Nutritional Support Patterns and Outcomes in Pediatric Veno-Venous and Veno-Arterial Extracorporeal Membrane Oxygenation: A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Nutrition Assessment
2.2. Nutrition Support (Amount and Delivery Methods)
2.3. ECMO Outcomes
2.4. Statistical Analysis
3. Results
3.1. Nutrition Support
3.1.1. Nutritional Adequacy by ECMO Mode (VA vs. VV)
3.1.2. Nutritional Adequacy by Age Groups (Age < vs. >2 Years Old)
3.1.3. Nutritional Adequacy by Nutritional Status (Underweight vs. Non-Underweight Patients)
3.2. Outcomes in Association with Nutrition Practices
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ECMO | extracorporeal membrane oxygenation |
| VA | venoarterial |
| VV | venovenous |
| EN | enteral nutrition |
| PN | parenteral nutrition |
| TPN | total parenteral nutrition |
References
- Toh, T.S.W.; Ong, C.; Mok, Y.H.; Mallory, P.; Cheifetz, I.M.; Lee, J.H. Nutrition in Pediatric Extracorporeal Membrane Oxygenation: A Narrative Review. Front. Nutr. 2021, 8, 666464. [Google Scholar] [CrossRef]
- Mehta, N.M.; Bechard, L.J.M.; Cahill, N.R.; Wang, M.M.; Day, A.M.; Duggan, C.P.; Heyland, D.K.M. Nutritional practices and their relationship to clinical outcomes in critically ill children—An international multicenter cohort study. Crit. Care Med. 2012, 40, 2204–2211. [Google Scholar] [CrossRef]
- Wales, P.W.; Allen, N.; Worthington, P.; George, D.; Compher, C. A.S.P.E.N. clinical guidelines: Support of pediatric patients with intestinal failure at risk of parenteral nutrition-associated liver disease. J. Parenter. Enter. Nutr. 2014, 38, 538–557. [Google Scholar] [CrossRef]
- Petrillo-Albarano, T.; Pettignano, R.; Asfaw, M.; Easley, K. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit*. Pediatr. Crit. Care Med. 2006, 7, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, T.A.; Kuhn, E.M.; Manzi, J.; Christensen, M.; Collins, M.; Brown, A.; Dechert, R.; Scanlon, M.C.; Wakeham, M.K.; Goday, P.S. Early Enteral Nutrition Is Associated with Lower Mortality in Critically Ill Children. J. Parenter. Enter. Nutr. 2014, 38, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hofheinz, S.B.; Núñez-Ramos, R.; Germán-Díaz, M.; Melgares, L.O.; Arroba, C.M.A.; López-Fernández, E.; Moreno-Villares, J.M. Which is the best route to achieve nutritional goals in pediatric ECMO patients? Nutrition 2022, 93, 111497. [Google Scholar] [CrossRef]
- Schneeweiss-Gleixner, M.; Scheiner, B.; Semmler, G.; Maleczek, M.; Laxar, D.; Hintersteininger, M.; Hermann, M.; Hermann, A.; Buchtele, N.; Schaden, E.; et al. Inadequate Energy Delivery Is Frequent among COVID-19 Patients Requiring ECMO Support and Associated with Increased ICU Mortality. Nutrients 2023, 15, 2098. [Google Scholar] [CrossRef]
- Sakurai, K.; Singhal, N. Extracorporeal membrane oxygenation in children: A brief review. J. Paediatr. Child Health 2022, 58, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C. Extracorporeal Membrane Oxygenation for Severe Pediatric Respiratory Failure. Respir. Care 2017, 62, 732–750. [Google Scholar] [CrossRef]
- Yuhang, Y.; Ni, Y.; Tiening, Z.; Lijie, W.; Wei, X.; Chunfeng, L. Functional status of pediatric patients after extracorporeal membrane oxygenation: A five-year single-center study. Front. Pediatr. 2022, 10, 917875. [Google Scholar] [CrossRef]
