Integrated Wastewater Remediation and Energy Production: Microfluidic Photocatalytic Fuel Cells Enabled by Dye Pollutants
Abstract
:1. Introduction
2. Device Design and Experiment
2.1. Device Design and Fabrication
2.2. Materials and Instruments
2.3. On-Chip Testing
2.3.1. Tetracycline Degradation Performance Evaluation
2.3.2. Testing the Power Generation Performance of the System
3. Experimental Results and Discussion
3.1. Validation of the Catalytic Performance of the System
3.2. Effect of Sampling Flow Rate on the Degradation Performance of Tetracycline and Power Generation Performance of the System
3.3. Effect of Light Intensity on the Degradation Performance of Tetracycline and the Power Generation Performance of the System
3.4. Effect of Potassium Persulfate Concentration on Tetracycline Degradation Performance and Power Generation Performance of the System
3.5. Effect of Sodium Sulfate Concentration on Tetracycline Degradation Properties and Power Generation Properties of the System
3.6. Continuous Power Generation Performance of the System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, A.; Zhang, N.; Wang, Q.-B.; Zhao, B.-H.; Zhang, R.-B.; Cheng, M.; Shi, C.; Hao, X.-D. Enhanced wastewater treatment using biochar-supported layered-double-hydroxide composites. Chem. Eng. J. 2025, 506, 159969. [Google Scholar] [CrossRef]
- Peng, C.; Wu, Z.; Zhang, S.; Lin, B.; Nie, L.; Tian, W.; Zang, H. Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy. Water Res. 2025, 275, 123165. [Google Scholar] [CrossRef]
- Zheng, Z.; Tian, S.; Feng, Y.; Zhao, S.; Li, X.; Wang, S.; He, Z. Recent advances of photocatalytic coupling technologies for wastewater treatment. Chin. J. Catal. 2023, 54, 88–136. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Y.; Akbari, M.Z.; Liang, C.; Peng, L. Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions. Chemosphere 2022, 295, 133952. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Li, J.; Zhu, X.; Ye, D.; Yang, Y.; Pan, Z.; Chen, R.; Liao, Q. Enhanced performance and stability of sulfite/sulfide-assisted photocatalytic fuel cell with CdS@TNTs/Ti mesh photoanode. Chem. Eng. J. 2025, 506, 160038. [Google Scholar] [CrossRef]
- He, Y.; Chen, K.; Leung, M.K.H.; Zhang, Y.; Li, L.; Li, G.; Xuan, J.; Li, J. Photocatalytic fuel cell—A review. Chem. Eng. J. 2022, 428, 131074. [Google Scholar] [CrossRef]
- He, R.; Liu, L.; Shi, P.; Nie, C. Environmental decontamination using photocatalytic fuel cells and photoelectrocatalysis-microbial fuel cells. J. Chem. Technol. Biotechnol. 2018, 93, 3336–3346. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Gong, X.; Wang, J. Recovery of sulfur, generation of electricity and hydrogen peroxide from sulfion-rich wastewater using a novel self-driving photocatalytic fuel cell. Water Res. 2025, 275, 123232. [Google Scholar] [CrossRef]
- Dhawle, R.; Mantzavinos, D.; Lianos, P. UV/H2O2 degradation of diclofenac in a photocatalytic fuel cell. Appl. Catal. B Environ. 2021, 299, 120706. [Google Scholar] [CrossRef]
- Li, L.; Wang, G.; Chen, R.; Zhu, X.; Wang, H.; Liao, Q.; Yu, Y. Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation. Lab A Chip 2014, 14, 3368. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Leung, M.K.H.; Xu, H.; Zhang, L.; Xuan, J. Understanding the performance of optofluidic fuel cells: Experimental and theoretical analyses. Chem. Eng. J. 2016, 283, 1455–1464. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Yao, J.; Wu, J.; Gao, N.; Zhang, Z. Mechanistic insight into the self-catalyzed degradation of Cu-EDTA in photocatalytic fuel cell coupled with peroxymonosulfate. Chem. Eng. J. 2024, 500, 157235. [Google Scholar] [CrossRef]
