Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications
Abstract
:1. Introduction
2. Working Mechanism of TENGs
3. Material Choices for TENGs
3.1. PFAS-Containing Materials
Environmental and Health Concerns of PFAS
- Decreased antibody response;
- Increased risk of certain cancers;
- Altered liver enzyme levels;
- Increased risk of pregnancy-induced hypertension.
- Consumption of contaminated food, particularly seafood [61];
- Ingestion of contaminated drinking water, especially near contaminated sites [62];
- Inhalation of indoor air and dust, particularly in environments containing PFAS-treated products such as carpets, water-repellent textiles, and upholstery [63];
- Dermal absorption through skin contact is an emerging concern that has been historically underestimated [64].
3.2. PFAS-Free Materials
3.2.1. Natural Polymers
3.2.2. Synthetic Polymers
3.2.3. MXenes
4. PFAS-Free TENGs for Sports Applications
4.1. Wearables and e-Skins
4.1.1. Athletics
4.1.2. Swimming
4.1.3. Team Sports
4.1.4. Respiratory and Vital Monitoring
4.2. Sports Accessories
4.2.1. Table Tennis
4.2.2. Winter Sports
4.2.3. Boxing
4.2.4. Triple Jump and Running
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Ahmadi, A.; Mitchell, E.; Richter, C.; Destelle, F.; Gowing, M.; O’Connor, N.E.; Moran, K. Toward Automatic Activity Classification and Movement Assessment during a Sports Training Session. IEEE Internet Things J. 2015, 2, 23–32. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, Z.; Yue, S.; Liu, Y.; Li, Y.; Yu, Z.-Z.; Yang, D. Self-Powered, Self-Healing, and Anti-Freezing Triboelectric Sensors for Violation Detection in Sport Events. Nano Energy 2024, 122, 109276. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a Method for External Workload Monitoring in Invasion Team Sports. A Systematic Review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef]
- Theodoropoulos, J.S.; Bettle, J.; Kosy, J.D. The Use of GPS and Inertial Devices for Player Monitoring in Team Sports: A Review of Current and Future Applications. Orthop. Rev. 2020, 12, 7863. [Google Scholar] [CrossRef]
- Bairagi, S.; Shahid-ul-Islam; Shahadat, M.; Mulvihill, D.M.; Ali, W. Mechanical Energy Harvesting and Self-Powered Electronic Applications of Textile-Based Piezoelectric Nanogenerators: A Systematic Review. Nano Energy 2023, 111, 108414. [Google Scholar] [CrossRef]
- Tabaie, Z.; Omidvar, A. Human Body Heat-Driven Thermoelectric Generators as a Sustainable Power Supply for Wearable Electronic Devices: Recent Advances, Challenges, and Future Perspectives. Heliyon 2023, 9, e14707. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, S.; Liu, W.; Xu, F. A Review of Evaluation, Principles, and Technology of Wearable Electromagnetic Harvesters. ACS Appl. Electron. Mater. 2023, 5, 4035–4050. [Google Scholar] [CrossRef]
- Sun, F.; Zhu, Y.; Jia, C.; Zhao, T.; Chu, L.; Mao, Y. Advances in Self-Powered Sports Monitoring Sensors Based on Triboelectric Nanogenerators. J. Energy Chem. 2023, 79, 477–488. [Google Scholar] [CrossRef]
- Torres, F.G.; Gonzales, K.N.; Troncoso, O.P.; Corman-Hijar, J.I.; Cornejo, G. A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Appl. Electron. Mater. 2023, 5, 3546–3559. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; Cai, J. A Foot Pressure Sensor Based on Triboelectric Nanogenerator for Human Motion Monitoring. Microsyst. Technol. 2021, 27, 3507–3512. [Google Scholar] [CrossRef]
