Long-Term Effects of Multiple-Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood on the Cognitive Development of Children Aged 4–14 Years: A Systematic Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategies
2.2. Eligibility Criteria
2.3. Outcome Measures
2.4. Study Selection and Screening
2.5. Data Extraction
2.6. Assessment of Risk of Bias
2.7. Data Synthesis
3. Results
3.1. Characteristics of Supplementation Intervention Trials
3.2. Risk of Bias in Included Studies
3.3. Characteristics of the Follow-Up Studies
3.4. Long-Term Effects of Multiple-Micronutrient Supplementation on Cognitive Outcomes
3.4.1. Maternal Supplementation
3.4.2. Infant and Young Child Supplementation
3.4.3. Combined Maternal and Child Supplementation
3.4.4. Effect Direction Results for Developmental Outcomes in the Included Studies
4. Discussion
Limitations and Future Research Recommendations
5. Conclusions
Public Health Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Micronutrients. Available online: https://www.who.int/health-topics/micronutrients#tab=tab_1 (accessed on 28 October 2023).
- Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 2010, 54, 457–470. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Taneja, S. Zinc and cognitive development. Br. J. Nutr. 2001, 85, S139–S145. [Google Scholar] [CrossRef]
- de Rooij, S.R.; Wouters, H.; Yonker, J.E.; Painter, R.C.; Roseboom, T.J. Prenatal undernutrition and cognitive function in late adulthood. Proc. Natl. Acad. Sci. USA 2010, 107, 16881–16886. [Google Scholar] [CrossRef]
- Thompson, R.A.; Nelson, C.A. Developmental science and the media. Early brain development. Am. Psychol. 2001, 56, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Alem, A.Z.; Efendi, F.; McKenna, L.; Felipe-Dimog, E.B.; Chilot, D.; Tonapa, S.I.; Susanti, I.A.; Zainuri, A. Prevalence and factors associated with anemia in women of reproductive age across low- and middle-income countries based on national data. Sci. Rep. 2023, 13, 20335. [Google Scholar] [CrossRef] [PubMed]
- WHO. Anaemia. Available online: https://www.who.int/news-room/fact-sheets/detail/anaemia (accessed on 28 October 2023).
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P., Jr.; Christian, P. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Tau, G.Z.; Peterson, B.S. Normal Development of Brain Circuits. Neuropsychopharmacology 2010, 35, 147–168. [Google Scholar] [CrossRef]
- Allen, L.H.; Ahluwalia, N. Improving Iron Status Through Diet: The Application of Knowledge Concerning Dietary Iron Bioavailability in Human Populations; Opportunities for Micronutrient Interverntions (OMNI) Project: Arlington, VA, USA, 1997. [Google Scholar]
- Keats, E.C.; Akseer, N.; Thurairajah, P.; Cousens, S.; Bhutta, Z.A.; Global Young Women’s Nutrition Investigators’Group. Multiple-micronutrient supplementation in pregnant adolescents in low- and middle-income countries: A systematic review and a meta-analysis of individual participant data. Nutr. Rev. 2022, 80, 141–156. [Google Scholar] [CrossRef]
- Berry, R.J.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.Y.; Gindler, J.; et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Fernández-Gaxiola, A.C.; Dowswell, T.; Peña-Rosas, J.P. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2010, Cd007950. [Google Scholar] [CrossRef]