- Yu, T.; Yang, B.; Deng, R.; Yang, T.; Jiang, J. The construction of a photocatalytic fuel cell based on piezoelectric-enhanced dual heterojunctions of PVDF–HFP supported 2D/3D composites toward photocatalytic degradation of tetracycline. J. Mater. Chem. A 2024, 12, 13247–13265. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, Y.; Zhong, D.; Mou, J.; Yao, H.; Zhong, N. Visible-light responsive photocatalytic fuel cell with double Z-scheme heterojunction PTh/Ag3PO4/BiOI/Ti photoanode for efficient rhodamine B degradation and stable electricity generation. Opt. Mater. 2022, 134, 113103. [Google Scholar] [CrossRef]
- He, Y.; Yuan, R.; Leung, M.K.H. Highly efficient AgBr/BiVO4 photoanode for photocatalytic fuel cell. Mater. Lett. 2019, 236, 394–397. [Google Scholar] [CrossRef]
- Queiroz, B.D.; Fernandes, J.A.; Martins, C.A.; Wender, H. Photocatalytic fuel cells: From batch to microfluidics. J. Environ. Chem. Eng. 2022, 10, 107611. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Han, F.; Han, Y.; Liu, T.; Ren, H.; Han, X. Nitrogen-doped carbocatalyst activated persulfate (PS) for oxidation polymerization of bisphenol A (BPA): Importance of nonradical activation of PS. Phys. Chem. Chem. Phys. 2023, 25, 13716–13727. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Parvizi, T.; Parsa, J.B.; Farnood, R. Synergetic photocatalytic fuel cell and CuFe layered doubled hydroxide as photoactivator of persulfate for dramatically electricity generation of organic pollutants degradation. Appl. Catal. B Environ. 2022, 319, 121894. [Google Scholar] [CrossRef]
- Tang, S.; Li, N.; Yuan, D.; Tang, J.; Li, X.; Zhang, C.; Rao, Y. Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: Simultaneous dye removal and electricity generation. Chemosphere 2019, 234, 658–667. [Google Scholar] [CrossRef]
- Cai, T.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Zeng, W.; Xia, X.; Zeng, G. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions. Chem. Eng. J. 2019, 375, 122070. [Google Scholar] [CrossRef]
- Zhao, S.; Long, Y.; Su, Y.; Wang, S.; Zhang, Z.; Zhang, X. Cobalt-Enhanced Mass Transfer and Catalytic Production of Sulfate Radicals in MOF-Derived CeO2 • Co3O4 Nanoflowers for Efficient Degradation of Antibiotics. Small 2021, 17, 101393. [Google Scholar] [CrossRef]
- Canonica, S.; Schönenberger, U. Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical. Environ. Sci. Technol. 2019, 53, 11783–11791. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Hossaini, H.; Janjani, H. Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics. Microchem. J. 2020, 153, 104430. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Zou, L.; Liu, X. Efficient Degradation of Norfloxacin and Simultaneous Electricity Generation in a Persulfate-Photocatalytic Fuel Cell System. Catalysts 2019, 9, 835. [Google Scholar] [CrossRef]
- Li, N.; Tang, S.; Rao, Y.; Qi, J.; Zhang, Q.; Yuan, D. Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochim. Acta 2019, 298, 59–69. [Google Scholar] [CrossRef]
- Li, C.; Wan, L.; Wang, N.; Chen, B.; Luo, F.; Cheng, Z.; Zhang, M. Photothermal Localization in an Optofluidic Microreactor for Rapid Pretreatment toward Online Pollutant Analysis. ACS Appl. Mater. Interfaces 2022, 14, 40939–40950. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Yeo, K.S.; Andriyana, A.; Shee, Y.G.; Mahamd Adikan, F.R. Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer. Mater. Des. 2016, 96, 470–475. [Google Scholar] [CrossRef]
