Evaluation of Metabolic Dysfunction-Associated Fatty Liver Disease-Related Pathogenic Mechanisms in Human Steatotic Liver Cell-Based Model: Beneficial Effects of Prunus domestica L. subsp. syriaca Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Cultures and Differentiation
2.3. Preparation of Prunus domestica L. subsp. syriaca Extract
2.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide MTT Cell Vitality Assay
2.5. Lipid (Oil Red O) Quantification
2.6. Glucose Uptake NovoCyte3000 Flow Cytometer Analysis
2.7. Reactive Oxygen Species (ROS) NovoCyte3000 Flow Cytometer Analysis
2.8. Reverse Transcription–Quantitative Polymerase Chain Reaction (RT-qPCR)
2.9. Statistical Analysis
3. Results
3.1. HepG2-OA Cell Viability Was Not Affected by P. domestica Extract Treatment (24 and 48 h)
3.2. Lipid Content and Expression of Genes Involved in Lipid Metabolism in HepG2-OA Were Reduced by P. domestica Extract
3.3. HepG2-OA Glucose Uptake Increased in a Dose-Dependent Fashion After 6 and 24 h P. domestica Extract Treatments
3.4. Reactive Oxygen Species (ROS) Production and the Expression of Genes Involved in Oxidative Stress Were Reduced by P. domestica Extract in HepG2-OA Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current Status and Future Trends of the Global Burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Forlano, R.; Martinez-Gili, L.; Takis, P.; Miguens-Blanco, J.; Liu, T.; Triantafyllou, E.; Skinner, C.; Loomba, R.; Thursz, M.; Marchesi, J.R.; et al. Disruption of Gut Barrier Integrity and Host–Microbiome Interactions Underlie MASLD Severity in Patients with Type-2 Diabetes Mellitus. Gut Microbes 2024, 16, 2304157. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y. Histopathology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. World J. Gastroenterol. 2014, 20, 15539. [Google Scholar] [CrossRef]
- Schott, A.-K.; Zipančić, I.; Hernández-Rabaza, V.; Becker-Kojić, Z.A. Human Liver Spheroids from Peripheral Blood for Liver Disease Studies. J. Vis. Exp. 2023, 191, e64703. [Google Scholar] [CrossRef] [PubMed]
- Eynaudi, A.; Díaz-Castro, F.; Bórquez, J.C.; Bravo-Sagua, R.; Parra, V.; Troncoso, R. Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Front. Nutr. 2021, 8, 775382. [Google Scholar] [CrossRef]
- Wang, S.; Friedman, S.L. Found in Translation—Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis (MASH). Sci. Transl. Med. 2023, 15, eadi0759. [Google Scholar] [CrossRef]
- Schwärzler, J.; Grabherr, F.; Grander, C.; Adolph, T.E.; Tilg, H. The Pathophysiology of MASLD: An Immunometabolic Perspective. Expert. Rev. Clin. Immunol. 2024, 20, 375–386. [Google Scholar] [CrossRef]
- Mattavelli, E.; Olmastroni, E.; Bonofiglio, D.; Catapano, A.L.; Baragetti, A.; Magni, P. Adherence to the Mediterranean Diet: Impact of Geographical Location of the Observations. Nutrients 2022, 14, 2040. [Google Scholar] [CrossRef]
- Machado, M.V. Aerobic Exercise in the Management of Metabolic Dysfunction Associated Fatty Liver Disease. Diabetes Metab. Syndr. Obes. 2021, 14, 3627–3645. [Google Scholar] [CrossRef]