- Imbard, A.; Benoist, J.F.; Blom, H.J. Neural tube defects, folic acid and methylation. Int. J. Environ. Res. Public Health 2013, 10, 4352–4389. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- WHO. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- WHO. WHO 2020 Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. WHO antenatal care recommendations for a positive pregnancy experience. In Nutritional Interventions Update: Multiple Micronutrient Supplements During Pregnancy; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. Guideline: Use of Multiple Micronutrient Powders for Point-of-Use Fortification of Foods Consumed by Infants and Young Children Aged 6–23 Months and Children Aged 2–12 Years; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Devakumar, D.; Fall, C.H.; Sachdev, H.S.; Margetts, B.M.; Osmond, C.; Wells, J.C.; Costello, A.; Osrin, D. Maternal antenatal multiple micronutrient supplementation for long-term health benefits in children: A systematic review and meta-analysis. BMC Med. 2016, 14, 90. [Google Scholar] [CrossRef]
- Leung, B.M.; Wiens, K.P.; Kaplan, B.J. Does prenatal micronutrient supplementation improve children’s mental development? A systematic review. BMC Pregnancy Childbirth 2011, 11, 12. [Google Scholar] [CrossRef]
- Geletu, A.; Lelisa, A.; Baye, K. Provision of low-iron micronutrient powders on alternate days is associated with lower prevalence of anaemia, stunting, and improved motor milestone acquisition in the first year of life: A retrospective cohort study in rural Ethiopia. Matern. Child Nutr. 2019, 15, e12785. [Google Scholar] [CrossRef]
- Prado, E.L.; Alcock, K.J.; Muadz, H.; Ullman, M.T.; Shankar, A.H. Maternal multiple micronutrient supplements and child cognition: A randomized trial in Indonesia. Pediatrics 2012, 130, e536–e546. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Yue, A.; Zhou, H.; Shi, Y.; Zhang, L.; Martorell, R.; Medina, A.; Rozelle, S.; Sylvia, S. The effect of a micronutrient powder home fortification program on anemia and cognitive outcomes among young children in rural China: A cluster randomized trial. BMC Public Health 2017, 17, 738. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: Review Articles, Systematic Reviews, Meta-Analysis, and the Updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines. Med. Sci. Monit. 2021, 27, e934475. [Google Scholar] [CrossRef] [PubMed]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 3, Cd004905. [Google Scholar] [CrossRef]
- Fantom, N.; Serajuddin, U. The World Bank’s Classification of Countries by Income; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Prado, E.L.; Sebayang, S.K.; Apriatni, M.; Adawiyah, S.R.; Hidayati, N.; Islamiyah, A.; Siddiq, S.; Harefa, B.; Lum, J.; Alcock, K.J.; et al. Maternal multiple micronutrient supplementation and other biomedical and socioenvironmental influences on children’s cognition at age 9–12 years in Indonesia: Follow-up of the SUMMIT randomised trial. Lancet Glob. Health 2017, 5, e217–e228. [Google Scholar] [CrossRef]
- The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; Cochrane: London, UK, 2011. [Google Scholar]
- Fawzi, W.W.; Msamanga, G.I.; Urassa, W.; Hertzmark, E.; Petraro, P.; Willett, W.C.; Spiegelman, D. Vitamins and Perinatal Outcomes among HIV-Negative Women in Tanzania. N. Engl. J. Med. 2007, 356, 1423–1431. [Google Scholar] [CrossRef]
- McDonald, C.M.; Manji, K.P.; Kisenge, R.; Aboud, S.; Spiegelman, D.; Fawzi, W.W.; Duggan, C.P. Daily Zinc but Not Multivitamin Supplementation Reduces Diarrhea and Upper Respiratory Infections in Tanzanian Infants: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Nutr. 2015, 145, 2153–2160. [Google Scholar] [CrossRef] [PubMed]
- Merialdi, M.; Caulfield, L.E.; Zavaleta, N.; Figueroa, A.; Dominici, F.; DiPietro, J.A. Randomized controlled trial of prenatal zinc supplementation and the development of fetal heart rate. Am. J. Obstet. Gynecol. 2004, 190, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Merialdi, M.; Caulfield, L.E.; Zavaleta, N.; Figueroa, A.; Costigan, K.A.; Dominici, F.; Dipietro, J.A. Randomized controlled trial of prenatal zinc supplementation and fetal bone growth. Am. J. Clin. Nutr. 2004, 79, 826–830. [Google Scholar] [CrossRef]