- Huang, L.; Bu, X.; Zhang, P.; Zhang, K.; Li, Y.; Wang, D.; Ding, C. Self-Powered Motion State Monitoring System Based on Combined Triboelectric Nanogenerators for Human Physiological Signal Monitoring and Energy Collection. Microelectron. Eng. 2024, 284–285, 112127. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Li, J. The Triboelectric Sensor Based on PDMS/SGO for Human Running Posture and Physical Fitness Health Monitoring. Mater. Technol. 2023, 38, 2254613. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, X.J.; Geng, W.P.; Mu, J.L.; Zhang, L.; Wang, X.D.; He, J.; Xiong, J.J.; Chou, X.J. Human Movement Monitoring and Behavior Recognition for Intelligent Sports Using Customizable and Flexible Triboelectric Nanogenerator. Sci. China Technol. Sci. 2022, 65, 826–836. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.; Xu, L.; Wang, A.C.; Han, K.; Jiang, T.; Lai, Q.; Bai, Y.; Tang, W.; Fan, F.R.; et al. Flexible and Durable Wood-Based Triboelectric Nanogenerators for Self-Powered Sensing in Athletic Big Data Analytics. Nat. Commun. 2019, 10, 5147. [Google Scholar] [CrossRef]
- Hao, Y.; Wen, J.; Gao, X.; Nan, D.; Pan, J.; Yang, Y.; Chen, B.; Wang, Z.L. Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano 2022, 16, 1271–1279. [Google Scholar] [CrossRef]
- Trinh, V.L.; Chung, C.K. Advances in Triboelectric Nanogenerators for Sustainable and Renewable Energy: Working Mechanism, Tribo-Surface Structure, Energy Storage-Collection System, and Applications. Processes 2023, 11, 2796. [Google Scholar] [CrossRef]
- ECHA. Annex XV Restriction Report: Proposal for a Restriction. Available online: https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b49b9fd43aea (accessed on 24 October 2024).
- Cao, M.; Chen, Y.; Sha, J.; Xu, Y.; Chen, S.; Xu, F. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting. Polymers 2024, 16, 1784. [Google Scholar] [CrossRef]
- Dong, Y.; Mallineni, S.S.K.; Maleski, K.; Behlow, H.; Mochalin, V.N.; Rao, A.M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators. Nano Energy 2018, 44, 103–110. [Google Scholar] [CrossRef]
- Li, J.; Shepelin, N.A.; Sherrell, P.C.; Ellis, A.V. Poly(Dimethylsiloxane) for Triboelectricity: From Mechanisms to Practical Strategies. Chem. Mater. 2021, 33, 4304–4327. [Google Scholar] [CrossRef]
- Niu, Z.; Cheng, W.; Cao, M.; Wang, D.; Wang, Q.; Han, J.; Long, Y.; Han, G. Recent Advances in Cellulose-Based Flexible Triboelectric Nanogenerators. Nano Energy 2021, 87, 106175. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, L.; Yu, Y.; Wang, D.; Sun, W.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H.; et al. Liquid-Liquid Triboelectric Nanogenerator Based on the Immiscible Interface of an Aqueous Two-Phase System. Nat. Commun. 2022, 13, 5316. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, D.; Zhang, D.; Li, Z.; Wu, H.; Zhou, Y.; Wang, B.; Guo, H.; Peng, Y. Solid-Liquid Triboelectric Nanogenerator Based on Vortex-Induced Resonance. Nanomaterials 2023, 13, 1036. [Google Scholar] [CrossRef]
- Wang, F.; Yang, P.; Tao, X.; Shi, Y.; Li, S.; Liu, Z.; Chen, X.; Wang, Z.L. Study of Contact Electrification at Liquid-Gas Interface. ACS Nano 2021, 15, 18206–18213. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 2014, 14, 161–192. [Google Scholar] [CrossRef]