- Rojas, Á.; Lara-Romero, C.; Muñoz-Hernández, R.; Gato, S.; Ampuero, J.; Romero-Gómez, M. Emerging Pharmacological Treatment Options for MAFLD. Ther. Adv. Endocrinol. Metab. 2022, 13, 204201882211424. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, S.; Ji, X.; Shen, X.; You, J.; Liang, X.; Yin, H.; Zhao, L. Current Innovations in Nutraceuticals and Functional Foods for Intervention of Non-Alcoholic Fatty Liver Disease. Pharmacol. Res. 2021, 166, 105517. [Google Scholar] [CrossRef] [PubMed]
- Hefer, M.; Petrovic, A.; Roguljic, L.K.; Kolaric, T.O.; Kizivat, T.; Wu, C.H.; Tabll, A.A.; Smolic, R.; Vcev, A.; Smolic, M. Green Tea Polyphenol (-)-Epicatechin Pretreatment Mitigates Hepatic Steatosis in an In Vitro MASLD Model. Curr. Issues Mol. Biol. 2024, 46, 8981–8994. [Google Scholar] [CrossRef] [PubMed]
- Mijangos-Trejo, A.; Nuño-Lambarri, N.; Barbero-Becerra, V.; Uribe-Esquivel, M.; Vidal-Cevallos, P.; Chávez-Tapia, N. Prebiotics and Probiotics: Therapeutic Tools for Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 14918. [Google Scholar] [CrossRef]
- Ma, L.; Lu, Q.-Y.; Lim, S.; Han, G.; Boros, L.G.; Desai, M.; Yee, J.K. The Effect of Flavonoids and Topiramate on Glucose Carbon Metabolism in a HepG2 Steatosis Cell Culture Model: A Stable Isotope Study. Nutrients 2025, 17, 564. [Google Scholar] [CrossRef]
- Sokal-Dembowska, A.; Jarmakiewicz-Czaja, S.; Ferenc, K.; Filip, R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and Thus Affect the Process of Liver Fibrosis? Int. J. Mol. Sci. 2024, 25, 5238. [Google Scholar] [CrossRef]
- Ullah, H.; Sommella, E.; Santarcangelo, C.; D’avino, D.; Rossi, A.; Dacrema, M.; Di Minno, A.; Di Matteo, G.; Mannina, L.; Campiglia, P.; et al. Hydroethanolic Extract of Prunus domestica L.: Metabolite Profiling and In Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022, 14, 340. [Google Scholar] [CrossRef]
- Ullah, H.; De Filippis, A.; Khan, H.; Xiao, J.; Daglia, M. An Overview of the Health Benefits of Prunus Species with Special Reference to Metabolic Syndrome Risk Factors. Food Chem. Toxicol. 2020, 144, 111574. [Google Scholar] [CrossRef]
- Barbera, M. Reuse of Food Waste and Wastewater as a Source of Polyphenolic Compounds to Use as Food Additives. J. AOAC Int. 2020, 103, 906–914. [Google Scholar] [CrossRef]
- Xia, H.; Zhu, X.; Zhang, X.; Jiang, H.; Li, B.; Wang, Z.; Li, D.; Jin, Y. Alpha-Naphthoflavone Attenuates Non-Alcoholic Fatty Liver Disease in Oleic Acid-Treated HepG2 Hepatocytes and in High Fat Diet-Fed Mice. Biomed. Pharmacother. 2019, 118, 109287. [Google Scholar] [CrossRef]
- Atchan Nwakiban, A.P.; Fumagalli, M.; Piazza, S.; Magnavacca, A.; Martinelli, G.; Beretta, G.; Magni, P.; Tchamgoue, A.D.; Agbor, G.A.; Kuiaté, J.-R.; et al. Dietary Cameroonian Plants Exhibit Anti-Inflammatory Activity in Human Gastric Epithelial Cells. Nutrients 2020, 12, 3787. [Google Scholar] [CrossRef] [PubMed]
- Atchan Nwakiban, A.P.; Passarelli, A.; Da Dalt, L.; Olivieri, C.; Demirci, T.N.; Piazza, S.; Sangiovanni, E.; Carpentier-maguire, E.; Martinelli, G.; Shivashankara, S.T.; et al. Cameroonian Spice Extracts Modulate Molecular Mechanisms Relevant to Cardiometabolic Diseases in Sw 872 Human Liposarcoma Cells. Nutrients 2021, 13, 4271. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef] [PubMed]
- Huttasch, M.; Roden, M.; Kahl, S. Obesity and MASLD: Is Weight Loss the (Only) Key to Treat Metabolic Liver Disease? Metabolism 2024, 157, 155937. [Google Scholar] [CrossRef]