- Osrin, D.; Vaidya, A.; Shrestha, Y.; Baniya, R.B.; Manandhar, D.S.; Adhikari, R.K.; Filteau, S.; Tomkins, A.; de Costello, A.M.L. Effects of antenatal multiple micronutrient supplementation on birthweight and gestational duration in Nepal: Double-blind, randomised controlled trial. Lancet 2005, 365, 955–962. [Google Scholar] [CrossRef]
- Christian, P.; Khatry, S.K.; Katz, J.; Pradhan, E.K.; LeClerq, S.C.; Shrestha, S.R.; Adhikari, R.K.; Sommer, A.; West, K.P., Jr. Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: Double blind randomised community trial. BMJ 2003, 326, 571. [Google Scholar] [CrossRef]
- Shankar, A.H.; Jahari, A.B.; Sebayang, S.K.; Aditiawarman; Apriatni, M.; Harefa, B.; Muadz, H.; Soesbandoro, S.D.; Tjiong, R.; Fachry, A.; et al. Effect of maternal multiple micronutrient supplementation on fetal loss and infant death in Indonesia: A double-blind cluster-randomised trial. Lancet 2008, 371, 215–227. [Google Scholar] [CrossRef]
- Zeng, L.; Dibley, M.J.; Cheng, Y.; Dang, S.; Chang, S.; Kong, L.; Yan, H. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: Double blind cluster randomised controlled trial. BMJ 2008, 337, a2001. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Khatry, S.K.; Stoltzfus, R.J.; Katz, J.; LeClerq, S.C.; Adhikari, R.; Mullany, L.C.; Shresta, S.; Black, R.E. Effect of routine prophylactic supplementation with iron and folic acid on preschool child mortality in southern Nepal: Community-based, cluster-randomised, placebo-controlled trial. Lancet 2006, 367, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Tielsch, J.M.; Khatry, S.K.; Stoltzfus, R.J.; Katz, J.; LeClerq, S.C.; Adhikari, R.; Mullany, L.C.; Black, R.; Shresta, S. Effect of daily zinc supplementation on child mortality in southern Nepal: A community-based, cluster randomised, placebo-controlled trial. Lancet 2007, 370, 1230–1239. [Google Scholar] [CrossRef]
- Yousafzai, A.K.; Rasheed, M.A.; Rizvi, A.; Armstrong, R.; Bhutta, Z.A. Effect of integrated responsive stimulation and nutrition interventions in the Lady Health Worker programme in Pakistan on child development, growth, and health outcomes: A cluster-randomised factorial effectiveness trial. Lancet 2014, 384, 1282–1293. [Google Scholar] [CrossRef]
- Nutrition Research Facility. Multiple Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood and the Long-Term Child Development: Systematic Literature Review; Nutrition Research Facility: Brussels, Belgium, 2024. [Google Scholar]
- Multiple Micronutrient Supplementation Technical Advisory Group (MMS TAG). Multiple Micronutrient Supplementation During Breastfeeding: Guidance to Interpret the UNIMMAP MMS Product Label; Micronutrient Forum: Washington, DC, USA, 2025. [Google Scholar]
- Christian, P.; Murray-Kolb, L.E.; Khatry, S.K.; Katz, J.; Schaefer, B.A.; Cole, P.M.; Leclerq, S.C.; Tielsch, J.M. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA 2010, 304, 2716–2723. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Manji, K.P.; Darling, A.M.; Kisenge, R.; Kvestad, I.; Hysing, M.; Belinger, D.C.; Strand, T.A.; Duggan, C.P.; Fawzi, W.W. Effect of antenatal and infant micronutrient supplementation on middle childhood and early adolescent development outcomes in Tanzania. Eur. J. Clin. Nutr. 2019, 73, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Morgan, M.E.; Murray-Kolb, L.; LeClerq, S.C.; Khatry, S.K.; Schaefer, B.; Cole, P.M.; Katz, J.; Tielsch, T. Preschool Iron-Folic Acid and Zinc Supplementation in Children Exposed to Iron-Folic Acid in Utero Confers No Added Cognitive Benefit in Early School-Age12. J. Nutr. 2011, 141, 2042–2048. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, L.E.; Putnick, D.L.; Zavaleta, N.; Lazarte, F.; Albornoz, C.; Chen, P.; Dipietro, J.A.; Bornstein, M.H. Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. Am. J. Clin. Nutr. 2010, 92, 130–136. [Google Scholar] [CrossRef]
