Control 2017, 27, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hébert, J.R.; Paddock, L.E.; Rodriguez, L.; Sara, H.; Olson, S.H.; Bandera, E.V. Dietary inflammatory index and ovarian cancer risk in a New Jersey case–control study. Nutr. J. 2018, 46, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Piyathilake, C.J.; Badiga, S.; Kabagambe, E.K.; Azuero, A.; Alvarez, R.D.; Johanning, G.L.; Partridge, E.E. A dietary pattern associated with LINE-1 methylation alters the risk of developing cervical intraepithelial neoplasia. Cancer Prev. Res. 2012, 5, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Salmean, G.; Acosta, M.; Arellano, F.; Altamirano, K.A.; Ruiz-Manon, V.; Ceballos-Reyes, G.M.; Fuchs-Tarlovsky, V. Differences in Dietary Components and Oxidative Stress Markers between Cervical Cancer Patients and Matched Controls. J. Nutr. Med. Diet Care 2015, 1, 1–4. [Google Scholar] [CrossRef]
- Vahid, F.; Shivappa, N.; Faghfoori, Z.; Khodabakhshi, A.; Zayeri, F.; Davoodi, S.H.; Hebert, J.R. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2018, 19, 1471–1477. [Google Scholar]
- Harmon, B.E.; Carter, M.; Hurley, T.G.; Shivappa, N.; Teas, J.; Hébert, J.R. Nutrient Composition and Anti-inflammatory Potential of a Prescribed Macrobiotic Diet. Nutr. Cancer 2015, 67, 933–940. [Google Scholar] [CrossRef]
- Koeneman, M.M.; Kruitwagen, R.F.; Nijman, H.W.; Slangen, B.F.; Van Gorp, T.; Kruse, A.J. Natural history of high-grade cervical intraepithelial neoplasia: A review of prognostic biomarkers. Expert Rev. Mol. Diagn. 2015, 15, 527–546. [Google Scholar] [CrossRef]
- Tomita, L.Y.; Longatto, F.A.; Costa, M.C.; Andreoli, M.A.; Villa, L.L.; Franco, E.L.; Cardoso, M.A. Diet and serum micronutrients in relation to cervical neoplasia and cancer among low-income Brazilian women. Int. J. Cancer 2010, 126, 703–714. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; González-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 160007. [Google Scholar] [CrossRef] [PubMed]
- Litjens, R.J.; Hopman, A.H.; van de Vijver, K.K.; Ramaekers, F.C.; Kruitwagen, R.F.; Kruse, A.J. Molecular biomarkers in cervical cancer diagnosis: A critical appraisal. Expert Opin. Med. Diagn. 2013, 7, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Hu, T.; Hang, C.Y.; Yang, R.; Li, X.; Chen, Z.L.; Mei, Y.D.; Zhang, Q.H.; Huang, K.C.; Xiang, Q.Y.; et al. Case-control study of diet in patients with cervical cancer or precancerosis in Wufeng, a high incidence region in China. Asian Pac. J. Cancer Prev. 2012, 13, 5299–5302. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Siegel, E.M.; Roe, D.J.; Ferreira, S.; Baggio, M.L.; Galan, L.; Duarte-Franco, E.; Villa, L.L.; Rohan, T.E.; Marshall, J.R.; et al. Dietary intake and risk of persistent human papillomavirus (HPV) infection: The Ludwig-McGill HPV Natural History Study. J. Infect. Dis. 2003, 188, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- García-Closas, R.; Castellsague, X.; Bosch, X.; González, C.A. The role of diet and nutrition in cervical carcinogenesis: A review of recent evidence. Int. J. Cancer 2005, 117, 629–637. [Google Scholar] [CrossRef]
- Szender, J.B.; Cannioto, R.; Gulati, N.R.; Schmitt, K.L.; Friel, G.; Minlikeeva, A.; Platek, A.; Gower, E.H.; Nagy, R.; Khachatryan, E.; et al. Impact of Physical Inactivity on Risk of Developing Cancer of the Uterine Cervix: A case-control study. J. Low Genit. Tract. Dis. 2016, 20, 230–233. [Google Scholar] [CrossRef]
- HuiJun, C.; Andy, H.L.; Linda, C.; Daniel, X.; Colin, W.B. Sittingtime, physical activity and cervical intraepithelial neoplasia in Australian women: A preliminary investigation. Health Promot. J. Aust. 2013, 24, 219–223. [Google Scholar]
- Lee, J.K.; So, K.A.; Piyathilake, C.J.; Kim, M.K. Mild Obesity, Physical Activity, Calorie Intake, and the Risks of Cervical Intraepithelial Neoplasia and Cervical Cancer. PLoS ONE 2013, 8, e66555. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, J.K.; Kim, T.J.; Kim, M.K. The association between fruit and vegetable consumption and HPV viral load in high-risk HPV-positive women with cervical epithelial neoplasia. Cancer Causes Control 2010, 21, 51–59. [Google Scholar] [CrossRef]
- Kim, Y.O.; Kim, M.K.; Lee, S.A.; Yoon, Y.M.; Sasaki, S. A study testing the usefulness of a dish-based food-frequency questionaire developed for epidemiological studies in Korea. Br. J. Nutr. 2009, 101, 1218–1227. [Google Scholar] [CrossRef]
- Development of Nutrient Database, Recipe and Portion Size; Korea Health Industry Development Institute, Ministry of Health and Welfare: Seoul, Korea, 2000.