- Akram, W.; Chen, Q.; Xia, G.; Fang, J. A Review of Single Electrode Triboelectric Nanogenerators. Nano Energy 2023, 106, 108043. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.; Park, S.; Park, C.; Park, C.; Choi, H.J. Effect of the Relative Permittivity of Oxides on the Performance of Triboelectric Nanogenerators. RSC Adv. 2017, 7, 49368–49373. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology and Self-Powered Sensors—Principles, Problems and Perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Y.; Xu, L.; Zhao, M.; Shi, M.; Wang, Z.L.; Lu, X. Triboelectric Nanogenerators with Simultaneous Outputs in Both Single-Electrode Mode and Freestanding-Triboelectric-Layer Mode. Nano Energy 2019, 66, 104169. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, W.; Zi, Y.; Lu, Y.; Ji, L.; Liu, F.; Wu, C.; Wang, Z.L. Triboelectric Microplasma Powered by Mechanical Stimuli. Nat. Commun. 2018, 9, 3733. [Google Scholar] [CrossRef]
- Zhao, M.; Nie, J.; Li, H.; Xia, M.; Liu, M.; Zhang, Z.; Liang, X.; Qi, R.; Wang, Z.L.; Lu, X. High-Frequency Supercapacitors Based on Carbonized Melamine Foam as Energy Storage Devices for Triboelectric Nanogenerators. Nano Energy 2019, 55, 447–453. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Zhang, W.; Du, X.; Zhang, Y.; Gong, S.; Ren, K.; Sun, Q.; Wang, Z.L. Hybrid Piezo/Triboelectric Nanogenerator for Highly Efficient and Stable Rotation Energy Harvesting. Nano Energy 2019, 57, 440–449. [Google Scholar] [CrossRef]
- Davoudi, M.; An, C.Y.; Kim, D.E. A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. Int. J. Precis. Eng. Manuf.-Green. Tech. 2023, 11, 1317–1340. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material Choices for Triboelectric Nanogenerators: A Critical Review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Tantardini, C.; Oganov, A.R. Thermochemical Electronegativities of the Elements. Nat. Commun. 2021, 12, 2087. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; Dewitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- And Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Krafft, M.P.; Riess, J.G. Selected Physicochemical Aspects of Poly- and Perfluoroalkylated Substances Relevant to Performance, Environment and Sustainability-Part One. Chemosphere 2015, 129, 4–19. [Google Scholar] [CrossRef]
- Meng, X.S.; Li, H.Y.; Zhu, G.; Wang, Z.L. Fully Enclosed Bearing-Structured Self-Powered Rotation Sensor Based on Electrification at Rolling Interfaces for Multi-Tasking Motion Measurement. Nano Energy 2015, 12, 606–611. [Google Scholar] [CrossRef]
- He, C.; Zhu, W.; Gu, G.Q.; Jiang, T.; Xu, L.; Chen, B.D.; Han, C.B.; Li, D.; Wang, Z.L. Integrative Square-Grid Triboelectric Nanogenerator as a Vibrational Energy Harvester and Impulsive Force Sensor. Nano Res. 2018, 11, 1157–1164. [Google Scholar] [CrossRef]
- Lu, Z.; Wen, Y.; Yang, X.; Li, D.; Liu, B.; Zhang, Y.; Zhu, J.; Zhu, Y.; Zhang, S.; Mao, Y. A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator. Electronics 2023, 12, 320. [Google Scholar] [CrossRef]
- Sun, F.; Zhu, Y.; Jia, C.; Ouyang, B.; Zhao, T.; Li, C.; Ba, N.; Li, X.; Chen, S.; Che, T.; et al. A Flexible Lightweight Triboelectric Nanogenerator for Protector and Scoring System in Taekwondo Competition Monitoring. Electronics 2022, 11, 1306. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Zou, H.; Lin, Z.; Liu, G.; Wang, Z.L. Multifunctional Sensor Based on Translational-Rotary Triboelectric Nanogenerator. Adv. Energy Mater. 2019, 9, 1901124. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C.; Wang, Z.L. UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Ramakrishna, S.; Xu, L. Hybrid-Structured Electrospun Nanofiber Membranes as Triboelectric Nanogenerators for Self-Powered Wearable Electronics. ACS Sustain. Chem. Eng. 2023, 11, 14020–14030. [Google Scholar] [CrossRef]
- Jao, Y.T.; Yang, P.K.; Chiu, C.M.; Lin, Y.J.; Chen, S.W.; Choi, D.; Lin, Z.H. A Textile-Based Triboelectric Nanogenerator with Humidity-Resistant Output Characteristic and Its Applications in Self-Powered Healthcare Sensors. Nano Energy 2018, 50, 513–520. [Google Scholar] [CrossRef]