- Dulal, S.; Liégeois, F.; Osrin, D.; Kuczynski, A.; Manandhar, D.S.; Shrestha, B.P.; Sen, A.; Saville, N.; Devakumar, D.; Prost, A. Does antenatal micronutrient supplementation improve children’s cognitive function? Evidence from the follow-up of a double-blind randomised controlled trial in Nepal. BMJ Glob. Health 2018, 3, e000527. [Google Scholar] [CrossRef]
- Zhu, Z.; Cheng, Y.; Zeng, L.; Elhoumed, M.; He, G.; Li, W.; Zhang, M.; Li, W.; Li, D.; Tsegaye, S.; et al. Association of Antenatal Micronutrient Supplementation With Adolescent Intellectual Development in Rural Western China: 14-Year Follow-up From a Randomized Clinical Trial. JAMA Pediatr. 2018, 172, 832–841. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, Y.; Wang, L.; Qi, Q.; Huang, L.; Andegiorgish, A.K.; Elhoumed, M.; Cheng, Y.; Dibley, M.J.; Sudfeld, C.R.; et al. Effects of antenatal micronutrient supplementation regimens on adolescent emotional and behavioral problems: A 14-year follow-up of a double-blind, cluster-randomized controlled trial. Clin. Nutr. 2023, 42, 129–135. [Google Scholar] [CrossRef]
- Yousafzai, A.K.; Obradović, J.; Rasheed, M.A.; Rizvi, A.; Portilla, X.A.; Tirado-Strayer, N.; Siyal, S.; Memon, U. Effects of responsive stimulation and nutrition interventions on children’s development and growth at age 4 years in a disadvantaged population in Pakistan: A longitudinal follow-up of a cluster-randomised factorial effectiveness trial. Lancet Glob. Health 2016, 4, e548–558. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E.; Khatry, S.K.; Katz, J.; Schaefer, B.A.; Cole, P.M.; LeClerq, S.C.; Morgan, M.E.; Tielsch, J.M.; Christian, P. Preschool Micronutrient Supplementation Effects on Intellectual and Motor Function in School-aged Nepalese Children. Arch. Pediatr. Adolesc. Med. 2012, 166, 404–410. [Google Scholar] [CrossRef]
- Li, Q.; Yan, H.; Zeng, L.; Cheng, Y.; Liang, W.; Dang, S.; Wang, Q.; Tsuji, I. Effects of Maternal Multimicronutrient Supplementation on the Mental Development of Infants in Rural Western China: Follow-up Evaluation of a Double-Blind, Randomized, Controlled Trial. Pediatrics 2009, 123, e685–e692. [Google Scholar] [CrossRef]
- Li, C.; Zeng, L.; Wang, D.; Yang, W.; Dang, S.; Zhou, J.; Yan, H. Prenatal Micronutrient Supplementation Is Not Associated with Intellectual Development of Young School-Aged Children. J. Nutr. 2015, 145, 1844–1849. [Google Scholar] [CrossRef]
- Whittaker, P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998, 68, 442s–446s. [Google Scholar] [CrossRef] [PubMed]
- Olivares, M.; Pizarro, F.; Ruz, M. New insights about iron bioavailability inhibition by zinc. Nutrition 2007, 23, 292–295. [Google Scholar] [CrossRef]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 7, 38907. [Google Scholar] [CrossRef]
- Helland, I.B.; Smith, L.; Blomén, B.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics 2008, 122, e472–e479. [Google Scholar] [CrossRef] [PubMed]
- Aboud, F.E.; Yousafzai, A.K. Global health and development in early childhood. Annu. Rev. Psychol. 2015, 66, 433–457. [Google Scholar] [CrossRef] [PubMed]
- Nores, M.; Barnett, W.S. Benefits of early childhood interventions across the world: (Under) Investing in the very young. Econ. Educ. Rev. 2010, 29, 271–282. [Google Scholar] [CrossRef]
- Larson, L.M.; Yousafzai, A.K. A meta-analysis of nutrition interventions on mental development of children under-two in low- and middle-income countries. Matern. Child Nutr. 2017, 13, 3–6. [Google Scholar] [CrossRef]
