Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran
Abstract
1. Introduction
2. Results and Discussion
Sample Analyses
3. Conclusions
4. Material and Methods
4.1. Standards
4.2. Chemicals and Reagents
4.3. Sampling
4.4. Sample Preparation
4.4.1. Extraction
4.4.2. Derivatization
4.5. GC–MS/MS Analysis
4.6. Creatinine Analysis
4.7. Method Validation
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Oluwafemi, F.; Odebiyi, T.; Kolapo, A. Occupational aflatoxin exposure among feed mill workers in Nigeria. World Mycotoxin J. 2012, 5, 385–389. [Google Scholar] [CrossRef]
- Cortinovis, C.; Pizzo, F.; Spicer, L.J.; Caloni, F. Fusarium mycotoxins: Effects on reproductive function in domestic animals—A review. Theriogenology 2013, 80, 557–564. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC Press: Lyon, France, 2002; Volume 82, pp. 1–556. [Google Scholar]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Alvito, P.; Assunção, R.; Oliveira, C.A.F. Assessment of mycotoxin exposure and risk characterization using occurrence data in foods and urinary biomarkers in Brazil. Food Chem. Toxicol. 2019, 128, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L.; Berrada, H. Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins 2017, 9, 251. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Warth, B.; White, K.; Srey, C.; Sulyok, M.; Krska, R.; Gong, Y.Y. Comparison of single and multi-analyte methods based on LC-MS/MS for mycotoxin biomarker determination in human urine. World Mycotoxin J. 2013, 6, 355–366. [Google Scholar] [CrossRef]
- Turner, P.C.; Flannery, B.; Isitt, C.; Ali, M.; Pestka, J. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr. Res. Rev. 2012, 25, 162–179. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Krska, R. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Anal. Bioanal. Chem. 2013, 405, 5687–5695. [Google Scholar] [CrossRef]
- Muñoz, K.; Blaszkewicz, M.; Degen, G.H. Simultaneous analysis of ochratoxin A and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin. J. Chrom. B 2010, 878, 2623–2629. [Google Scholar] [CrossRef]
- Escrivá, L.; Manyes, L.; Font, G.; Berrada, H. Mycotoxin Analysis of Human Urine by LC-MS/MS: A Comparative Extraction Study. Toxins 2017, 9, 330. [Google Scholar] [CrossRef]
- Roshandel, G.; Sadjadi, A.; Aarabi, M.; Keshtkar, A.; Sedaghat, S.M.; Nouraie, S.M.; Semnani, S.; Malekzadeh, R. Cancer incidence in Golestan province: Report of an ongoing population-based cancer registry in Iran between 2004 and 2008. Arch. Iran. Med. 2012, 15, 196–200. [Google Scholar]
- Kachala, R. Systematic review: Epidemiology of oesophageal cancer in Sub-Saharan Africa. Malawi. Med. J. 2010, 22, 65–70. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kamangar, F.; Malekzadeh, R.; Dawsey, S.M.; Saidi, F. Esophageal cancer in Northeastern Iran: a review. Arch Iran Med. 2007, 10, 70–82. [Google Scholar]
- Xue, K.S.; Tang, L.; Sun, G.; Wang, S.; Hu, X.; Wang, J.S. Mycotoxin exposure is associated with increased risk of esophageal squamous cell carcinoma in Huaian area, China. BMC Cancer 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Cole, P.; Mi, Z.; Xing, L.Y. Corn and wheat-flour consumption and mortality from esophageal cancer in shanxi, China. Int. J. Cancer 1993, 53, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, S.J. Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. J. Natl. Cancer Inst. 1981, 67, 243–251. [Google Scholar] [PubMed]
- Kigen, G.; Busakhala, N.; Kamuren, Z.; Rono, H.; Kimalat, W.; Njiru, E. Factors associated with the high prevalence of oesophageal cancer in Western Kenya: A review. Infect. Agents Cancer 2017, 12, 59. [Google Scholar] [CrossRef]
- Simonato, L.; Franceschi, S.; Zambon, P. A population at high risk for esophageal cancer in the north-east of Italy. Mutat. Res. Rev. Mutat. 2000, 462, 355–363. [Google Scholar] [CrossRef]
- Come, J.; Cambaza, E.; Ferreira, R.; da Costa, J.M.C.; Carrilho, C.; Santos, L.L. Esophageal cancer in Mozambique: Should mycotoxins be a concern? Pan. Afr. Med. J. 2019, 33, 187. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Rohandel, G.; Roudbarmohammadi, S.; Roudbary, M.; Sohanaki, H.; Ghiasian, S.A.; Taherkhani, A.; Semnani, S.; Aghasi, M. Fumonisin B1 Contamination of Cereals and Risk of Esophageal Cancer in a High-Risk Area in Northeastern Iran. Asian. Pac. J. Cancer P 2012, 13, 2625–2628. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Kebria, F.; Joshaghani, H.; Taheri, N.S.; Semnani, S.; Aarabi, M.; Salamat, F.; Roshandel, G. Aflatoxin contamination of wheat flour and the risk of esophageal cancer in a high risk area in Iran. Cancer Epidemiol. 2013, 37, 290–293. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; Huybrechts, I.; Yang, S.; Arcella, D.; Claeys, L.; Abbeddou, S.; De Keyzer, W.; De Vries, J.; Ocke, M.; Ruprich, J.; et al. Mycotoxin exposure assessments in a multi-center European validation study by 24-h dietary recall and biological fluid sampling. Environ. Int. 2020, 137, 105539. [Google Scholar] [CrossRef]