- Kwak, S.S.; Kim, H.; Seung, W.; Kim, J.; Hinchet, R.; Kim, S.W. Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures. ACS Nano 2017, 11, 10733–10741. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wu, Y.; Feng, Y.; Dong, Y.; Liu, Y.; Peng, J.; Wang, N.; Xu, S.; Wang, D. Highly Wearable, Machine-Washable, and Self-Cleaning Fabric-Based Triboelectric Nanogenerator for Wireless Drowning Sensors. Nano Energy 2022, 93, 106835. [Google Scholar] [CrossRef]
- Sun, N.; Wang, G.G.; Zhao, H.X.; Cai, Y.W.; Li, J.Z.; Li, G.Z.; Zhang, X.N.; Wang, B.L.; Han, J.C.; Wang, Y.; et al. Waterproof, Breathable and Washable Triboelectric Nanogenerator Based on Electrospun Nanofiber Films for Wearable Electronics. Nano Energy 2021, 90, 106639. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, J. High Output Triboelectric Nanogenerator Based on PTFE and Cotton for Energy Harvester and Human Motion Sensor. Curr. Appl. Phys. 2021, 22, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Wang, Y.; Wu, Z.; Sun, H.; Yang, Y.; Zhang, L.; Kou, X.; Li, P.; Kang, W.; et al. A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene (PTFE) Particles. Energy Environ. Mater. 2024, 8, e12814. [Google Scholar] [CrossRef]
- Thakur, D.; Seo, S.; Hyun, J. Three-Dimensional Triboelectric Nanogenerator with Carboxymethylated Cellulose Nanofiber and Perfluoroalkoxy Films. J. Ind. Eng. Chem. 2023, 123, 220–229. [Google Scholar] [CrossRef]
- Cui, S.; Liu, D.; Yang, P.; Liu, J.; Gao, Y.; Zhao, Z.; Zhou, L.; Zhang, J.; Wang, Z.L.; Wang, J. Triboelectric-Material-Pairs Selection for Direct-Current Triboelectric Nanogenerators. Nano Energy 2023, 112, 108509. [Google Scholar] [CrossRef]
- Sala de Medeiros, M.; Chanci, D.; Moreno, C.; Goswami, D.; Martinez, R.V. Waterproof, Breathable, and Antibacterial Self-Powered e-Textiles Based on Omniphobic Triboelectric Nanogenerators. Adv. Funct. Mater. 2019, 29, 1904350. [Google Scholar] [CrossRef]
- Adeogun, A.O.; Chukwuka, A.V.; Ibor, O.R.; Asimakopoulos, A.G.; Zhang, J.; Arukwe, A. Occurrence, Bioaccumulation and Trophic Dynamics of per- and Polyfluoroalkyl Substances in Two Tropical Freshwater Lakes. Environ. Pollut. 2024, 346, 123575. [Google Scholar] [CrossRef]
- Grandjean, P.; Andersen, E.W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Weihe, P.; Heilmann, C. Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JAMA 2012, 307, 391–397. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Division on Earth and Life Studies; Board on Population Health and Public Health Practice; Board on Environmental Studies and Toxicology; Committee on the Guidance on PFAS Testing and Health Outcomes. Guidance on PFAS Exposure, Testing, and Clinical Follow-Up; National Academies Press: Washington, DC, USA, 2022; ISBN 978-0-309-48244-8. [Google Scholar]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and Global Survey of Perfluoroalkyl Substances in Surface Soils: Distribution Patterns and Mode of Occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef]