- Eilander, A.; Gera, T.; Sachdev, H.S.; Transler, C.; van der Knaap, H.C.; Kok, F.J.; Osendarp, S.J. Multiple micronutrient supplementation for improving cognitive performance in children: Systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2010, 91, 115–130. [Google Scholar] [CrossRef]
- Benton, D. Micro-nutrient supplementation and the intelligence of children. Neurosci. Biobehav. Rev. 2001, 25, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Benton, D. Vitamins and neural and cognitive developmental outcomes in children. Proc. Nutr. Soc. 2012, 71, 14–26. [Google Scholar] [CrossRef] [PubMed]

| Reference | Study Design | Study Population, Date | Sample Size | Intervention/Duration |
|---|---|---|---|---|
| Supplementation of women during pregnancy and lactation | ||||
| Merialdi et al. [33] | RCT | Pregnant women, 10–16 gestational weeks Peru, 1998–2000 | 242 (1:1) | Zinc + folic acid + iron vs. IFA Daily, 10–16 gestational week until 1 month postpartum |
| Christian et al. [35] | Cluster RCT | Pregnant and lactating women Nepal, 1999–2001 | 426 communities, (1:1:1:1:1) 4926 pregnant women. | VA Folic acid + VA IFA + VA Zinc + folic acid + iron + VA MMNs + VA Daily supplementation from 11 (±5.1) gestational week until up to 12 weeks postpartum |
| Osrin et al. [34] | RCT | Pregnant women, 12–20 gestational weeks. Nepal, 2002–2004 | 1200 (1:1) | UNIMMAP MMNs vs. IFA Daily supplementation between 12 weeks gestation until childbirth. |
| Shankar et al. [36] | Cluster RCT | Pregnant women Indonesia, 2001–2004 | 31,290 (1:1) IFA (15,486) MMN (15,804) | UNIMMAP MMN vs. IFA Daily supplementation between enrolment (34% in 1st trimester, 43% in 2nd trimester, and 23% in 3rd trimester) and 3 months postpartum |
| Fawzi et al. [30] | RCT | Pregnant women, 12–27 gestational weeks Tanzania, 2001–2005 | 8428 (1:1) Control arm (4214) Intervention arm (4214) | IFA + MVs vs. IFA + Placebo Daily supplementation from 12–27 gestational weeks to 6 weeks after childbirth |
| Zeng et al. [37] | Cluster RCT | Pregnant women, 13.8 ± 5.6 gestational weeks China 2002–2006 | 5828 women enrolled (1:1:1) to one of the three groups. FA (n = 2017), IFA (n = 1912), MMN (n = 1899) | UNIMMAP MMN, IFA, FA Daily supplementation from 13.8 (±5.8) gestational weeks to childbirth. |
| Supplementation of infants and young children | ||||
| Tielsch et al. [38,39] | Cluster RCT, 2 × 2 Factorial design | 1–36 months of age children Nepal, 2001–2006 | 426 communities, (1:1:1) A total of 26,250 infants and young children. Placebo (8411), IFA (8128), and IFAZn (8951) | IFAZn vs. IFA vs. Placebo Daily supplementation from 12–35 months of age (length of supplementation depended on age at enrolment) |
| McDonald et al. [31] | RCT, 2 × 2 Factorial design | Infants, 1 month of age (age at randomization 5.9 ± 0.4 weeks). Tanzania, 2007–2011 | 2400 infants. Placebo (604), Zn (596), MVs (598), and MVs + Zn (602). | Placebo vs. Zn vs. MVs vs. MVs + Zn Daily supplementation for 18 months. 1–6 months old infants received one dose daily. Infants received two doses daily from 7 months. |
| Yousafzai et al. [40] | Cluster RCT, 2 × 2 Factorial design | Infants and young children (2–24 months). Pakistan, 2009–2012 | 1489 infants. Routine health and nutrition services (controls; 368), nutrition education and MNPs (enhanced nutrition; 364), responsive stimulation (responsive stimulation; 383), or a combination of both enriched interventions (374). | MNP vs. No MNP Daily supplementation from (6–24 months). |
| Vitamin A (µg RAE) | B1 (mg) | B2 (mg) | B3 (mg) | B6 (mg) | B12 (µg) | Folic Acid (µg) | Vit. C (mg) | Vit. D (µg) | Vit. E (mg) | Iron (mg) | Zinc (mg) | Cu (mg) | I (µg) | Se (µg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Supplementation of women during pregnancy and lactation—Composition (% RDA [42]) | |||||||||||||||