Characteristics | Controls (n = 729) | Cases (n = 764) | p-Value a | |||
---|---|---|---|---|---|---|
CIN1 (n = 319) | CIN2/3 (n = 216) | CX CAN (n = 229) | ||||
DII | 0.5 (−1.3, 2.0) | 0.1 (−1.6, 1.6) | 1.1 (−0.7, 2.5) | 1.5 (−0.6, 3.0) | 0.0003 | |
Age (years) | 43 (35, 51) | 38 (31, 47) | 39 (32, 47) | 48 (42, 58) | 0.12 | |
BMI (kg/m2) | 21.9 (20.2, 24.1) | 21.4 (19.7, 23.5) | 21.4 (19.5, 23.7) | 23 (20.8, 25.3) | 0.30 | |
Energy (kcal/day) | 1850 (1512, 2178) | 1969 (1631, 2296) | 1826 (1585, 2238) | 1767 (1493, 2104) | 0.73 | |
Marital status | ||||||
Single | 78 (10.7) | 70 (21.9) | 29 (13.4) | 10 (4.5) | <0.0001 | |
Married | 568 (78.1) | 213 (66.8) | 156 (72.2) | 160 (69.9) | ||
Divorced | 81 (11.2) | 36 (11.3) | 31 (14.4) | 59 (25.6) | ||
Education level | ||||||
≤Middle School | 155 (21.4) | 54 (16.9) | 58 (27.0) | 115 (50.2) | <0.0001 | |
High School | 31 (42.9) | 138 (43.3) | 95 (44.2) | 87 (38.0) | ||
≥College | 260 (35.7) | 127 (39.8) | 62 (28.8) | 27 (11.8) | ||
Income (10,000 won) b | ||||||
Less than 200 | 194 (26.7) | 93 (29.2) | 70 (32.4) | 128 (55.8) | <0.0001 | |
200–500 | 417 (57.2) | 179 (56.3) | 130 (60.2) | 94 (41.1) | ||
More than 500 | 117 (16.1) | 46 (14.5) | 16 (7.4) | 7 (3.1) | ||
Smoking | ||||||
No | 631 (86.6) | 260 (81.5) | 178 (83.2) | 194 (84.7) | 0.28 | |
Yes | 98 (13.4) | 59 (18.5) | 36 (16.8) | 35 (15.3) | ||
Alcohol consumption | ||||||
No | 285 (39.2) | 77 (24.2) | 68 (31.5) | 106 (46.3) | 0.50 | |
Yes | 442 (60.8) | 241 (75.8) | 148 (68.5) | 123 (53.7) | ||
Physical activity c | ||||||
No | 595 (82.1) | 264 (82.8) | 194 (89.8) | 207 (91.2) | 0.0001 | |
Yes | 130 (17.9) | 55 (17.2) | 22 (10.2) | 20 (8.8) | ||
Pregnancy | ||||||
No | 127 (17.5) | 93 (29.3) | 48 (22.3) | 13 (5.7) | 0.01 | |
Yes | 601 (82.5) | 225 (70.7) | 167 (77.7) | 214 (94.3) | ||
Oral contraception | ||||||
No | 607 (83.4) | 263 (82.7) | 167 (77.7) | 182 (79.8) | 0.08 | |
Yes | 121 (16.6) | 55 (17.3) | 48 (22.3) | 46 (20.2) | ||
Menopausal status | ||||||
Pre/Peri | 481 (66.1) | 255 (80.2) | 171 (79.2) | 87 (38.2) | <0.0001 | |
Post | 247 (33.9) | 63 (19.8) | 45 (20.8) | 141 (61.8) |
Components | Controls (n = 729) | Cases | pa | pb | ||
---|---|---|---|---|---|---|
CIN1 (n = 319) | CIN2/3 (n = 216) | CX CAN (n = 229) | ||||
Pro–Inflammatory | ||||||
Energy (kcal) | 1850 (1512–2178) | 1969 (1631–2296) | 1826 (1586–2238) | 1766 (1493–2104) | 0.002 | 0.73 |