- Bril, F.; Sninsky, J.J.; Baca, A.M.; Superko, H.R.; Portillo Sanchez, P.; Biernacki, D.; Maximos, M.; Lomonaco, R.; Orsak, B.; Suman, A.; et al. Hepatic Steatosis and Insulin Resistance, But Not Steatohepatitis, Promote Atherogenic Dyslipidemia in NAFLD. J. Clin. Endocrinol. Metab. 2016, 101, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Lee, H.; Kaura, S.; Yip, J.; Sun, H.; Guan, L.; Han, W.; Ding, Y. Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms. Biomolecules 2021, 11, 1582. [Google Scholar] [CrossRef]
- Cherubini, A.; Casirati, E.; Tomasi, M.; Valenti, L. PNPLA3 as a Therapeutic Target for Fatty Liver Disease: The Evidence to Date. Expert. Opin. Ther. Targets 2021, 25, 1033–1043. [Google Scholar] [CrossRef]
- Gutiérrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 11629. [Google Scholar] [CrossRef]
- Longo, M.; Paolini, E.; Di Benedetto, P.; Tomassini, E.; Meroni, M.; Dongiovanni, P. DGAT1 and DGAT2 Inhibitors for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Management: Benefits for Their Single or Combined Application. Int. J. Mol. Sci. 2024, 25, 9074. [Google Scholar] [CrossRef]
- Nwakiban Atchan, A.P.; Shivashankara, S.T.; Piazza, S.; Tchamgoue, A.D.; Beretta, G.; Dell’Agli, M.; Magni, P.; Agbor, G.A.; Kuiaté, J.-R.; Manjappara, U.V. Polyphenol-Rich Extracts of Xylopia and Aframomum Species Show Metabolic Benefits by Lowering Hepatic Lipid Accumulation in Diet-Induced Obese Mice. ACS Omega 2022, 7, 11914–11928. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Velliquette, R.A.; Grann, K.; Missler, S.R.; Patterson, J.; Hu, C.; Gellenbeck, K.W.; Scholten, J.D.; Randolph, R.K. Identification of a Botanical Inhibitor of Intestinal Diacylglyceride Acyltransferase 1 Activity via in Vitro Screening and a Parallel, Randomized, Blinded, Placebo-Controlled Clinical Trial. Nutr. Metab. 2015, 12, 27. [Google Scholar] [CrossRef]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.-L. Novel Insights of Dietary Polyphenols and Obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef]
- Maleki, M.H.; Abdizadeh Javazm, S.; Dastghaib, S.; Panji, A.; Hojjati Far, M.; Mahmoodi, H.; Siri, M.; Shafiee, S.M. The Effect of Quercetin on Adipogenesis, Lipolysis, and Apoptosis in 3T3-L1 Adipocytes: The Role of SIRT1 Pathways. Obes. Sci. Pract. 2024, 10, e752. [Google Scholar] [CrossRef]
- Saleh Al-maamari, J.N.; Rahmadi, M.; Panggono, S.M.; Prameswari, D.A.; Pratiwi, E.D.; Ardianto, C.; Balan, S.S.; Suprapti, B. The Effects of Quercetin on the Expression of SREBP-1c MRNA in High-Fat Diet-Induced NAFLD in Mice. J. Basic. Clin. Physiol. Pharmacol. 2021, 32, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.K.; Bansal, M.B. Pathogenesis of MASLD and MASH—Role of Insulin Resistance and Lipotoxicity. Aliment. Pharmacol. Ther. 2024, 59, S10–S22. [Google Scholar] [CrossRef]
- Gravandi, M.M.; Fakhri, S.; Zarneshan, S.N.; Yarmohammadi, A.; Khan, H. Flavonoids Modulate AMPK/PGC-1α and Interconnected Pathways toward Potential Neuroprotective Activities. Metab. Brain. Dis. 2021, 36, 1501–1521. [Google Scholar] [CrossRef]
- Naz, R.; Saqib, F.; Awadallah, S.; Wahid, M.; Latif, M.F.; Iqbal, I.; Mubarak, M.S. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023, 28, 3996. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Xu, Q.; Ma, J.; Li, X.; Yan, J.; Tian, Y.; Wen, Y.; Chen, T. Berberine and Health Outcomes: An Umbrella Review. Phytother. Res. 2023, 37, 2051–2066. [Google Scholar] [CrossRef]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar] [CrossRef] [PubMed]
- Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Zachariah, B. Curcumin Prevents Inflammatory Response, Oxidative Stress and Insulin Resistance in High Fructose Fed Male Wistar Rats: Potential Role of Serine Kinases. Chem. Biol. Interact. 2016, 244, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated Mechanisms of MASLD Pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Meyer, M.; Schwärzler, J.; Jukic, A.; Tilg, H. Innate Immunity and MASLD. Biomolecules 2024, 14, 476. [Google Scholar] [CrossRef]
- Berumen, J.; Baglieri, J.; Kisseleva, T.; Mekeel, K. Liver Fibrosis: Pathophysiology and Clinical Implications. WIREs Mech. Dis. 2021, 13, e1499. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Atchan, A.P.N.; Monthe, O.C.; Tchamgoue, A.D.; Singh, Y.; Shivashankara, S.T.; Selvi, M.K.; Agbor, G.A.; Magni, P.; Piazza, S.; Manjappara, U.V.; et al. Anti-Inflammatory, Antioxidant Activities, and Phytochemical Characterization of Edible Plants Exerting Synergistic Effects in Human Gastric Epithelial Cells. Antioxidants 2023, 12, 591. [Google Scholar] [CrossRef]
- de Morais Sousa, M.; de Lima, R.M.T.; de Lima, A.; Reis, A.C.; de Carvalho Melo Cavalcante, A.A.; Sattler, J.A.G.; de Almeida-Muradian, L.B.; de Sousa Lima Neto, J.; dos Reis Moreira-Araujo, R.S.; do Nascimento Nogueira, N. Antioxidant Action and Enzyme Activity Modulation by Bioaccessible Polyphenols from Jambolan (Syzygium cumini (L.) Skeels). Food Chem 2021, 363, 130353. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Anthocyanin Profile, Antioxidant Activity and Enzyme Inhibiting Properties of Blueberry and Cranberry Juices: A Comparative Study. Food Funct. 2017, 8, 4187–4193. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant Capacity of Flavonoids from Folium Artemisiae Argyi and the Molecular Mechanism in Caenorhabditis Elegans. J. Ethnopharmacol. 2021, 279, 114398. [Google Scholar] [CrossRef] [PubMed]
- Che, M.; Wang, R.; Li, X.; Wang, H.-Y.; Zheng, X.F.S. Expanding Roles of Superoxide Dismutases in Cell Regulation and Cancer. Drug Discov. Today 2016, 21, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chang, S.-C.; Goldstein, B.Y.; Scheider, W.L.; Cai, L.; You, N.-C.Y.; Tarleton, H.P.; Ding, B.; Zhao, J.; Wu, M.; et al. Green Tea Consumption, Inflammation and the Risk of Primary Hepatocellular Carcinoma in a Chinese Population. Cancer Epidemiol. 2011, 35, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Zhang, A.-L.; Tang, S.-F.; Ming, Q.; Ao, C.-Y.; Liu, Y.; Li, C.-Z.; Yu, C.; Zhao, H.; et al. Curcumin Protects against Manganese-Induced Neurotoxicity in Rat by Regulating Oxidative Stress-Related Gene Expression via H3K27 Acetylation. Ecotoxicol. Environ. Saf. 2022, 236, 113469. [Google Scholar] [CrossRef]
- Quan, X.; Lim, S.-O.; Jung, G. Reactive Oxygen Species Downregulate Catalase Expression via Methylation of a CpG Island in the Oct-1 Promoter. FEBS Lett. 2011, 585, 3436–3441. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhang, W.; Yang, W.; An, S.; Guo, M.; Chen, G. Salicylic Acid Treatment Ameliorates Postharvest Quality Deterioration in ‘France’ Prune (Prunus domestica L. ‘Ximei’) Fruit by Modulating the Antioxidant System. Foods 2024, 13, 2871. [Google Scholar] [CrossRef]
