Short-Term Effects of Dietary Selenomethionine Supplementation on Hepatic and Renal Transcriptomic Alterations Induced by Ochratoxin a in Broiler Chickens
Abstract
1. Introduction
2. Results
2.1. Clinical Findings
2.2. Effects of Se and OTA on Hepatic and Renal GSH Content and GPx Activity
2.3. Gene Expression Changes in Liver Tissue
2.3.1. Oxidative Stress and Antioxidant Genes
2.3.2. Detoxification Markers
2.4. Gene Expression Changes in Kidney Tissue
2.4.1. Oxidative Stress and Antioxidant Genes
2.4.2. Detoxification Markers
3. Discussion
3.1. Oxidative Stress Response Pathway
3.2. Detoxification Pathway
4. Conclusions
5. Materials and Methods
5.1. Animals and Treatments
5.2. Mycotoxin Production
5.3. Determination of Selenium Concentration in Feed
5.4. Measurement of Reduced Glutathione Content and Glutathione Peroxidase Activity
5.5. Total RNA Extraction and Reverse Transcription
5.6. Quantitative Real-Time Polymerase Chain Reaction
- Initial activation: 50 °C for 2 min, 95 °C for 10 min.
- Touchdown cycling: 4 cycles of 95 °C for 15 s, 64 °C for 30 s (decreasing 2 °C per cycle), and 72 °C for 30 s.
- Amplification: 36 cycles of 95 °C for 15 s, 58 °C for 30 s, 72 °C for 30 s.
- Melt curve: 95 °C for 15 s, 60 °C for 1 min, 95 °C for 15 s.
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OTA | Ochratoxin A |
Se | Selenium |
SeMet | Selenomethionine |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
GSH | Reduced Glutathione |
GPx | Glutathione Peroxidase |
GPX3/GPX4 | Glutathione Peroxidase 3/4 |
GSS | Glutathione Synthetase |
GSR | Glutathione Reductase |
NRF2 | Nuclear Factor Erythroid 2–Related Factor 2 |
KEAP1 | Kelch-like ECH-Associated Protein 1 |
AHR | Aryl Hydrocarbon Receptor |
AHRR | Aryl Hydrocarbon Receptor Repressor |
CYP1A2 | Cytochrome P450 1A2 |
qPCR | Quantitative Polymerase Chain Reaction |
ER | Endoplasmic Reticulum |
SELK | Selenoprotein K |
MDA | Malondialdehyde |
ICR | Institute of Cancer Research (refers to mouse strain) |
References
- Ding, L.; Han, M.; Wang, X.; Guo, Y. Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins 2023, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, Y.; Wang, C.; Liu, X.; Jiang, A.; Liu, Z.; Wang, J.; Yang, Z.; Wei, Z. Ochratoxin A-Triggered Chicken Heterophil Extracellular Traps Release through Reactive Oxygen Species Production Dependent on Activation of NADPH Oxidase, ERK, and p38 MAPK Signaling Pathways. J. Agric. Food Chem. 2019, 67, 11230–11235. [Google Scholar] [CrossRef] [PubMed]
- Ayed-Boussema, I.; Pascussi, J.M.; Zaied, C.; Maurel, P.; Bacha, H.; Hassen, W. Ochratoxin A Induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 Gene Expression in Primary Cultured Human Hepatocytes: A Possible Activation of Nuclear Receptors. Drug Chem. Toxicol. 2012, 35, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Lee, H.J.; Pyo, M.C.; Ryu, D.; Lee, K.W. Ochratoxin A-Induced Hepatotoxicity through Phase I and Phase II Reactions Regulated by AhR in Liver Cells. Toxins 2019, 11, 377. [Google Scholar] [CrossRef]
- Lee, H.J.; Pyo, M.C.; Shin, H.S.; Ryu, D.; Lee, K.W. Renal Toxicity through AhR, PXR, and Nrf2 Signaling Pathway Activation of Ochratoxin A-Induced Oxidative Stress in Kidney Cells. Food Chem. Toxicol. 2018, 122, 59–68. [Google Scholar] [CrossRef]
- Kövesi, B.; Worlanyo, A.P.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Zándoki, E.; Mézes, M.; Balogh, K. Curcumin Mitigates Ochratoxin A-Induced Oxidative Stress and Alters Gene Expression in Broiler Chicken Liver and Kidney. Acta Vet. Hung. 2024, 72, 41–50. [Google Scholar] [CrossRef]
- DSM-Firmenich World Mycotoxin Survey 2024. Available online: https://www.dsm-firmenich.com/content/dam/dsm/anh/en/documents/REP_MTXsurvey_Q4_0525_63898.pdf (accessed on 30 August 2025).