- Colin, C.; Levallois, P.; Botsos-Margerit, U.; Clément, F.; Zigah, D.; Arbault, S. Easy cleaning plus stable activation of glassy carbon electrode surface by oxygen plasma. Bioelectrochemistry 2023, 154, 108551. [Google Scholar] [CrossRef]
- Pamreddy, A.; Skácelová, D.; Haničinec, M.; Sťahel, P.; Stupavská, M.; Černák, M.; Havel, J. Plasma cleaning and activation of silicon surface in Dielectric Coplanar Surface Barrier Discharge. Surf. Coat. Technol. 2013, 236, 326–331. [Google Scholar] [CrossRef]
- Casasanta, G.; Falcini, F.; Garra, R. Beer–Lambert law in photochemistry: A new approach. J. Photochem. Photobiol. A Chem. 2022, 432, 114086. [Google Scholar] [CrossRef]
- Rajamani, M.; Rajan, A.; Neppolian, B. Photocatalytic pathway toward real time control of tetracycline from industrial wastewater mediated by hetero-structure CuFe2O4-SnS2. J. Environ. Chem. Eng. 2023, 11, 109129. [Google Scholar] [CrossRef]
- Abdulghani, A.J.; Jasim, H.H.; Hassan, A.S. Determination of Tetracycline in Pharmaceutical Preparation by Molecular and Atomic Absorption Spectrophotometry and High Performance Liquid Chromatography via Complex Formation with Au(III) and Hg(II) Ions in Solutions. Int. J. Anal. Chem. 2013, 2013, 305124. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Pu, S.; Yang, X.; Wang, P.; Tang, B.; Lai, B. Enhanced heterogeneous activation of peroxymonosulfate by boosting internal electron transfer in a bimetallic Fe3O4-MnO2 nanocomposite. Chin. Chem. Lett. 2022, 33, 2129–2133. [Google Scholar] [CrossRef]
- Wei, L.-Q.; Wei, J.-B.; Yang, F.; Li, Z.-W.; Lai, H.-F. Preparation of Thiadiazole Modified UiO-68-CdS Composites for RhB Degradation under Visible Light Irradiation. Crystals 2023, 13, 785. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Li, S.; Liu, J.; Yao, L.; Li, Y.; Zhang, H. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Appl. Catal. B Environ. 2016, 185, 22–30. [Google Scholar] [CrossRef]
- Patial, S.; Sonu; Thakur, S.; Van Le, Q.; Ahamad, T.; Singh, P.; Nguyen, V.-H.; Khan, A.A.P.; Hussain, C.M.; Raizada, P. Facile synthesis of Co, Fe-bimetallic MIL-88A/microcrystalline cellulose composites for efficient adsorptive and photo-Fenton degradation of RhB dye. J. Taiwan Inst. Chem. Eng. 2023, 153, 105189. [Google Scholar] [CrossRef]
- Du, X.; Wan, J.; Jia, J.; Pan, C.; Hu, X.; Fan, J.; Liu, E. Photocatalystic degradation of RhB over highly visible-light-active Ag3PO4-Bi2MoO6 heterojunction using H2O2 electron capturer. Mater. Des. 2017, 119, 113–123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Luo, F.; Wang, Z.; Zhu, J.; Yang, H. Integrated Wastewater Remediation and Energy Production: Microfluidic Photocatalytic Fuel Cells Enabled by Dye Pollutants. Micromachines 2025, 16, 312. https://doi.org/10.3390/mi16030312
Zhou Y, Luo F, Wang Z, Zhu J, Yang H. Integrated Wastewater Remediation and Energy Production: Microfluidic Photocatalytic Fuel Cells Enabled by Dye Pollutants. Micromachines. 2025; 16(3):312. https://doi.org/10.3390/mi16030312
Chicago/Turabian StyleZhou, Youquan, Fangzhou Luo, Zhichao Wang, Jiayi Zhu, and Hao Yang. 2025. "Integrated Wastewater Remediation and Energy Production: Microfluidic Photocatalytic Fuel Cells Enabled by Dye Pollutants" Micromachines 16, no. 3: 312. https://doi.org/10.3390/mi16030312
APA StyleZhou, Y., Luo, F., Wang, Z., Zhu, J., & Yang, H. (2025). Integrated Wastewater Remediation and Energy Production: Microfluidic Photocatalytic Fuel Cells Enabled by Dye Pollutants. Micromachines, 16(3), 312. https://doi.org/10.3390/mi16030312