- Decot, H.; Sudhakaran, M.; Boismier, E.; Schilmiller, A.; Claucherty, E.; Doseff, A.I.; Aliakbarian, B. Tart Cherry (Prunus cerasus L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts. Foods 2023, 12, 3748. [Google Scholar] [CrossRef]
- Humboldt-Dachroeden, S.; Mantovani, A. Assessing Environmental Factors within the One Health Approach. Medicina 2021, 57, 240. [Google Scholar] [CrossRef]
- Gentili, P.L. Why Is Complexity Science Valuable for Reaching the Goals of the UN 2030 Agenda? Rend. Lincei Sci. Fis. Nat. 2021, 32, 117–134. [Google Scholar] [CrossRef]
- Atukunda, P.; Eide, W.B.; Kardel, K.R.; Iversen, P.O.; Westerberg, A.C. Unlocking the Potential for Achievement of the UN Sustainable Development Goal 2—‘Zero Hunger’—In Africa: Targets, Strategies, Synergies and Challenges. Food Nutr. Res. 2021, 65, 7686. [Google Scholar] [CrossRef]
- Manandhar, M.; Hawkes, S.; Buse, K.; Nosrati, E.; Magar, V. Gender, Health and the 2030 Agenda for Sustainable Development. Bull. World Health Organ. 2018, 96, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Nair, V.K.; Shivdas, A.; Bhukya, R.; Viswanathan, P.K.; Subramaniam, N.; Nedungadi, P. Mapping Sustainability Reporting Research with the UN’s Sustainable Development Goal. Heliyon 2023, 9, e18510. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Sequence (5′→3′) | Reverse Sequence (3′→5′) |
---|---|---|
ACTB | CACCATTGGCAATGAGCGGTTC | AGGTCTTTGCGGATGTCCACGT |
FASN | TATGCTTCTTCGTGCAGCAGTT | GCTGCCACACGCTCCTCTAG |
DGAT1 | AACTGGTGTGTGGTGATGCT | CCTTCAGGAACAGAGAAACC |
SOD | GGTGTGGGGAAGCATTAAAGG | CAAGTCTCCAACATGCCTCTC |
CAT | TTTAACGCCATTGCCACAGG | TGAGGCCAAACCTTGGTGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comi, L.; Giglione, C.; Tolaj Klinaku, F.; Da Dalt, L.; Ullah, H.; Daglia, M.; Magni, P. Evaluation of Metabolic Dysfunction-Associated Fatty Liver Disease-Related Pathogenic Mechanisms in Human Steatotic Liver Cell-Based Model: Beneficial Effects of Prunus domestica L. subsp. syriaca Extract. Nutrients 2025, 17, 1249. https://doi.org/10.3390/nu17071249
Comi L, Giglione C, Tolaj Klinaku F, Da Dalt L, Ullah H, Daglia M, Magni P. Evaluation of Metabolic Dysfunction-Associated Fatty Liver Disease-Related Pathogenic Mechanisms in Human Steatotic Liver Cell-Based Model: Beneficial Effects of Prunus domestica L. subsp. syriaca Extract. Nutrients. 2025; 17(7):1249. https://doi.org/10.3390/nu17071249
Chicago/Turabian StyleComi, Laura, Claudia Giglione, Fationa Tolaj Klinaku, Lorenzo Da Dalt, Hammad Ullah, Maria Daglia, and Paolo Magni. 2025. "Evaluation of Metabolic Dysfunction-Associated Fatty Liver Disease-Related Pathogenic Mechanisms in Human Steatotic Liver Cell-Based Model: Beneficial Effects of Prunus domestica L. subsp. syriaca Extract" Nutrients 17, no. 7: 1249. https://doi.org/10.3390/nu17071249
APA StyleComi, L., Giglione, C., Tolaj Klinaku, F., Da Dalt, L., Ullah, H., Daglia, M., & Magni, P. (2025). Evaluation of Metabolic Dysfunction-Associated Fatty Liver Disease-Related Pathogenic Mechanisms in Human Steatotic Liver Cell-Based Model: Beneficial Effects of Prunus domestica L. subsp. syriaca Extract. Nutrients, 17(7), 1249. https://doi.org/10.3390/nu17071249