- Teunen, L.; Bervoets, L.; Belpaire, C.; De Jonge, M.; Groffen, T. PFAS Accumulation in Indigenous and Translocated Aquatic Organisms from Belgium, with Translation to Human and Ecological Health Risk. Environ. Sci. Eur. 2021, 33, 39. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Lindh, C.H.; Rylander, L.; Toft, G.; Axmon, A.; Rignell-Hydbom, A.; Giwercman, A.; Pedersen, H.S.; Góalczyk, K.; Ludwicki, J.K.; Zvyezday, V.; et al. Blood Serum Concentrations of Perfluorinated Compounds in Men from Greenlandic Inuit and European Populations. Chemosphere 2012, 88, 1269–1275. [Google Scholar] [CrossRef]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Begley, T.H.; Hsu, W.; Noonan, G.; Diachenko, G. Migration of Fluorochemical Paper Additives from Food-Contact Paper into Foods and Food Simulants. Food Addit. Cont.—Part. A 2008, 25, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Ragnarsdóttir, O.; Abou-Elwafa Abdallah, M.; Harrad, S. Dermal Bioavailability of Perfluoroalkyl Substances Using in Vitro 3D Human Skin Equivalent Models. Environ. Int. 2024, 188, 108772. [Google Scholar] [CrossRef] [PubMed]
- Ragnarsdóttir, O.; Abdallah, M.A.E.; Harrad, S. Dermal Uptake: An Important Pathway of Human Exposure to Perfluoroalkyl Substances? Environ. Pollut. 2022, 307, 119478. [Google Scholar] [CrossRef]
- Lohmann, R.; Cousins, I.T.; Dewitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef]
- Capillo, G.; Savoca, S.; Panarello, G.; Mancuso, M.; Branca, C.; Romano, V.; D’Angelo, G.; Bottari, T.; Spanò, N. Quali-Quantitative Analysis of Plastics and Synthetic Microfibers Found in Demersal Species from Southern Tyrrhenian Sea (Central Mediterranean). Mar. Pollut. Bull. 2020, 150, 110596. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, G.; Zhang, L.; Lei, Y. Breathable, Transparent, Waterproof, Flexible and High-Output Triboelectric Nanogenerators for Sport Monitoring and Speech Recognition. J. Mater. Chem. A Mater. 2024, 12, 495–508. [Google Scholar] [CrossRef]
- Tian, X.; Hua, T. Antibacterial, Scalable Manufacturing, Skin-Attachable, and Eco-Friendly Fabric Triboelectric Nanogenerators for Self-Powered Sensing. ACS Sustain. Chem. Eng. 2021, 9, 13356–13366. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, C.; Liu, Z.; Fu, X.; Peng, L.M.; Hu, Y.; Zheng, Z. Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Adv. Mater. 2016, 28, 10267–10274. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; Mosa, I.M.; Elsanadidy, E.; Phadke, G.S.; El-Kady, M.F.; Rusling, J.F.; Selvaganapathy, P.R.; Kaner, R.B. All Printable Snow-Based Triboelectric Nanogenerator. Nano Energy 2019, 60, 17–25. [Google Scholar] [CrossRef]
- Peng, F.; Liu, D.; Zhao, W.; Zheng, G.; Ji, Y.; Dai, K.; Mi, L.; Zhang, D.; Liu, C.; Shen, C. Facile Fabrication of Triboelectric Nanogenerator Based on Low-Cost Thermoplastic Polymeric Fabrics for Large-Area Energy Harvesting and Self-Powered Sensing. Nano Energy 2019, 65, 104068. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Li, J. A Self-Powered Triboelectric Sensor for Basketball Monitoring. AIP Adv. 2024, 14, 015356. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, Q.; Liu, H. A Flat-Structured Triboelectric Nanogenerator Based on PDMS/MXene for Mechanical Energy Harvesting Boxing Training Monitoring. AIP Adv. 2024, 14, 115119. [Google Scholar] [CrossRef]
- Anwer, S.; Umair Khan, M.; Mohammad, B.; Rezeq, M.; Cantwell, W.; Gan, D.; Zheng, L. Engineering of Electrodes with 2D Ti3C2Tx-MXene Sheets and Chloride Salt for Robust and Flexible High Electrical Power Triboelectric Nanogenerator. Chem. Eng. J. 2023, 470, 144281. [Google Scholar] [CrossRef]
- Kim, I.; Jeon, H.; Kim, D.; You, J.; Kim, D. All-in-One Cellulose Based Triboelectric Nanogenerator for Electronic Paper Using Simple Filtration Process. Nano Energy 2018, 53, 975–981. [Google Scholar] [CrossRef]
- Nie, S.; Fu, Q.; Lin, X.; Zhang, C.; Lu, Y.; Wang, S. Enhanced Performance of a Cellulose Nanofibrils-Based Triboelectric Nanogenerator by Tuning the Surface Polarizability and Hydrophobicity. Chem. Eng. J. 2021, 404, 126512. [Google Scholar] [CrossRef]