- Bonerba, E.; Manfredi, A.; Dimuccio, M.M.; Lorusso, P.; Pandiscia, A.; Terio, V.; Di Pinto, A.; Panseri, S.; Ceci, E.; Bozzo, G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins 2024, 16, 487. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Orian, L. The Glutathione Peroxidase Family: Discoveries and Mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef]
- Ren, Z.; He, H.; Fan, Y.; Chen, C.; Zuo, Z.; Deng, J. Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins. Biol. Trace Elem. Res. 2019, 190, 273–280. [Google Scholar] [CrossRef]
- Li, P.; Li, K.; Zou, C.; Tong, C.; Sun, L.; Cao, Z.; Yang, S.; Lyu, Q. Selenium Yeast Alleviates Ochratoxin A-Induced Hepatotoxicity via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in Chickens. Toxins 2020, 12, 143. [Google Scholar] [CrossRef]
- Li, K.; Cao, Z.; Guo, Y.; Tong, C.; Yang, S.; Long, M.; Li, P.; He, J. Selenium Yeast Alleviates Ochratoxin A-Induced Apoptosis and Oxidative Stress via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in the Kidneys of Chickens. Oxid. Med. Cell Longev. 2020, 2020, 4048706. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, C.; Ferrara, G.; Andretta, E.; Montagnaro, S.; Damiano, S.; Ciarcia, R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine—A Review. Toxins 2022, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Flohé, L. Selenium and Redox Signaling. Arch. Biochem. Biophys. 2017, 617, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Selenomethionine: A Review of Its Nutritional Significance, Metabolism and Toxicity. J. Nutr. 2000, 130, 1653–1656. [Google Scholar] [CrossRef]
- Tahir, M.A.; Abbas, A.; Muneeb, M.; Bilal, R.M.; Hussain, K.; Abdel-Moneim, E.E.; Farag, M.R.; Dhama, K.; Elnesr, S.S.; Alagawany, M. Ochratoxicosis in Poultry: Occurrence, Environmental Factors, Pathological Alterations and Amelioration Strategies. World’s Poult. Sci. J. 2022, 78, 727–749. [Google Scholar] [CrossRef]
- Tian, W.; Fan, R.; Zhou, S.; Liu, T.; Wang, Y.; Sun, Y.; Long, M.; Yang, S.; Li, P. Selenomethionine Alleviates OTA-Induced Kidney Injury in Broilers by Modulating Ferroptosis. Front. Vet. Sci. 2025, 12, 1651205. [Google Scholar] [CrossRef]
- Baird, L.; Yamamoto, M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell Biol. 2020, 40, e00099-20. [Google Scholar] [CrossRef]
- Iso, T.; Suzuki, T.; Baird, L.; Yamamoto, M. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Mol. Cell Biol. 2016, 36, 3100–3112. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kang, M.I.; Watai, Y.; Tong, K.I.; Shibata, T.; Uchida, K.; Yamamoto, M. Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1. Mol. Cell Biol. 2006, 26, 221–229. [Google Scholar] [CrossRef]
- Schwarz, M.; Löser, A.; Cheng, Q.; Wichmann-Costaganna, M.; Schädel, P.; Werz, O.; Arnér, E.S.; Kipp, A.P. Side-by-Side Comparison of Recombinant Human Glutathione Peroxidases Identifies Overlapping Substrate Specificities for Soluble Hydroperoxides. Redox Biol. 2023, 59, 102593. [Google Scholar] [CrossRef]
- Arthur, J.R. The Glutathione Peroxidases. Cell Mol. Life Sci. 2000, 57, 1825–1835. [Google Scholar] [CrossRef]