- Dresen, E.; Naidoo, O.; Hill, A.; Elke, G.; Lindner, M.; Jonckheer, J.; De Waele, E.; Meybohm, P.; Modir, R.; Patel, J.J.; et al. Medical nutrition therapy in patients receiving ECMO: Evidence-based guidance for clinical practice. J. Parenter. Enter. Nutr. 2022, 47, 220–235. [Google Scholar] [CrossRef]
- Armstrong, L.B.; Ariagno, K.; Smallwood, C.D.; Hong, C.; Arbuthnot, M.; Mehta, N.M. Nutrition Delivery During Pediatric Extracorporeal Membrane Oxygenation Therapy. J. Parenter. Enter. Nutr. 2018, 42, 1133–1138. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [PubMed]
- Hatami, S.; Hefler, J.; Freed, D.H. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front. Immunol. 2022, 13, 831930. [Google Scholar] [CrossRef]
- Chou, J.H.; Roumiantsev, S.; Singh, R. PediTools Electronic Growth Chart Calculators: Applications in Clinical Care, Research, and Quality Improvement. J. Med. Internet Res. 2020, 22, e16204. [Google Scholar] [CrossRef]
- Narayan, S.K.; Gudivada, K.K.; Krishna, B. Assessment of Nutritional Status in the Critically Ill. Indian J. Crit. Care Med. 2020, 24, S152–S156. [Google Scholar] [CrossRef]
- Beer, S.S.; Juarez, M.D.; Vega, M.W.; Canada, N.L. Pediatric Malnutrition. Putting the New Definition and Standards Into Practice. Nutr. Clin. Pract. 2015, 30, 609–624. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Mehta, N.M.; Compher, C.; ASPEN Board of Directors. A.S.P.E.N. Clinical Guidelines: Nutrition Support of the Critically Ill Child. J. Parenter. Enter. Nutr. 2009, 33, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Knebusch, N.; Daughtry, J.; Fogarty, T.P.; Lam, F.W.; Orellana, R.A.; Lai, Y.C.; Erklauer, J.; Coss-Bu, J.A. Feasibility of Achieving Nutritional Adequacy in Critically Ill Children with Critical Neurological Illnesses (CNIs)?—A Quaternary Hospital Experience. Children 2024, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Pelekhaty, S.; Gessler, J.; Dante, S.; Rector, N.; Galvagno, S.; Stachnik, S.; Rabin, J.; Tabatabai, A. Nutrition and outcomes in venovenous extracorporeal membrane oxygenation: An observational cohort study. Nutr. Clin. Pract. 2024, 40, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Ohman, K.; Zhu, H.; Maizlin, I.; Williams, R.F.; Guner, Y.S.; Russell, R.T.; Harting, M.T.; Vogel, A.M.; Starr, J.P.; Johnson, D.; et al. A Multicenter Study of Nutritional Adequacy in Neonatal and Pediatric Extracorporeal Life Support. J. Surg. Res. 2020, 249, 67–73. [Google Scholar] [CrossRef]
- Pérez, G.; González, E.; Zamora, L.; Fernández, S.N.; Sánchez, A.; Bellón, J.M.; Santiago, M.J.; Solana, M.J. Early Enteral Nutrition and Gastrointestinal Complications in Pediatric Patients on Extracorporeal Membrane Oxygenation. J. Pediatr. Gastroenterol. Nutr. 2021, 74, 110–115. [Google Scholar] [CrossRef]
- Hanekamp, M.N.; Spoel, M.; Sharman-Koendjbiharie, I.; Peters, J.W.B.; Albers, M.J.I.J.; Tibboel, D. Routine enteral nutrition in neonates on extracorporeal membrane oxygenation*. Pediatr. Crit. Care Med. 2005, 6, 275–279. [Google Scholar] [CrossRef]
- Greathouse, K.C.; Sakellaris, K.T.; Tumin, D.; Katsnelson, J.; Tobias, J.D.; Hayes, D.; Yates, A.R. Impact of Early Initiation of Enteral Nutrition on Survival During Pediatric Extracorporeal Membrane Oxygenation. J. Parenter. Enter. Nutr. 2017, 42, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.D.; Absah, I.; Steien, D.B.; Grothe, R.; Crow, S. Vasopressors and Enteral Nutrition in the Survival Rate of Children During Extracorporeal Membrane Oxygenation. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 340–344. [Google Scholar] [CrossRef]