- Fang, Z.; Lou, W.; Zhang, W.; Guan, X.; He, J.; Lin, J. Modulating Crystallinity and Dielectric Constant of Chitosan Film for Triboelectric Polarity Shift and Performance Enhancement in Triboelectric Nanogenerators. Nano Energy 2023, 117, 108923. [Google Scholar] [CrossRef]
- Fang, Z.; Guan, X.; He, J. Effectively Altering the Triboelectric Charging Behavior of Chitosan Films via Tannic Acid Surface Modification. Nano Energy 2025, 133, 110498. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, J.; Li, X.; Wu, Y.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-Scale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Self-Powered Sleeping Monitoring. Adv. Funct. Mater. 2018, 28, 1704112. [Google Scholar] [CrossRef]
- Mudgal, T.; Tiwari, M.; Bharti, D. Polystyrene-Based Triboelectric Nanogenerators for Self-Powered Multifunctional Human Activity Monitoring. ACS Appl. Energy Mater. 2022, 5, 15881–15889. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, G.G.; Cai, Y.W.; Sun, N.; Li, F.; Zhou, H.L.; Zhao, H.X.; Zhang, X.N.; Han, J.C.; Yang, Y. A High-Performance Transparent and Flexible Triboelectric Nanogenerator Based on Hydrophobic Composite Films. Nano Energy 2020, 75, 104918. [Google Scholar] [CrossRef]
- Park, H.W.; Huynh, N.D.; Kim, W.; Hwang, H.J.; Hong, H.; Choi, K.H.; Song, A.; Chung, K.B.; Choi, D. Effects of Embedded TiO2-x Nanoparticles on Triboelectric Nanogenerator Performance. Micromachines 2018, 9, 407. [Google Scholar] [CrossRef]
- Chen, J.; Guo, H.; He, X.; Liu, G.; Xi, Y.; Shi, H.; Hu, C. Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Appl. Mater. Interfaces 2016, 8, 736–744. [Google Scholar] [CrossRef]
- Li, W.; Xiang, Y.; Zhang, W.; Loos, K.; Pei, Y. Ordered Mesoporous SiO2 Nanoparticles as Charge Storage Sites for Enhanced Triboelectric Nanogenerators. Nano Energy 2023, 113, 108539. [Google Scholar] [CrossRef]
- Vafaiee, M.; Ejehi, F.; Mohammadpour, R. CNT-PDMS Foams as Self-Powered Humidity Sensors Based on Triboelectric Nanogenerators Driven by Finger Tapping. Sci. Rep. 2023, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Mhin, S.; Han, H.S.; Kwon, O.; Kim, W.B.; Song, T.; Kang, S.; Kim, K.M. A High-Performance PDMS-Based Triboelectric Nanogenerator Fabricated Using Surface-Modified Carbon Nanotubes. J. Mater. Chem. A Mater. 2022, 10, 1299–1308. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yin, L.H.; Tang, M.; Pu, Y.P. ZnO, TiO2, SiO2, and Al2O3 Nanoparticles-Induced Toxic Effects on Human Fetal Lung Fibroblasts. Biomed. Environ. Sci. 2011, 24, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Busolo, T.; Ura, D.P.; Kim, S.K.; Marzec, M.M.; Bernasik, A.; Stachewicz, U.; Kar-Narayan, S. Surface Potential Tailoring of PMMA Fibers by Electrospinning for Enhanced Triboelectric Performance. Nano Energy 2019, 57, 500–506. [Google Scholar] [CrossRef]
- Parandeh, S.; Kharaziha, M.; Karimzadeh, F. An Eco-Friendly Triboelectric Hybrid Nanogenerators Based on Graphene Oxide Incorporated Polycaprolactone Fibers and Cellulose Paper. Nano Energy 2019, 59, 412–421. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Mohan, R.; Ali, F. The Future of Energy Harvesting: A Brief Review of MXenes-Based Triboelectric Nanogenerators. Polym. Adv. Technol. 2023, 34, 3193–3209. [Google Scholar] [CrossRef]
- Habib, T.; Zhao, X.; Shah, S.A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J.L.; Radovic, M.; Green, M.J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films. NPJ 2D Mater. Appl. 2019, 3, 8. [Google Scholar] [CrossRef]
