Abstract
We present an inverse designed metalens for long-wave infrared (LWIR) imaging tailored to consumer and Internet of Things (IoT) platforms. Conventional LWIR optics either rely on costly specialty materials or suffer from low efficiency and narrow fields of view (FoV), limiting scalability. Our approach integrates adjoint-based inverse design with fabrication-aware constraints and a cone-shaped source model that efficiently captures oblique incidence during optimization. The resulting multi-level metalens achieves a wide FoV up to while maintaining robust focusing efficiency and stable angle-to-position mapping on low-power microbolometer arrays representative of edge devices. We further demonstrate application-level imaging on microbolometer arrays, showing that the proposed metalens delivers a substantially wider FoV than a commercial narrow FoV lens while meeting low-resolution, low-cost, and low-power constraints for edge LWIR modules. By eliminating bulky multi-element stacks and reducing cost and form factor, the proposed design provides a practical pathway to compact, energy-efficient LWIR modules for consumer applications such as occupancy analytics, smart-building automation, mobile sensing, and outdoor fire surveillance.