- Warth, B.; Petchkongkaew, A.; Sulyok, M.; Krska, R. Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Add. Cont Part A 2014, 31, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
- Gerding, J.; Cramer, B.; Humpf, H.U. Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol. Nutr. Food Res. 2014, 58, 2358–2368. [Google Scholar] [CrossRef] [PubMed]
- Abia, W.A.; Warth, B.; Sulyok, M.; Krska, R.; Tchana, A.N.; Njobeh, P.B.; Dutton, M.F.; Moundipa, P.F. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 2013, 31, 438–453. [Google Scholar] [CrossRef]
- Wallin, S.; Hardie, L.J.; Kotova, N.; Warensjö, E.; Nälsén, C.; Ridefelt, P.; Turner, P.C.; White, K.L.M. Biomonitoring study of deoxynivalenol exposure and association with typical cereal consumption in Swedish adults. World Mycotoxin J. 2013, 6, 439–448. [Google Scholar] [CrossRef]
- Brera, C.; De Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; G Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.; et al. Experimental study of deoxynivalenol biomarkers in urine. EFSA Supp. Publ. 2015, 12, 818E. [Google Scholar] [CrossRef]
- Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.; Cade, J.E.; Wild, C.P. Deoxynivalenol: Rationale for the development and application of urinary biomarker. Food Addit. Cont. Part A 2008, 25, 864–871. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Moltó, J.C.; Mañes, J.; Berrada, H. Exposure assessment approach through mycotoxin/creatinine ratio evaluation in urine by GC-MS/MS. Food Chem. Toxicol. 2014, 72, 69–75. [Google Scholar] [CrossRef]
- Vidal, A.; Bouzaghnane, N.; De Saeger, S.; De Boevre, M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins 2020, 12, 139. [Google Scholar] [CrossRef]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assunção, R.; Alvito, P. Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. Int. J. Hyg. Environ. Health 2019, 222, 913–925. [Google Scholar] [CrossRef]
- Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Xu, J.; Jiang, K.; Liu, X.; Meng, J.; Di Mavungu, J.D.; Guo, W.; Zhang, Z.; Jing, J.; Li, H.; et al. Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environ. Polut. 2019, 248, 865–873. [Google Scholar] [CrossRef]
- Turner, P.C.; Gong, Y.Y.; Pourshams, A.; Jafari, E.; Routledge, M.N.; Malekzadeh, R.; Wild, C.P.; Boffetta, P. A pilot survey for Fusarium mycotoxin biomarkers in women from Golestan northern Iran. World Mycotoxin J. 2012, 5, 195–199. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Sonego, E.; Chiaretti, A.; Buonsenso, D.; Brera, C. Determination of Deoxynivalenol Biomarkers in Italian Urine Samples. Toxins 2019, 11, 441. [Google Scholar] [CrossRef]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Lemming, E.W.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Development and validation of a gas chromatography–mass spectrometry method for determination of deoxynivalenol and its metabolites in human urine. Food Chem. Toxicol. 2012, 50, 1019–1026. [Google Scholar] [CrossRef]
- Domijan, A.M.; Peraica, M.; Vrdoljak, A.L.; Radić, B.; Zlender, V.; Fuchs, R. The involvement of oxidative stress in ochratoxin A and fumonisin B 1 toxicity in rats. Mol. Nut. Food Res. 2007, 51, 1147–1151. [Google Scholar] [CrossRef]
- Johnson, N.M.; Qian, G.; Xu, L.; Tietze, D.; Marroquin-Cardona, A.; Robinson, A.; Rodriguez, M.; Kaufman, L.; Cunningham, K.; Wittmer, J.; et al. Aflatoxin and PAH exposure biomarkers in a U.S. population with a high incidence of hepatocellular carcinoma. Sci. Total Environ. 2010, 408, 6027–6031. [Google Scholar] [CrossRef] [PubMed]
- Njumbe Ediage, E.; Di Mavungu, J.D.; Song, S.; Wu, A.; Van Peteghem, C.; De Saeger, S. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Guidance Document on Identification of Mycotoxins in Food and Feed. SANTE/12089 /2016. 2016. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_sampling_guid-doc-ident-mycotoxins.pdf (accessed on 1 January 2017).