- Amani, A.M.; Tayebi, L.; Vafa, E.; Abbasi, M.; Vaez, A.; Kamyab, H.; Chelliapan, S.; Azizli, M.J.; Bazargan-Lari, R. On the Horizon of Greener Pathways to Travel into a Greener Future Portal: Green MXenes, Environment-Friendly Synthesis, and Their Innovative Applications. J. Clean. Prod. 2024, 436, 140606. [Google Scholar] [CrossRef]
- Saxena, S.; Johnson, M.; Dixit, F.; Zimmermann, K.; Chaudhuri, S.; Kaka, F.; Kandasubramanian, B. Thinking Green with 2-D and 3-D MXenes: Environment Friendly Synthesis and Industrial Scale Applications and Global Impact. Renew. Sustain. Energy Rev. 2023, 178, 113238. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X.; Hua, W.; Wang, S.; Wang, S.; Yu, J.; Wang, J.; Yong, Q.; Chu, F.; Lu, C. Self-Strengthening and Conductive Cellulose Composite Hydrogel for High Sensitivity Strain Sensor and Flexible Triboelectric Nanogenerator. Int. J. Biol. Macromol. 2023, 248, 125900. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Tan, P.; Shi, B.; Ouyang, H.; Jiang, D.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X.; et al. A Bionic Stretchable Nanogenerator for Underwater Sensing and Energy Harvesting. Nat. Commun. 2019, 10, 2695. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, X.; Wang, K.; He, D.; Yuan, Z.; Xu, J.; Wu, Z.; Wang, Z.L. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337. [Google Scholar] [CrossRef]
- Tan, D.; Xu, B.; Gao, Y.; Tang, Y.; Liu, Y.; Yang, Y.; Li, Z. Breathable Fabric-Based Triboelectric Nanogenerators with Open-Porous Architected Polydimethylsiloxane Coating for Wearable Applications. Nano Energy 2022, 104, 107873. [Google Scholar] [CrossRef]
- Gogurla, N.; Roy, B.; Park, J.Y.; Kim, S. Skin-Contact Actuated Single-Electrode Protein Triboelectric Nanogenerator and Strain Sensor for Biomechanical Energy Harvesting and Motion Sensing. Nano Energy 2019, 62, 674–681. [Google Scholar] [CrossRef]
- Patel, D.; Shah, D.; Shah, M. The Intertwine of Brain and Body: A Quantitative Analysis on How Big Data Influences the System of Sports. Ann. Data Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Seçkin, A.Ç.; Ateş, B.; Seçkin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, Y.; Sun, C.; Zhao, X.; Jiao, C.; Du, A.; Wang, Q.; Mao, Y.; Liu, B. Wearable Biosensors for Real-Time Sweat Analysis and Body Motion Capture Based on Stretchable Fiber-Based Triboelectric Nanogenerators. Biosens. Bioelectron. 2022, 205, 114115. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, Y.; Sun, N.; Li, G.; Liu, Y.; Chen, C.; Shi, J.; Xie, L.; Jiang, H.; Bao, D.; et al. A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors. Adv. Funct. Mater. 2018, 28, 1803684. [Google Scholar] [CrossRef]
- Yang, X. A Novel Triboelectric Nanogenerator Based on PDMS/Carbon for Energy Harvesting and Long-Distance Running Monitoring. J. Electron. Mater. 2023, 52, 1534–1540. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, Z.; Zhang, B.; Wang, Y.C.; Guo, H.; Liu, G.; Chen, C.; Chen, Y.; Yang, J.; Wang, Z.L. A Triboelectric Nanogenerator-Based Smart Insole for Multifunctional Gait Monitoring. Adv. Mater. Technol. 2019, 4, 1800360. [Google Scholar] [CrossRef]
- Chang, S.; Liu, F.; Chen, J.; Xia, L.; Zhou, H.; Jiang, J.; Dong, K.; Zhang, C.; Wu, Y.; Chen, J.; et al. An Epidermal Electrode Based Triboelectric Walking Energy Harvester for Wearable Wireless Sensing Applications. Sci. China Technol. Sci. 2024, 67, 949–957. [Google Scholar] [CrossRef]
