Abstract
Background: Artificial intelligence (AI) is increasingly used in intensive care units (ICUs) to enable personalized care, real-time analytics, and decision support. Nutritional therapy—a major determinant of ICU outcomes—often remains delayed or non-individualized. Objective: This study aimed to review current and emerging AI applications in ICU nutrition, highlighting clinical potential, implementation barriers, and ethical considerations. Methods: A narrative review of English-language literature (January 2018–November 2025) searched in PubMed/MEDLINE, Scopus, and Web of Science, complemented by a pragmatic Google Scholar sweep and backward/forward citation tracking, was conducted. We focused on machine learning (ML), deep learning (DL), natural language processing (NLP), and reinforcement learning (RL) applications for energy/protein estimation, feeding tolerance prediction, complication prevention, and adaptive decision support in critical-care nutrition. Results: AI models can estimate energy/protein needs, optimize EN/PN initiation and composition, predict gastrointestinal (GI) intolerance and metabolic complications, and adapt therapy in real time. Reinforcement learning (RL) and multi-omics integration enable precision nutrition by leveraging longitudinal physiology and biomarker trajectories. Key barriers are data quality/standardization, interoperability, model interpretability, staff training, and governance (privacy, fairness, accountability). Conclusions: With high-quality data, robust oversight, and clinician education, AI can complement human expertise to deliver safer, more targeted ICU nutrition. Implementation should prioritize transparency, equity, and workflow integration.