Carbohydrate (g) | 303 (246–353) | 314 (255–373) | 310 (257357) | 301 (247–351) | 0.13 | 0.69 |
Protein (g) | 65.7 (54.2–83.3) | 70.1 (57.3–88.6) | 66.9 (54.8–84.4) | 62.5 (47.5–81.2) | 0.003 | 0.26 |
Total fat (g) | 38.2 (28.3–49.5) | 41.1 (30.5–54.8) | 37.4 (27.9–52.5) | 33.3 (23–47.1) | <0.0001 | 0.02 |
Saturated fat(g) | 7.3 (4.9–10.3) | 7.7 (5.3–10.8) | 7.5 (4.6–10.3) | 6.4 (3.9–9.2) | 0.0004 | 0.05 |
Trans fat (g) | 0.1 (0–0.1) | 0.1 (0–0.2) | 0.1 (0–0.2) | 0.1 (0–0.2) | <0.0001 | 0.002 |
Cholesterol (mg) | 149 (99.9–224) | 170 (108–248) | 162 (104–248) | 126.9 (75.5–198) | <0.0001 | 0.16 |
Iron (mg) | 12.9 (10.3–16.7) | 13.6 (10.8–16.9) | 12.2 (9.8–15.7) | 11.9 (9.1–15.4) | 0.004 | 0.04 |
Vitamin B12 | 4.1 (2.6–5.8) | 4.1 (2.7–6.1) | 4 (2.5–5.9) | 3.5 (2.1–5) | 0.002 | 0.02 |
Anti–Inflammatory | ||||||
n3 fatty acids (g) | 1.7 (1.2–2.4) | 1.7 (1.2–2.4) | 1.6 (1.2–2.3) | 1.6 (1–2.2) | 0.03 | 0.02 |
n6 fatty acids (g) | 9.6 (7.3–1) | 9.8 (7.4–13.4) | 8.9 (6.9–12.8) | 8.4 (5.7–12.1) | 0.002 | 0.002 |
MUFA (g) | 8.9 (6.1–12.4) | 9.5 (6.4–12.9) | 9 (5.9–12.2) | 7.4 (4.6–11.1) | <0.0001 | 0.006 |
Vitamin A (RE) | 934 (698–1290) | 1024 (763–1423) | 805 (597–1136) | 764 (558–1106) | <0.0001 | <0.0001 |
Carotene (μg) | 5061 (3810–7187) | 5544 (3993–7618) | 4250 (3119–6021) | 4207 (3092–6028) | <0.0001 | <0.0001 |
Vitamin B1(mg) | 1.1 (0.9–1.4) | 1.2 (1–1.5) | 1.1 (0.9–1.4) | 1.1 (0.8–1.3) | <0.0001 | 0.08 |
Vitamin B2 (mg) | 1.2 (1–1.5) | 1.3 (1–1.6) | 1.2 (0.9–1.5) | 1.1 (0.8–1.4) | <0.0001 | 0.02 |
Niacin (mg) | 16.8 (13.7–21.2) | 18 (14.4–22.1) | 16.7 (14–20.9) | 15.6 (12–20.3) | 0.001 | 0.13 |
Vitamin B6 | 1.6 (1.3–2) | 1.7 (1.4–2.1) | 1.5 (1.2–1.9) | 1.5 (1.1–2) | 0.001 | 0.04 |
PUFA (g) | 7.1 (4.9–10.1) | 7.4 (4.9–10.2) | 6.8 (4.7–10.2) | 6.3 (4–8.8) | 0.001 | 0.003 |
Folic acid (μg) | 365 (274–486) | 372 (286–485) | 345 (260–504) | 333 (239–482) | 0.05 | 0.09 |
Vitamin C (mg) | 141 (106–203) | 156 (112–214) | 122 (86.5–168) | 116 (89.3–164) | <0.0001 | <0.0001 |
Vitamin D (μg) | 9.4 (6.3–14.2) | 11.1 (7.9–16.5) | 9.8 (6.3–13.5) | 7.7 (4.5–13.1) | <0.0001 | 0.12 |
Vitamin E (mg) | 7.4 (5.6–10.1) | 7.8 (5.9–10.3) | 6.7 (5.3–9.1) | 6.3 (4.6–9) | <0.0001 | 0.001 |
Fiber (g) | 8.4 (6.6–11.3) | 8.9 (6.8–11.8) | 7.6 (5.9–9.9) | 7.5 (5.9–10.1) | <0.0001 | 0.001 |