| Merialdi et al. [33] IFAZn | 250 (71) | 60 (222) | 25 (227) | ||||||||||||
| Christian et al. [35] IFAZn | 1000 (130) | 400 (113) | 60 (222) | 30 (273) | |||||||||||
| Christian et al. [35] MMNs 1 | 1000 (130) | 1.6 (114) | 1.8 (129) | 20 (111) | 2.2 (116) | 2.6 (100) | 400 (113) | 100 (118) | 10 (67) | 10 (67) | 60 (222) | 30 (273) | 2.0 (200) | ||
| Osrin et al. [34] UNIMMAP MMNs | 800 (104) | 1.4 (100) | 1.4 (100) | 18 (100) | 1.9 (100) | 2.6 (100) | 400 (113) | 70 (82) | 5.0 (33) | 10 (67) | 30 (111) | 15 (136) | 2.0 (200) | 150 (68) | 65 (108) |
| Shankar et al. [36] UNIMMAP MMNs | 800 (104) | 1.4 (100) | 1.4 (100) | 18 (100) | 1.9 (100) | 1.6 (62) | 400 (113) | 70 (82) | 5.0 (33) | 10 (67) | 30 (111) | 15 (136) | 2.0 (200) | 150 (68) | 65 (108) |
| Fawzi et al. [30] MVs | 20 (1429) | 20 (1429) | 100 (556) | 25 (1316) | 50 (1923) | 800 (227) | 500 (588) | 30 (200) | |||||||
| Zeng et al. [37] UNIMMAP MMNs | 800 (104) | 1.4 (100) | 1.4 (100) | 18 (100) | 1.9 (100) | 2.6 (100) | 400 (113) | 70 (82) | 5.0 (33) | 10 (67) | 30 (111) | 15 (136) | 2.0 (200) | 150 (68) | 65 (108) |
| Supplementation of infants and young children | |||||||||||||||
| Tielsch et al. [38,39] IFAZn | 50 | 12.5 | 10 | ||||||||||||
| McDonald et al. [31] MVs (+Zn) | 0.5 | 0.6 | 4 | 0.6 | 1.0 | 130 | 60 | 8.0 | 5.0 | ||||||
| Yousafzai et al. [40] MNPs 2 | X | X | X | X | |||||||||||
| Risk of Bias Domains | ||||||
|---|---|---|---|---|---|---|
| Reference | Randomization Process | Intervention Deviations | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall Risk of Bias |
| Caulfield et al. [46] 1 | Low | Low | Low | Low | Low | Low |
| Christian et al. [43] 2 | Low | Low | Some concerns | Low | Low | Some concerns |
| Dulal et al. [47] 3 | Low | Low | Low | Low | Low | Low |
| Prado et al. [28] 4 | Low | Low | Low | Low | Low | Low |
| Sudfeld et al. [44] 5 | Low | Low | Low | Low | Low | Low |
| Zhu et al. [48,49] 6 | Low | Low | Low | Low | Low | Low |
| Murray-Kolb et al. [43] 7 | Low | Low | Low | Low | Low | Low |
| Sudfeld et al. [44] 8 Child follow-up | Low | Low | Low | Low | Some concerns | Some concerns |
| Yousafzai et al. [50] 9 | Low | Low | Low | Low | Low | Low |
| Christian et al. [45] 2,7 | Some concerns | Low | Some concerns | Low | Low | High |
| Reference | Study Population, Date | Outcomes | Measures | SMD (95% Confidence Interval) |
|---|---|---|---|---|
| Supplementation of women during pregnancy and lactation | ||||
| Caulfield et al. [46] IFAZn vs. IFA | 184 children 4–5 years (Peru, 2003–2010) | (1) cognitive development, (3) behavioral development | (1) Wechsler Preschool & Primary Scale of Intelligence | −0.04 (95%CI: −0.33 to 0.25) |
| (1) Language development, bear story | 0.02 (95%CI: −0.27 to 0.32) | |||
| (1) Number concepts, counting game | 0.02 (95%CI: −0.28 to 0.32) | |||
| (1) Goodenough & Harris Draw-a-Person Test | −0.11 (95%CI: −0.42 to 0.19) | |||
| (1) Interpersonal understanding, friendship interview | −0.16 (95%CI: −0.47 to 0.15) | |||
| (3) Vineland Adaptive Behaviour Scales Communication Daily living skills Socialization Motor skills | −0.11 (95%CI: −0.40 to 0.18) 0.06 (95%CI: −0.23 to 0.35) 0.06 (95%CI: −0.23 to 0.36) 0.04 (95%CI: −0.25 to 0.34) | |||
| (3) Preschool Behaviour Questionnaire Internalizing Externalizing | 0.13 (95%CI: −0.16 to 0.42) 0.06 (95%CI: −0.23 to 0.35) | |||
| Christian et al. [43] 1 IFAZn vs. IFA | 281 children 7–9 years (Nepal, 2007–2009) | (1) cognitive development, (2) motor development | (1) The Universal Non-Verbal Intelligence Test (UNIT) | −0.17 (95%CI: −0.41 to 0.08) |