- Lee, A.E.; Munoz, E.; Al Dabbous, T.; Harris, E.; O’callaghan, M.; Raman, L. Extracorporeal Life Support Organization Guidelines for the Provision and Assessment of Nutritional Support in the Neonatal and Pediatric ECMO Patient. ASAIO J. 2022, 68, 875–880. [Google Scholar] [CrossRef]
- Sertaridou, E.; Papaioannou, V.; Kolios, G.; Pneumatikos, I. Gut failure in critical care: Old school vs. new school. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 309–322. [Google Scholar]
- Soranno, D.E.; Coopersmith, C.M.; Brinkworth, J.F.; Factora, F.N.F.; Muntean, J.H.; Mythen, M.G.; Raphael, J.; Shaw, A.D.; Vachharajani, V.; Messer, J.S. A review of gut failure as a cause and consequence of critical illness. Crit. Care 2025, 29, 91. [Google Scholar] [CrossRef]
- Kurundkar, A.R.; Killingsworth, C.R.; McIlwain, R.B.; Timpa, J.G.; Hartman, Y.E.; He, D.; Karnatak, R.K.; Neel, M.L.; Clancy, J.P.; Anantharamaiah, G.M.; et al. Extracorporeal Membrane Oxygenation Causes Loss of Intestinal Epithelial Barrier in the Newborn Piglet. Pediatr. Res. 2010, 68, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Piena, M.; Albers, M.; Van Haard, P.; Gischler, S.; Tibboel, D. Introduction of enteral feeding in neonates on extracorporeal membrane oxygenation after evaluation of intestinal permeability changes. J. Pediatr. Surg. 1998, 33, 30–34. [Google Scholar] [CrossRef]
- Pettignano, R.; Heard, M.; Davis, R.M.; Labuz, M.; Hart, M. Total enteral nutrition vs.total parenteral nutrition during pediatric extracorporeal membrane oxygenation. Crit. Care Med. 1998, 26, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.L.M.; Jordan, J.; Rice, M.P.; Lee, A.E. Enteral Nutrition During Extracorporeal Membrane Oxygenation in the Neonatal and Pediatric Populations: A Literature Review. Pediatr. Crit. Care Med. 2023, 24, e382–e389. [Google Scholar] [CrossRef]
- Jaksic, T.; Hull, M.A.; Modi, B.P.; Ching, Y.A.; George, D.; Compher, C. A.S.P.E.N. clinical guidelines: Nutrition support of neonates supported with extracorporeal membrane oxygenation. J. Parenter. Enter. Nutr. 2010, 34, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kerstein, J.S.; Pane, C.R.; Sleeper, L.A.; Finnan, E.; Thiagarajan, R.R.; Mehta, N.M.; Mills, K.I. Nutrition Provision in Children with Heart Disease on Extracorporeal Membrane Oxygenation (ECMO). Pediatr. Cardiol. 2024, 46, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Skillman, H.E.; Irving, S.Y.; Coss-Bu, J.A.; Vermilyea, S.; Farrington, E.A.; McKeever, L.; Hall, A.M.; Goday, P.S.; Braunschweig, C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2017, 41, 706–742. [Google Scholar] [CrossRef]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Wouters, P.J.; Vanhorebeek, I.; Debaveye, Y.; Vlasselaers, D.; Desmet, L.; Casaer, M.P.; et al. Early vs. Late Parenteral Nutrition in Critically Ill Children. N. Engl. J. Med. 2016, 374, 1111–1122. [Google Scholar] [CrossRef]
- Jimenez, L.; Mehta, N.M.; Duggan, C.P. Timing of the initiation of parenteral nutrition in critically ill children. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 227–231. [Google Scholar] [CrossRef]