Magnesium (mg) | 200. (165–242) | 202.4 (165–246) | 197 (160–238) | 189 (152–237) | 0.08 | 0.06 |
Selenium (μg) | 41.7 (33.3–50.4) | 42.7 (32.1–52.1) | 43.7 (34.3–50.9) | 44 (34.3–52.9) | 0.23 | 0.05 |
Zinc (mg) | 6.6 (5.5–7.9) | 6.8 (5.7–8.2) | 6.8 (5.7–8) | 6.6 (5.1–7.8) | 0.21 | 0.82 |
Garlic (g) | 6.2 (4.6–8.5) | 7 (5.1–9.4) | 5.9 (4.3–8.1) | 5.6 (4.0–8.3) | <0.0001 | 0.04 |
Ginger (g) | 0.7 (0.5–1.1) | 0.8 (0.6–1.2) | 0.6 (0.4–0.9) | 0.6 (0.4–1.0) | <0.0001 | 0.02 |
Onion (g) | 12.2 (7.8–17.8) | 14.4 (9.7–19.9) | 12 (8.5–19.3) | 10.2 (6.3–16.8) | <0.0001 | 0.28 |
Pepper (g) | 6.5 (4.41–9) | 6.4 (4.5–9.9) | 5.1 (3.6–7.8) | 5.1 (3.6–7.8) | <0.0001 | <0.0001 |
Tea (g) | 16.9 (0–78.7) | 16.9 (0–78.7) | 21.4 (0–100) | 16.9 (0–80.2) | 0.12 | 0.21 |
Turmeric (mg) | 0.1 (0–0.2) | 0.1 (0–0.2) | 0.1 (0–0.2) | 0.03 (0–0.1) | <0.0001 | 0.10 |
Variables | Quintiles of Dietary Inflammatory Index | P for Trend c | DII Continuous | ||||
---|---|---|---|---|---|---|---|
Q1 (Anti-Inflammatory) | Q2 | Q3 | Q4 | Q5 (Proinflammatory) | |||
Minimally adjusted model a | |||||||
CIN1 | Ref | 0.96 (0.62–1.49) | 1.16 (0.73–1.83) | 0.89 (0.54–1.49) | 0.80 (0.45–1.42) | 0.46 | 0.99 (0.90–1.08) |
CIN2/3 | Ref | 1.34 (0.76–2.38) | 1.94 (1.08–3.50) | 2.70 (1.46–5.01) | 3.70 (1.90–7.22) | <0.0001 | 1.27 (1.15–1.41) |
CX CAN | Ref | 0.96 (0.55–1.68) | 1.01 (0.56–1.84) | 1.25 (0.68–2.31) | 2.63 (1.40–4.95) | 0.0003 | 1.18 (1.07–1.30) |
Fully adjusted model b | |||||||
CIN1 | Ref | 0.97 (0.62–1.51) | 1.23 (0.77–1.97) | 0.96 (0.57–1.62) | 0.86 (0.48–1.55) | 0.67 | 1.01 (0.91–1.10) |
CIN2/3 | Ref | 1.41 (0.78–2.54) | 1.89 (1.03–3.48) | 2.45 (1.28–4.66) | 3.14 (1.57–6.29) | 0.0005 | 1.23 (1.10–1.37) |
CX CAN | Ref | 0.93 (0.52–1.67) | 0.92 (0.49–1.73) | 0.99 (0.52–1.89) | 1.98 (1.01–3.88) | 0.02 | 1.12 (1.00–1.24) |
Variables | Quintiles of Dietary Inflammatory Index | P for Trends a | DII Continuous | P for Interaction b | ||||
---|---|---|---|---|---|---|---|---|
Q1 (Anti-Inflammatory) | Q2 | Q3 | Q4 | Q5 (Proinflammatory) | ||||
HPV infection | ||||||||
HPV positive | ||||||||
CIN1 | Ref | 0.85 (0.42–1.73) a | 1.19 (0.54–2.63) | 1.10 (0.45–2.66) | 0.93 (0.34–2.53) | 0.8646 | 1.00 (0.85–1.17) | 0.57 |
CIN2/3 | Ref | 2.67 (0.85–8.41) | 3.07 (0.87–10.8) | 3.89 (1.02–14.8) | 5.65 (1.38–23.2) | 0.0251 | 1.27 (1.02–1.57) | |
CX CAN | Ref | 0.48 (0.13–1.78) | 0.93 (0.24–3.65) | 0.05 (0.00–0.54) | 0.76 (0.15–3.77) | 0.5736 | 0.94 (0.72–1.23) | |