- Njålsson, R.; Norgren, S. Physiological and Pathological Aspects of GSH Metabolism. Acta Paediatr. 2005, 94, 132–137. [Google Scholar] [CrossRef]
- Mannervik, B. The Enzymes of Glutathione Metabolism: An Overview. Biochem. Soc. Trans. 1987, 15, 717–718. [Google Scholar] [CrossRef]
- Fredericks, G.J.; Hoffmann, P.R. Selenoprotein K and Protein Palmitoylation. Antioxid. Redox Signal. 2015, 23, 854–862. [Google Scholar] [CrossRef]
- Larigot, L.; Juricek, L.; Dairou, J.; Coumoul, X. AhR Signaling Pathways and Regulatory Functions. Biochim. Open 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Panda, S.K.; Peng, V.; Sudan, R.; Antonova, A.U.; Di Luccia, B.; Ohara, T.E.; Fachi, J.L.; Grajales-Reyes, G.E.; Jaeger, N.; Trsan, T.; et al. Repression of the Aryl-Hydrocarbon Receptor Prevents Oxidative Stress and Ferroptosis of Intestinal Intraepithelial Lymphocytes. Immunity 2023, 56, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Nebert, D.W.; Dalton, T.P.; Okey, A.B.; Gonzalez, F.J. Role of Aryl Hydrocarbon Receptor-Mediated Induction of the CYP1 Enzymes in Environmental Toxicity and Cancer. J. Biol. Chem. 2004, 279, 23847–23850. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, J.; Lindsay, R.H. Estimation of Total, Protein-Bound and Non-Protein Sulfhydryl Groups with Ellman’s Reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.A.; Burk, R.F. Glutathione Peroxidase Activity in Selenium-Deficient Rat Liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–956. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Deng, F.; Yan, Z.; Xia, Y.; Wang, Z.; Ye, J.; Deng, Y.; Zhang, Z.; Qiao, M.; et al. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR. PLoS ONE 2015, 10, e0132666. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Day 1 | Day 5 | |||||
---|---|---|---|---|---|---|
Gene/Marker | OTA Effect | SeMet Effect | OTA+SeMet Effect | OTA Effect | SeMet Effect | OTA+SeMet Effect |
NRF2 | ↑ vs. Ctrl | — | ↑ vs. Ctrl | ↑ (highest) | ↑ | ↑ (lower than OTA, higher than Ctrl) |
KEAP1 | — | — | — | ↑ vs. Ctrl | ↑ vs. Ctrl | ↑ vs. Ctrl |
GPX3 | — | ↑ | ↑ | ↑ (moderate) | ↑ | ↑ (similar to Se) |
GPX4 | — | ↑ | ↑ | ↑ | ↑ (highest) | ↑ |
GSS | ↓ | ↓ | ↓ | ↓ | ↑ | — (restored to Ctrl) |
GSR | ↓ | ↓ | ↓ | ↑ (but lower than Se and OTA+SeMet) | ↑ | ↑ (similar to Se) |
SELK | ↑ (moderate) | ↑ | ↑ | ↑ | ↑ | — (no difference from Ctrl) |
AHR | ↑ | — | ↑ | ↑ | ↑ | ↑ |
AHRR | ↑ | ↑ | — (lower than both) | ↓ | ↑ | ↑ |
CYP1A2 | ↑ (highest) | ↑ (lower than OTA) | ↑ (lower than OTA) | ↑ | ↑ | ↓ (lower than OTA and Ctrl) |
Day 1 | Day 5 | |||||
---|---|---|---|---|---|---|
Gene/Marker | OTA Effect | SeMet Effect | OTA+SeMet Effect | OTA Effect | SeMet Effect | OTA+SeMet Effect |
NRF2 | — | ↑ | ↑ | ↑ | — | — (restored to Ctrl) |
KEAP1 | ↓ | ↓ | ↓ | ↓ | — | ↓ |
GPX3 | — | ↑ | ↑ | ↑ (moderate) | ↑ | ↑ (similar to Se) |
GPX4 | — | — | — | ↓ | — | ↓ |
GSS | ↓ | ↑ | ↓ | ↓ | ↑ | — (restored to Ctrl) |
GSR | ↓ | ↓ | ↓ | — | ↑ | — |
SELK | ↑ | — | — (restored to Ctrl) | ↓ | ↓ | ↓ |
AHR | ↑ (strong) | — | ↑↑ (stronger than OTA) | ↑ | — | ↑ |
AHRR | ↓ | ↓ | — | ↑ | ↑ | — (no increase) |
CYP1A2 | ↓ | — | ↓ | ↓ | — | ↓ |