| (1) Executive function Go/No-go test Stroop test(proportion who failed) Backward digit span | −0.22 (95%CI: −0.46 to 0.03) 0.33 (95%CI: 0.09 to 0.57) −0.33 (95%CI: −0.57 to −0.08) | |||
| (2) The Movement Assessment Battery for Children (MABC) 3 | 0.33 (95%CI: 0.08 to 0.57) | |||
| (2) Finger-tapping test | −0.41 (95%CI: −0.66 to −0.17) | |||
| Christian et al. [43] 2 MMNs vs. IFA | 321 children 7–9 years (Nepal, 2007–2009) | (1) cognitive development, (2) motor development | (1) The Universal Non-Verbal Intelligence Test (UNIT) | −0.26 (95%CI: −0.49 to −0.02) |
| (1) Executive function Go/No-go test Stroop test(proportion who failed) Backward digit span | −0.00 (95%CI: −0.24 to 0.23) 0.20 (95%CI: −0.03 to 0.44) −0.36 (95%CI: −0.60 to −0.13) | |||
| (2) The Movement Assessment Battery for Children (MABC) 3 | 0.32 (95%CI: 0.09 to 0.56) | |||
| (2)Finger-tapping test | −0.45 (95%CI: −0.69 to −0.22) | |||
| Dulal et al. [47] MMNs vs. IFA | 813 young adolescents 12 years (Nepal, 2015–2016) | (1) cognitive development | (1) The Universal Non-Verbal Intelligence Test (UNIT) | 0.09 (95%CI: −0.05 to 0.23) |
| (1) Executive function using a counting Stroop test | 0.10 (95%CI: −0.04 to 0.24) | |||
| Prado et al. [28] MMNs vs. IFA | 2879 children and young adolescents 9–12 years (Indonesia, 2012–2014) | (1) cognitive development, (2) motor development, (3) behavioral development | (1) General intellectual ability (1) Declarative memory (1) Procedural memory (1) Executive function (1) Academic achievement | 0.09 (95%CI: −0.03 to 0.22) 0.01 (95%CI: −0.09 to 0.11) 0.11 (95%CI: 0.01 to 0.20) 0.07 (95%CI: −0.04 to 0.19) 0.08 (95%CI: −0.05 to 0.21) |
| (2) Fine motor dexterity | −0.07 (95%CI: −0.16 to 0.02) | |||
| (3) Socio-emotional health | 0.06 (95%CI: −0.04 to 0.16) | |||
| Sudfeld et al. [44] IFA + MVs vs. IFA+ Placebo | 446 young adolescents 11–14 years (Tanzania, 2015–2017) | (1) cognitive development, (3) behavior development | (1) General Intelligence (Atlantis, Footsteps, Hand movement, Kilifi naming test, Koh’s block design test, Story completion, and verbal fluency) | −0.02 (95%CI: −0.20 to 0.17) |
| (1) Executive function (Literacy, Numeracy, Go/No-go, People search, ROCF copy, ROCF recall, and Shift) | 0.00 (95%CI: −0.19 to 0.19) | |||
| (3) Mental health.(SDQ and the Behaviour Rating Inventory of Executive Function (BRIEF) to assess mental health) | 0.05 (95%CI: −0.14 to 0.23) | |||
| Zhu et al. [48,49] MMN vs. IFA | 1385 children and young adolescents 10–14 years (China, 2016) | (1) cognitive development, (3) behavioral development | (1) Adolescent full-scale intelligence quotient and aspects of verbal comprehension, working memory, perceptual reasoning, and processing speed indexes were assessed by the Wechsler Intelligence Scale for Children | 0.13 (95%CI: 0.03 to 0.24) |
| (3) Internalizing, externalizing, and total behavior problem scores | 0.05 (95%CI: −0.06 to 0.16) | |||
| Supplementation of infants and young children | ||||
| Murray-Kolb et al. [51] IFAZn vs. Placebo | 377 children 7–9 years (Nepal, 2007–2009) | (1) cognitive development, (2) motor development | (1) The Universal Non-Verbal Intelligence Test (UNIT) | 0.11 (95%CI: −0.10 to 0.31) |
| (1) Stroop test (proportion who failed) | −0.29 (95%CI: −0.50 to −0.09) | |||
| (1) Backward digit span | 0.18 (95%CI: −0.02 to 0.39) | |||
| (1) Go/No-go test | −0.13 (95%CI: −0.34 to 0.07) | |||
| (2) The Movement Assessment Battery for Children (MABC) 3 | −0.12 (95%CI: −0.32 to 0.08) | |||
| (2) Finger-tapping | 0.18 (95%CI: −0.02 to 0.39) | |||
| Sudfeld et al. [44] MVs vs. No MVs | 365 children 6–8 years (Tanzania, 2015–2017) | (1) cognitive development, (3) behavioral development | (1) General Intelligence (Atlantis, Footsteps, Hand movement, Kilifi naming test, Koh’s block design test, Story completion, and verbal fluency) | 0.00 (95%CI: −0.21 to 0.21) |