- van Puffelen, E.; Hulst, J.M.; Vanhorebeek, I.; Dulfer, K.; Berghe, G.V.D.; Verbruggen, S.C.A.T.; Joosten, K.F.M. Outcomes of Delaying Parenteral Nutrition for 1 Week vs Initiation Within 24 Hours Among Undernourished Children in Pediatric Intensive Care. JAMA Netw. Open 2018, 1, e182668. [Google Scholar] [CrossRef]
- Linares-Peña, S.; Poveda-Henao, C.; Saucedo-Jaramillo, L.; Garzón-Ruiz, J.P.; Lasso-Ossa, L.; Florez-Navas, C.; Rodriguez-Torres, G.; Robayo-Amortegui, H. Association between parenteral nutrition and extracorporeal membrane oxygenation circuit dysfunction in critically ill adults requiring extracorporeal life support: A retrospective cohort study. J. Parenter. Enter. Nutr. 2025. [Google Scholar] [CrossRef]
- Cerdó, T.; García-Santos, J.A.; Rodríguez-Pöhnlein, A.; García-Ricobaraza, M.; Nieto-Ruíz, A.; Bermúdez, M.G.; Campoy, C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022, 14, 4691. [Google Scholar] [CrossRef] [PubMed]


| n | 115 |
| Female, % (n) | 51% (59) |
| Age (years) | 3 (1–11.75) |
| Weight (kg) | 14.7 (8.9–38.8) |
| Height (cm) | 98.2 (74.3–145.5) |
| PICU LOS Physical (days) | 46 (26–75.8) |
| LOS ECMO (days) | 16.6 (9–30.5) |
| VA ECMO, % (n) | 20 (23) |
| VV ECMO, % (n) | 80 (92) |
| Circuit change occurrences | 2 (0–7) |
| Underweight, % (n) | 16 (14) |
| Chronic malnutrition, % (n) | 20 (23) |
| Acute Malnutrition, % (n) | 11 (13) |
| Obesity, % (n) | 15 (17) |
| Mortality, % (n) | 26 (30) |
| Enteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| VA n = 27 | VV n = 88 | p Value | VA n = 27 | VV n = 88 | p Value | |
| Day 1 | 0 | 0 | 0.1 | 0 | 0 | 0.13 |
| Day 3 | 0 (0–9) | 10 (0–40) | 0.02 | 0 (0–12) | 16 (10–50) | 0.01 |
| Day 5 | 0 (0–26) | 11 (0–63) | 0.07 | 11 (0–32) | 14 (0–76) | 0.02 |
| Day 7 | 2 (0–62) | 9 (0–57) | 0.8 | 25 (0–105) | 80 (16–126) | 0.9 |
| Enteral Nutrition + Parenteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| VA n = 27 | VV n = 88 | p Value | VA n = 27 | VV n = 88 | p Value | |
| Day 1 | 0 | 0 (0–4) | 0.1 | 0 (0–12) | 0 (0–16) | 0.01 |
| Day 3 | 162 (90–143) | 120 (62–152) | 0.5 | 111 (88–166) | 118 (80–143) | 0.9 |
| Day 5 | 138 (115–160) | 108 (72–140) | 0.04 | 126 (94–157) | 112 (81–140) | 0.3 |
| Day 7 | 135 (113–143) | 105 (57–143) | 0.03 | 137 (104–168) | 111 (80–129) | 0.002 |
| Enteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| <2 Years n = 40 | >2 Years n = 75 | p Value | <2 Years n = 40 | >2 Years n = 75 | p Value | |
| Day 1 | 0 (0–2) | 0 (0–0.3) | 0.5 | 0 (0–6) | 0 (0–0.2) | 0.4 |
| Day 3 | 4 (0–50) | 5 (0–26) | 0.4 | 16 (0–90) | 7 (0–43) | 0.23 |
| Day 5 | 7 (0–29) | 5 (0–65) | 0.9 | 12.5 (0–52) | 8 (0–72) | 0.5 |
| Day 7 | 9 (0–55) | 5 (0–60) | 0.4 | 13 (0–117) | 12 (0–73) | 0.1 |
| Enteral Nutrition + Parenteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| <2 Years n = 40 | >2 Years n = 75 | p Value | <2 Years n = 40 | >2 Years n = 75 | p Value | |
| Day 1 | 0 (0–3) | 0 (0–0.3) | 0.5 | 16 (0–90) | 6 (0–43) | 0.23 |
| Day 3 | 120 (99–133) | 132 (60–100) | 0.8 | 139 (119–172) | 104 (59–128) | 0.001 |
| Day 5 | 116 (93–133) | 125 (72–158) | 0.3 | 140 (108–167) | 103 (78–129) | <0.001 |
| Day 7 | 112 (60–137) | 126 (67–148) | 0.19 | 136 (115–168) | 106 (82–127) | <0.001 |
| Enteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| Underweight n = 16 | Non-Underweight n = 99 | p Value | Underweight n = 16 | Non-Underweight n = 99 | p Value | |
| Day 1 | 0 (0–9) | 0 (0–0.7) | 0.21 | 0 (0–22) | 0 (0–0.2) | 0.15 |
| Day 3 | 8 (0–50) | 6 (0–23) | 0.8 | 5 (0–79) | 9 (0–45) | 0.9 |
| Day 5 | 2 (0–20) | 10 (0–65) | 0.2 | 1 (0–24) | 13 (0–73) | 0.21 |
| Day 7 | 0 (0–2) | 13 (0–62) | 0.02 | 0 (0–7) | 24 (0–89) | 0.04 |
| Enteral Nutrition + Parenteral Nutrition | ||||||
| Protein Adequacy | Caloric Adequacy | |||||
| Underweight n = 16 | Non-Underweight n = 99 | p Value | Underweight n = 16 | Non-Underweight n = 99 | p Value | |
| Day1 | 0 (0–9) | 0 (0–0.7) | 0.2 | 5 (0–79) | 9 (9–45) | 0.9 |
| Day 3 | 124 (41–157) | 121 (80–150) | 0.9 | 114 (87–141) | 136 (59–182) | 0.2 |
| Day 5 | 129 (104–149) | 116 (73–147) | 0.4 | 145 (123–177) | 111 (18–136) | 0.006 |
| Day 7 | 130 (71–138) | 113 (66–144) | 0.9 | 140 (88–177) | 115 (68–135) | 0.09 |
| Coefficient (β) | IRR | 95% CI for IRR | p-Value | |
|---|---|---|---|---|
| TPN by Day 7 | −0.213 | 0.81 | 0.56–1.16 | 0.25 |
| TPN by Day 14 | 0.563 | 1.71 | 1.19–2.47 | 0.004 |
| Never on EN during first 5 days | −0.858 | 0.42 | 0.17–1.04 | 0.06 |
| Never on EN during first week | 0.383 | 1.47 | 0.55–3.93 | 0.45 |
| TPN Day 14; Yes n = 51 | TPN Day 14; No n = 64 | p Value | |
|---|---|---|---|
| ICU LOS, days | 58.0 (39.0–77.5) | 38.5 (20.8–66.5) | 0.007 |
| Hospital LOS, days | 77.6 (45.7–103.6) | 50.3 (29.0–83.0) | 0.006 |
| ECMO LOS, days | 21.3(13–32) | 13 (8–22.6) | 0.007 |
| Mortality, % (n) | |||
| TPN Day 14; Yes n = 51 | TPN Day 14; No n = 64 | ||
| 23.5 (12) | 28 (18) | 0.58 | |
| Never on EN during first 5 days; Yes n = 27 | Never on EN during first 5 days; No n = 88 | ||
| 30 (9) | 24 (21) | 0.47 | |
| Never on EN during first 7 days; Yes n = 19 | Never on EN during first 7 days; No n = 69 | ||
| 42 (8) | 23 (22) | 0.15 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, M.; Chung, N.; Philip, B.; Martinek, K.; Stoakes, J.; Nelin, S.; Knebusch, N.; Burgman, C.; Coss-Bu, J.A.; Ontaneda, A. Nutritional Support Patterns and Outcomes in Pediatric Veno-Venous and Veno-Arterial Extracorporeal Membrane Oxygenation: A Retrospective Analysis. Nutrients 2025, 17, 3928. https://doi.org/10.3390/nu17243928
Mansour M, Chung N, Philip B, Martinek K, Stoakes J, Nelin S, Knebusch N, Burgman C, Coss-Bu JA, Ontaneda A. Nutritional Support Patterns and Outcomes in Pediatric Veno-Venous and Veno-Arterial Extracorporeal Membrane Oxygenation: A Retrospective Analysis. Nutrients. 2025; 17(24):3928. https://doi.org/10.3390/nu17243928
Chicago/Turabian StyleMansour, Marwa, Nancy Chung, Blessy Philip, Kelly Martinek, Jesse Stoakes, Sarah Nelin, Nicole Knebusch, Cole Burgman, Jorge A. Coss-Bu, and Andrea Ontaneda. 2025. "Nutritional Support Patterns and Outcomes in Pediatric Veno-Venous and Veno-Arterial Extracorporeal Membrane Oxygenation: A Retrospective Analysis" Nutrients 17, no. 24: 3928. https://doi.org/10.3390/nu17243928
APA StyleMansour, M., Chung, N., Philip, B., Martinek, K., Stoakes, J., Nelin, S., Knebusch, N., Burgman, C., Coss-Bu, J. A., & Ontaneda, A. (2025). Nutritional Support Patterns and Outcomes in Pediatric Veno-Venous and Veno-Arterial Extracorporeal Membrane Oxygenation: A Retrospective Analysis. Nutrients, 17(24), 3928. https://doi.org/10.3390/nu17243928