Group | Measured Se (mg/kg) | Measured OTA (mg/kg) |
---|---|---|
Control | 0.07 | not detected |
SeMet | 0.59 | not detected |
OTA | 0.07 | 2.04 ± 0.13 |
OTA+SeMet | 0.59 | 2.09 ± 0.23 |
Element | Isotope (m/z) | Internal Standard Isotope | LOD (mg/kg) |
---|---|---|---|
Selenium (Se) | 78 | Ge74 | 0.010 |
Genes | GenBank Accession No. | Primer Sequences, 5′-3′ | Length, bp. | Efficiency, % | |
---|---|---|---|---|---|
Endogenous control genes | GAPDH | NM_204305.1 | F-TGACCTGCCGTCTGGAGAAA R-TGTGTATCCTAGGATGCCCTTCAG | 98 | 92.64 |
BAC | NM_205518.2 | F-GACGAGATTGGCATGGCTTTATTT R-TAAGACTGCTGCTGACACCTTC | 92 | 96.29 | |
RPL13 | NM_204999.2 | F-GCTTAAACTGGCGGGCATTAAC R-GGCTTGCAGTGACTCTGTAGAT | 97 | 94.97 | |
Nrf2-antioxidant pathway genes | KEAP1 | KU321503.1 | F-CATCGGCATCGCCAACTT R-TGAAGAACTCCTCCTGCTTGGA | 113 | 99.74 |
NRF2 | NM_205117.1 | F-TTTTCGCAGAGCACAGATAC R-GGAGAAGCCTCATTGTCATC | 110 | 91.74 | |
GPX3 | NM_001163232.2 | F-ATCCCCTTCCGAAAGTACGC R-GACGACAAGTCCATAGGGCC | 129 | 102.51 | |
GPX4 | NM_001346448.1 | F-AGTGCCATCAAGTGGAACTTCAC R-TTCAAGGCAGGCCGTCAT | 203 | 91.03 | |
GSS | XM_425692.6 | F-GTACTCACTGGATGTGGGTGAAGA R-CGGCTCGATCTTGTCCATCAG | 196 | 104.84 | |
GSR | XM_015276627.2 | F-CCACCAGAAAGGGGATCTACG R-ACAGAGATGGCTTCATCTTCAGTG | 208 | 91.76 | |
SELK | NM_001025441.2 | F-GAAGAGGGCCTCCAGGAAAT R-GAGCCATTGGTGGTGGACTAG | 84 | 103.89 | |
AhR signaling pathway genes | AHR | NM_204118.3 | F-GAAGACGGGTGAGAGTGGAA R-CGCTTCCGTAGATGTTCTGC | 171 | 99.20 |
AHRR | NM_001201387.2 | F-AGAACGGCACCATGAGGAAG R-CAGAGGTCCGGTTCTGCTTT | 73 | 99.86 | |
CYP1A2 | NM_205146.3 | F-CATTACGGATGGGCAGAGTT R-GAAGTTCTTCAGGGCGTTCT | 94 | 93.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kövesi, B.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Zándoki, E.; Tóth, M.; Gömbös, P.; Freiler-Nagy, Á.; Balogh, K.; Mézes, M. Short-Term Effects of Dietary Selenomethionine Supplementation on Hepatic and Renal Transcriptomic Alterations Induced by Ochratoxin a in Broiler Chickens. Toxins 2025, 17, 460. https://doi.org/10.3390/toxins17090460
Kövesi B, Kulcsár S, Ancsin Z, Erdélyi M, Zándoki E, Tóth M, Gömbös P, Freiler-Nagy Á, Balogh K, Mézes M. Short-Term Effects of Dietary Selenomethionine Supplementation on Hepatic and Renal Transcriptomic Alterations Induced by Ochratoxin a in Broiler Chickens. Toxins. 2025; 17(9):460. https://doi.org/10.3390/toxins17090460
Chicago/Turabian StyleKövesi, Benjamin, Szabina Kulcsár, Zsolt Ancsin, Márta Erdélyi, Erika Zándoki, Márk Tóth, Patrik Gömbös, Ágnes Freiler-Nagy, Krisztián Balogh, and Miklós Mézes. 2025. "Short-Term Effects of Dietary Selenomethionine Supplementation on Hepatic and Renal Transcriptomic Alterations Induced by Ochratoxin a in Broiler Chickens" Toxins 17, no. 9: 460. https://doi.org/10.3390/toxins17090460
APA StyleKövesi, B., Kulcsár, S., Ancsin, Z., Erdélyi, M., Zándoki, E., Tóth, M., Gömbös, P., Freiler-Nagy, Á., Balogh, K., & Mézes, M. (2025). Short-Term Effects of Dietary Selenomethionine Supplementation on Hepatic and Renal Transcriptomic Alterations Induced by Ochratoxin a in Broiler Chickens. Toxins, 17(9), 460. https://doi.org/10.3390/toxins17090460