- Fan, W.; He, Q.; Meng, K.; Tan, X.; Zhou, Z.; Zhang, G.; Yang, J.; Lin Wang, Z. Machine-Knitted Washable Sensor Array Textile for Precise Epidermal Physiological Signal Monitoring. Sci. Adv. 2020, 6, eaay2840. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wen, S.; Wei, Y.; Ruan, L.; Li, F.; Cao, X.; Wang, Z.L.; Zhang, L. A Volatile Organic Compound Free Unibody Triboelectric Nanogenerator and Its Application as a Smart Green Track. Nano Energy 2023, 105, 108001. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Panda, S.; Rajaitha, M.; Panigrahi, B.K.; Rubahn, H.G.; Mishra, Y.K.; Kim, H.J. Waste Textiles as the Versatile Triboelectric Energy-Harvesting Platform for Self-Powered Applications in Sports and Athletics. Nano Energy 2022, 97, 107208. [Google Scholar] [CrossRef]
- Xu, J.; Wei, X.; Li, R.; Shi, Y.; Peng, Y.; Wu, Z.; Wang, Z.L. Intelligent Self-Powered Sensor Based on Triboelectric Nanogenerator for Take-off Status Monitoring in the Sport of Triple-Jumping. Nano Res. 2022, 15, 6483–6489. [Google Scholar] [CrossRef]
- Du, T.; Chen, Z.; Dong, F.; Cai, H.; Zou, Y.; Zhang, Y.; Sun, P.; Xu, M. Advances in Green Triboelectric Nanogenerators. Adv. Funct. Mater. 2024, 34, 2313794. [Google Scholar] [CrossRef]
- Lv, Q.; Ma, X.; Zhang, C.; Han, J.; He, S.; Liu, K.; Jiang, S. Nanocellulose-Based Nanogenerators for Sensor Applications: A Review. Int. J. Biol. Macromol. 2024, 259, 129268. [Google Scholar] [CrossRef] [PubMed]
Application | Triboelectric Materials | Operation Mode | Power Density (mW/cm2) | Load Resistance (MΩ) | Ref. |
---|---|---|---|---|---|
Scoring system for taekwondo | PTFE and PU | CS | 0.01 | 7 | [42] |
Gait | Chitosan/glycerol and PTFE | CS | 0.26 | 1000 | [46] |
Smart textile | Fluorinated silk and PA | CS | 0.21 | 10 | [48] |
Human motion | PLA/chitosan/aloin and TPU/CB-P/PVDF-TrFE | CS | 0.0054 | 10 | [45] |
Smart saddle | FEP, Cu and Al | CS | 0.00013 | 60 | [15] |
Human motion | PAN/TiO2/PTFE and PA | CS | 0.049 | 4160 | [44] |
E-textile | PTFE and silane treated cotton | CS | 0.6 | 1 | [54] |
Human motion | PA66/MWCNTs and PVDF | CS | 0.13 | 24 | [49] |
Application | Triboelectric Materials | Operation Mode | Power Density (mW/cm2) | Load Resistance (MΩ) | Ref. |
---|---|---|---|---|---|
Human motion and speech recognition | Nitrocellulose/silicon resin | SE | 0.038 | 100 | [68] |
Human motion | Tencel/chitosan | SE | 0.0016 | 70 | [69] |
Breathing | Cu-PET and PI-Cu-PET | CS | 0.0033 | 60 | [70] |
Human motion | Silicone and snow | SE | 0.00002 | 50 | [71] |
Pugilism and pedestrian volume | PA and PP | CS | 0.09 | 70 | [72] |
Human posture | PET and PDMS/MXene/BaTiO3 | CS | 0.24 | 70 | [73] |
Gait | PDMS/silanized GO and PA | CS | 0.18 | 60 | [12] |
Boxing | PDMS/MXene and PA | CS | 4.44 | 40 | [74] |
Human motion | MXene/PET and NaCl/PVA | CS | 0.67 | 10 | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.P.S.; Ferreira, I.; Pais, V.; Leite, L.; Bessa, J.; Cunha, F.; Fangueiro, R. Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications. Micromachines 2025, 16, 313. https://doi.org/10.3390/mi16030313
Ferreira MPS, Ferreira I, Pais V, Leite L, Bessa J, Cunha F, Fangueiro R. Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications. Micromachines. 2025; 16(3):313. https://doi.org/10.3390/mi16030313
Chicago/Turabian StyleFerreira, Mónica P. S., Inês Ferreira, Vânia Pais, Liliana Leite, João Bessa, Fernando Cunha, and Raúl Fangueiro. 2025. "Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications" Micromachines 16, no. 3: 313. https://doi.org/10.3390/mi16030313
APA StyleFerreira, M. P. S., Ferreira, I., Pais, V., Leite, L., Bessa, J., Cunha, F., & Fangueiro, R. (2025). Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications. Micromachines, 16(3), 313. https://doi.org/10.3390/mi16030313