| (1) Executive function (Literacy, Numeracy, Go/No-Go, People search, ROCF copy, ROCF recall, and Shift) | 0.00 (95%CI: −0.21 to 0.21) | |||
| (3) Mental health.(SDQ and the Behaviour Rating Inventory of Executive Function (BRIEF) to assess mental health) | 0.08 (95%CI: −0.10 to 0.26) | |||
| Yousafzai et al. [50] MNP vs. No MNP | 1302 children 4 years (Pakistan, 2013) | (1) cognitive development, (2) motor development, (3) behavioral development | (1) Cognitive capacity including Intelligent quotient Executive function Pre-academic skills | −0.10 (95%CI: −0.21 to 0.02) −0.03 (95%CI: −0.15 to 0.09) 0.16 (95%CI: 0.05 to 0.27) |
| (2) Motor development | 0.11 (95%CI: −0.01 to 0.24) | |||
| (3) Social-emotional development Pro-social behaviors Behavioral problems | −0.09 (95%CI: −0.20 to 0.01) −0.02 (95%CI: −0.13 to 0.09) | |||
| Supplementation of women during pregnancy and lactation and of infants and young children | ||||
| Christian et al. [45] M-IFAZn C-IFAZn vs. M-IFA C-Pl | 223 children 7–9 years (Nepal, 2007–2009) | (1) cognitive development, (2) motor development | (1) The Universal Non-Verbal Intelligence Test (UNIT) | −0.16 (95%CI: −0.43 to 0.10) |
| (1) Stroop test (proportion who failed) | 0.40 (95%CI: 0.13 to 0.66) | |||
| (1) Backward digit span | −0.44 (95%CI: −0.71 to −0.18) | |||
| (1)Go/No-go test | −0.22 (95%CI: −0.48 to 0.05) | |||
| (2) The Movement Assessment Battery for Children (MABC) 3 | 0.34 (95%CI: 0.07 to 0.61) | |||
| (2) Finger-tapping | −0.46 (95%CI: −0.72 to −0.19) | |||
| Study | Study Design | Cognitive Development | Motor Development | Behavioral Development |
|---|---|---|---|---|
| Christian et al. [43] | cRCT | ◄► | ▼ | |
| Sudfeld et al. [44] | RCT | ◄► | ◄► | |
| Murray-Kolb et al. [43] | cRCT | ◄► | ◄► | |
| Caulfield et al. [46] | RCT | ◄► | ◄► | |
| Yousafzai et al. [50] | cRCT | ◄► | ◄► | ◄► |
| Prado et al. [28] | cRCT | ◄► | ◄► | ◄► |
| Dulal et al. [47] | RCT | ◄► | ||
| Zhu et al. [48,49] | cRCT | ▲ | ◄► | |
| Sudfeld et al. [44] | RCT | ◄► | ◄► | |
| Christian et al. [45] | cRCT | ◄► | ▼ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
William, A.; Lachat, C.; Petalios, D.; Deshons, A.; Tesfamariam Hadush, K.; Broin, M.; Abbeddou, S. Long-Term Effects of Multiple-Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood on the Cognitive Development of Children Aged 4–14 Years: A Systematic Review of Randomized Controlled Trials. Nutrients 2025, 17, 3966. https://doi.org/10.3390/nu17243966
William A, Lachat C, Petalios D, Deshons A, Tesfamariam Hadush K, Broin M, Abbeddou S. Long-Term Effects of Multiple-Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood on the Cognitive Development of Children Aged 4–14 Years: A Systematic Review of Randomized Controlled Trials. Nutrients. 2025; 17(24):3966. https://doi.org/10.3390/nu17243966
Chicago/Turabian StyleWilliam, Arnold, Carl Lachat, Dimitrios Petalios, Alice Deshons, Kokeb Tesfamariam Hadush, Mélanie Broin, and Souheila Abbeddou. 2025. "Long-Term Effects of Multiple-Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood on the Cognitive Development of Children Aged 4–14 Years: A Systematic Review of Randomized Controlled Trials" Nutrients 17, no. 24: 3966. https://doi.org/10.3390/nu17243966
APA StyleWilliam, A., Lachat, C., Petalios, D., Deshons, A., Tesfamariam Hadush, K., Broin, M., & Abbeddou, S. (2025). Long-Term Effects of Multiple-Micronutrient Supplementation During Pregnancy, Lactation, and Early Childhood on the Cognitive Development of Children Aged 4–14 Years: A Systematic Review of Randomized Controlled Trials. Nutrients, 17(24), 3966. https://doi.org/10.3390/nu17243966