HPV negative | ||||||||
CIN1 | Ref | 0.99 (0.55–1.81) | 1.27 (0.69–2.34) | 0.95 (0.48–1.87) | 0.83 (0.39–1.77) | 0.5607 | 1.00 (0.89–1.13) | |
CIN2/3 | Ref | 1.08 (0.53–2.20) | 1.50 (0.73–3.06) | 2.07 (0.97–4.40) | 2.36 (1.04–5.35) | 0.0122 | 1.20 (1.06–1.36) | |
CX CAN | Ref | 1.27 (0.69–2.34) | 0.82 (0.39–1.69) | 1.23 (0.59–2.55) | 1.98 (0.91–4.30) | 0.0249 | 1.12 (0.99–1.27) | |
Physical activity d | ||||||||
No activity | ||||||||
CIN1 | Ref | 0.76 (0.46–1.27) | 1.28 (0.76–2.16) | 1.03 (0.58–1.83) | 0.95 (0.48–1.88) | 0.8287 | 1.02 (0.92–1.14) | 0.41 |
CIN2/3 | Ref | 1.33 (0.70–2.52) | 1.90 (0.98–3.66) | 2.60 (1.31–5.19) | 3.79 (1.81–7.93) | <0.0001 | 1.28 (1.14–1.43) | |
CX CAN | Ref | 0.83 (0.45–1.55) | 0.81 (0.41–1.58) | 0.95 (0.48–1.88) | 2.11 (1.04–4.28) | 0.0084 | 1.14 (1.02–1.73) | |
Activity | ||||||||
CIN1 | Ref | 1.94 (0.72–5.25) | 0.88 (0.27–2.88) | 0.51 (0.13–2.04) | 0.58 (0.12–2.71) | 0.1451 | 0.92 (0.72–1.17) | |
CIN2/3 | Ref | 1.98 (0.35–11.2) | 3.07 (0.42–22.4) | 4.61 (0.50–42.7) | 0.75 (0.04–14.9) | 0.7718 | 1.04 (0.69–1.57) | |
CX CAN | Ref | 2.19 (0.29–16.7) | 2.59 (0.30–22.5) | 4.10 (0.37–45.0) | 1.39 (0.10–19.1) | 0.8626 | 0.94 (0.63–1.42) |
DII Component | Anti-Inflammatory Food and Nutrient Parameters | P for Trends a | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Vitamin A | ||||||
CIN1 | Ref | 0.95 (0.61–1.48) b | 1.12 (0.73–1.73) | 0.87 (0.55–1.38) | 1.39 (0.91–2.13) | 0.19 |
CIN2/3 | Ref | 0.83 (0.54–1.29) | 0.65 (0.40–1.03) | 0.36 (0.21–0.63) | 0.40 (0.23–0.67) | <0.0001 |
CX CAN | Ref | 0.75 (0.48–1.18) | 0.42 (0.26–0.69) | 0.30 (0.17–0.52) | 0.65 (0.40–1.03) | 0.001 |
β-carotene | ||||||
CIN1 | Ref | 1.01 (0.65–1.56) | 1.03 (0.66–1.59) | 0.98 (0.63–1.53) | 1.41 (0.92–2.15) | 0.16 |
CIN2/3 | Ref | 0.76 (0.49–1.18) | 0.64 (0.40–1.01) | 0.35 (0.20–0.61) | 0.41 (0.24–0.69) | <0.0001 |
CX CAN | Ref | 0.96 (0.62–1.50) | 0.41 (0.25–0.69) | 0.35 (0.20–0.61) | 0.66 (0.41–1.06) | 0.0013 |
Vitamin B1 | ||||||
CIN1 | Ref | 1.74 (1.10–2.74) | 1.40 (0.87–2.24) | 1.36 (0.85–2.19) | 1.74 (1.09–2.77) | 0.14 |
CIN2/3 | Ref | 0.87 (0.54–1.40) | 1.00 (0.63–1.59) | 0.66 (0.40–1.10) | 0.46 (0.26–0.81) | 0.006 |
CX CAN | Ref | 0.66 (0.42–1.06) | 0.71 (0.44–1.13) | 0.52 (0.31–0.88) | 0.65 (0.39–1.07) | 0.03 |
Vitamin C | ||||||
CIN1 | Ref | 0.88 (0.57–1.36) | 0.95 (0.62–1.46) | 0.86 (0.55–1.34) | 1.29 (0.85–1.95) | 0.29 |