Population Group | Parameters | DON | NEO | T-2 | HT-2 |
---|---|---|---|---|---|
Control (n = 10) | Positive samples | 1 | 4 | - | 1 |
Incidence (%) | 10 | 40 | - | 10 | |
Min ± SD (µg/L) | - | 10.57 ± 0.33 | - | - | |
Max ± SD (µg/L) | - | 22.53 ± 2.39 | - | ||
Mean ± SD (µg/L) | 8.42 ± 1.21 | 14.15 ± 5.72 | - | 23.97 ± 9.97 | |
Corrected mean (µg/g creat) | 5.90 | 10.45 | - | 16.81 | |
Esophageal cancer (n = 17) | Positive samples | - | 1 | 1 | 3 |
Incidence (%) | - | 5.8 | 5.8 | 17.6 | |
Min ± SD (µg/L) | - | - | - | 18.91 ± 3.05 | |
Max ± SD (µg/L) | - | - | - | 50.38 ± 22.54 | |
Mean ± SD (µg/L) | - | 12.90 ± 3.87 | 50.09 ± 7.51 | 36.52 ± 16.07 | |
Corrected mean (µg/g creat) | - | 9.09 | 44.70 | 29.09 |
Mycotoxin(s) | Incidence (%) | Sample Group | Ʃ Mycotoxin Concentrations (µg/L) | Ʃ Mycotoxin Concentrations (µg/g Creatinine) |
---|---|---|---|---|
Binary Combination | ||||
NEO/HT-2 | 1/27 (3.7) | Case | 63.27 | 44.58 |
T2/HT-2 | 1/27 (3.7) | Case | 90.38 | 79.13 |
Ternary Combination | ||||
DON/NEO/HT2 | 1/27 (3.7) | Control | 42.82 | 30.04 |
Mycotoxin | RT (min) | Quantitation Transition (CE, eV) | Quantitation Transition Dt (ms) | Confirmation Transition (Collision Energy, eV) | Confirmation Transition Dt (ms) | Ion Ratio (%) |
---|---|---|---|---|---|---|
DON | 8.39 | 392 > 259 (10) | 25 | 407 > 197 (10) | 25 | 41.6 |
3-ADON | 9.40 | 392 > 287 (5) | 35 | 467 > 147 (10) | 25 | 47.5 |
15-ADON | 9.58 | 392 > 217 (20) | 35 | 392 > 184 (20) | 20 | 35.5 |
FUS-X | 9.484 | 450 > 260 (10) | 35 | 450 > 245 (20) | 35 | 11.9 |
NIV | 9.867 | 289 > 73 (15) | 35 | 379 > 73 (15) | 35 | 29.6 |
NEO | 11.22 | 252 > 195 (10) | 25 | 252 > 167 (15) | 35 | 40.6 |
T-2 | 13.891 | 399 > 109 (10) | 25 | 399 > 123 (15) | 35 | 81.9 |
HT-2 | 14.334 | 347 > 185 (10) | 25 | 347 > 157 (10) | 25 | 86.7 |
ZAN | 14.669 | 449 > 335 (15) | 25 | 307 > 235 (10) | 25 | 59.9 |
ZON | 15.387 | 462 >333 (20) | 25 | 462 > 151 (20) | 25 | 99.7 |
Mycotoxin | Linearity (r2) | LOD (µg/L) | LOQ (µg/L) | Matrix Effect (% SSE) | Recovery Range (%) | Intraday Precision Range (%RSD) | Interday Precision Range (%RSD) |
---|---|---|---|---|---|---|---|
DON | 0.996 | 0.12 | 0.25 | 23 | 88−97 | 2−4 | 8−10 |
3-ADON | 0.992 | 0.25 | 0.5 | 27 | 84−102 | 1−9 | 4−11 |
15-ADON | 0.991 | 0.25 | 0.5 | 28 | 77−91 | 2−10 | 3−12 |
FUS-X | 0.992 | 2 | 4 | 12 | 83−95 | 3−6 | 6−13 |
NIV | 0.996 | 0.5 | 1 | 6 | 82−95 | 3−7 | 4−7 |
NEO | 0.999 | 0.25 | 0.5 | 36 | 93−109 | 5−7 | 3−11 |
T-2 | 0.998 | 0.5 | 1 | 8 | 89−104 | 4−5 | 8−10 |
HT-2 | 0.999 | 1 | 2 | 28 | 92−105 | 1−6 | 6−9 |
ZAN | 0.993 | 4 | 8 | 36 | 72−80 | 2−5 | 5−12 |
ZON | 0.991 | 3 | 6 | 23 | 79−96 | 6−7 | 8−11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niknejad, F.; Escrivá, L.; Adel Rad, K.B.; Khoshnia, M.; Barba, F.J.; Berrada, H. Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins 2021, 13, 243. https://doi.org/10.3390/toxins13040243
Niknejad F, Escrivá L, Adel Rad KB, Khoshnia M, Barba FJ, Berrada H. Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins. 2021; 13(4):243. https://doi.org/10.3390/toxins13040243
Chicago/Turabian StyleNiknejad, Farhad, Laura Escrivá, Khoda Berdi Adel Rad, Masoud Khoshnia, Francisco J. Barba, and Houda Berrada. 2021. "Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran" Toxins 13, no. 4: 243. https://doi.org/10.3390/toxins13040243
APA StyleNiknejad, F., Escrivá, L., Adel Rad, K. B., Khoshnia, M., Barba, F. J., & Berrada, H. (2021). Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins, 13(4), 243. https://doi.org/10.3390/toxins13040243