CIN2/3 | Ref | 1.15 (0.75–1.76) | 0.57 (0.35–0.94) | 0.49 (0.29–0.83) | 0.35 (0.20–0.62) | <0.0001 |
CX CAN | Ref | 0.96 (0.62–1.49) | 0.47 (0.28–0.78) | 0.31 (0.18–0.55) | 0.57 (0.35–0.92) | <0.0001 |
Fiber | ||||||
CIN1 | Ref | 0.81 (0.52–1.24) | 0.99 (0.65–1.50) | 0.83 (0.53–1.29) | 1.21 (0.79–1.85) | 0.42 |
CIN2/3 | Ref | 0.94 (0.61–1.45) | 0.69 (0.44–1.10) | 0.36 (0.20–0.63) | 0.40 (0.23–0.69) | <0.0001 |
CX CAN | Ref | 0.97 (0.61–1.56) | 0.68 (0.42–1.12) | 0.42 (0.24–0.72) | 0.62 (0.37–1.02) | 0.003 |
Garlic | ||||||
CIN1 | Ref | 1.10 (0.70–1.72) | 1.41 (0.90–2.19) | 1.15 (0.73–1.80) | 1.48 (0.95–2.31) | 0.10 |
CIN2/3 | Ref | 0.97 (0.61–1.53) | 0.72 (0.44–1.19) | 0.83 (0.52–1.34) | 0.51 (0.30–0.88) | 0.02 |
CX CAN | Ref | 1.05 (0.66–1.68) | 0.74 (0.45–1.22) | 0.58 (0.34–0.98) | 0.95 (0.59–1.55) | 0.24 |
Ginger | ||||||
CIN1 | Ref | 1.17 (0.74–1.86) | 1.61 (1.04–2.50) | 0.98 (0.61–1.57) | 1.72 (1.11–2.67) | 0.06 |
CIN2/3 | Ref | 1.13 (0.72–1.76) | 0.89 (0.55–1.42) | 0.46 (0.27–0.79) | 0.53 (0.31–0.91) | 0.0006 |
CX CAN | Ref | 1.08 (0.69–1.70) | 0.52 (0.31–0.88) | 0.34 (0.19–0.61) | 0.88 (0.55–1.41) | 0.03 |
Tea | ||||||
CIN1 | Ref | 0.86 (0.48–1.56) | 1.38 (0.95–2.00) | 1.10 (0.74–1.63) | 0.78 (0.51–1.18) | 0.55 |
CIN2/3 | Ref | 0.70 (0.34–1.48) | 1.18 (0.75–1.87) | 1.12 (0.69–1.80) | 1.66 (1.08–2.56) | 0.02 |
CX CAN | Ref | 0.71 (0.35–1.45) | 0.95 (0.60–1.50) | 1.15 (0.72–1.83) | 1.33 (0.85–2.06) | 0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreeja, S.R.; Lee, H.Y.; Kwon, M.; Shivappa, N.; Hebert, J.R.; Kim, M.K. Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study. Cancers 2019, 11, 1108. https://doi.org/10.3390/cancers11081108
Sreeja SR, Lee HY, Kwon M, Shivappa N, Hebert JR, Kim MK. Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study. Cancers. 2019; 11(8):1108. https://doi.org/10.3390/cancers11081108
Chicago/Turabian StyleSreeja, Sundara Raj, Hyun Yi Lee, Minji Kwon, Nitin Shivappa, James R. Hebert, and Mi Kyung Kim. 2019. "Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study" Cancers 11, no. 8: 1108. https://doi.org/10.3390/cancers11081108
APA StyleSreeja, S. R., Lee, H. Y., Kwon, M., Shivappa, N., Hebert, J. R., & Kim, M. K. (2019). Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study. Cancers, 11(8), 1108. https://doi.org/10.3390/cancers11081108