The Relationship Between Bioelectrical Impedance Analysis Parameters and Laboratory Biomarkers in an Elderly Polish Cohort: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection Procedures
2.3. Bioelectrical Impedance Analysis (BIA)
2.4. Laboratory Analyses
- Hematology: Hemoglobin (HGB, g/dL), Hematocrit (HCT, %), Red Blood Cell count (RCB, 106/μL), Mean Corpuscular Volume (MCV, fL), Mean Corpuscular Hemoglobin (MCH, pg), and Iron (Fe, μg/dL).
- Inflammation: High-sensitivity C-reactive protein (CRP, mg/L).
- Hormones and Metabolites: Leptin (ng/mL), Ghrelin (ng/mL), 25-hydroxyvitamin D (25(OH)D, ng/mL), and Zinc (Zn, μmol/L).
- Biochemistry and Lipids: Albumin (g/dL), Calcium (Ca, mmol/L), Total Cholesterol (mg/dL), High-Density Lipoprotein (HDL, mg/dL), Low-Density Lipoprotein (LDL-D, mg/dL), and Triglycerides (TG, mg/dL).
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Baseline Characteristics and Body Composition Profile
3.2.1. Anthropometry and Body Composition
3.2.2. Laboratory Biomarkers
3.3. Association of MNA-Defined Nutritional Status with Body Composition
3.4. Bivariate Correlations Between BIA Parameters and Laboratory Biomarkers
3.4.1. Adiposity, Inflammation, and Hormonal Status
3.4.2. Lean Mass, Hydration, and Hematological Status
3.4.3. Micronutrient Status and Cellular Health
3.4.4. Phase Angle as an Integrative Marker
3.5. Multivariate Relationship Between Body Composition and Laboratory Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corish, C.A.; Bardon, L.A. Malnutrition in Older Adults: Screening and Determinants. Proc. Nutr. Soc. 2019, 78, 372–379. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, E.; Trawley, S.; Manning, E.; Barrett, A.; Browne, V.; Timmons, S. Malnutrition in Hospitalised Older Adults: A Multicentre Observational Study of Prevalence, Associations and Outcomes. J. Nutr. Health Aging 2017, 21, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, B.; Sulo, S.; Carnicero, J.A.; Rueda, R.; Rodríguez-Mañas, L. Malnutrition Prevalence and Burden on Healthcare Resource Use Among Spanish Community-Living Older Adults: Results of a Longitudinal Analysis. Clin. Outcomes Res. 2020, 12, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Pourhassan, M.; Cederholm, T.; Trampisch, U.; Volkert, D.; Wirth, R. Inflammation as a Diagnostic Criterion in the GLIM Definition of Malnutrition—What CRP-Threshold Relates to Reduced Food Intake in Older Patients with Acute Disease? Eur. J. Clin. Nutr. 2022, 76, 397–400. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Bouillanne, O.; Golmard, J.L.; Coussieu, C.; Noël, M.; Durand, D.; Piette, F.; Nivet-Antoine, V. Leptin a New Biological Marker for Evaluating Malnutrition in Elderly Patients. Eur. J. Clin. Nutr. 2007, 61, 647–654. [Google Scholar] [CrossRef]
- Kvamme, J.M.; Grønli, O.; Jacobsen, B.K.; Florholmen, J. Risk of Malnutrition and Zinc Deficiency in Community-Living Elderly Men and Women: The Tromsø Study. Public Health Nutr. 2015, 18, 1907–1913. [Google Scholar] [CrossRef]
- Gavran, L.; Pavlović, J.; Račić, M.; Ivković, N.; Bunc, K.T. Evaluation of Biochemical Markers Effectiveness in Elderly Malnutrition Assessment. Med. Glas. 2019, 16, 351–358. [Google Scholar] [CrossRef]
- Vorobeľová, L.; Falbová, D.; Siváková, D. Differences in Body Composition between Metabolically Healthy and Unhealthy Midlife Women with Respect to Obesity Status. Anthropol. Rev. 2021, 84, 59–71. [Google Scholar] [CrossRef]
- Falbová, D.; Vorobeľová, L.; Siváková, D.; Beňuš, R. Association between FTO (Rs17817449) Genetic Variant, Gamma-Glutamyl Transferase, and Hypertension in Slovak Midlife Women. Am. J. Hum. Biol. 2022, 34, e23672. [Google Scholar] [CrossRef]
- Vorobeľová, L.; Danková, Z.; Candráková-Čerňanová, V.; Falbová, D.; Cvíčelová, M.; Beňuš, R.; Siváková, D. Association of the ESR1 Polymorphism with Menopause and MLXIPL Genetic Variant Influence Serum Uric Acid Levels in Slovak Midlife Women. Menopause 2019, 26, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Amirkalali, B.; Sharifi, F.; Fakhrzadeh, H.; Mirarefein, M.; Ghaderpanahi, M.; Badamchizadeh, Z.; Larijani, B. Low Serum Leptin Serves as a Biomarker of Malnutrition in Elderly Patients. Nutr. Res. 2010, 30, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Starkoff, B.E.; Nickerson, B.S. The Evolution of Bioimpedance Analysis: From Traditional Methods to Wearable Technology. Nutrition 2025, 129, 112601. [Google Scholar] [CrossRef] [PubMed]
- Samadinian, F.; Eshaghian, N.; Tarrahi, M.J.; Amani, R.; Akbari, M.; Shirani, F. Phase Angle as an Indicator of Nutritional Status: A Cross-Sectional Study on the Iranian Population. J. Health Popul. Nutr. 2025, 44, 315. [Google Scholar] [CrossRef]
- González-Barba, F.; Balderas-Peña, L.M.A.; Trujillo-Hernández, B.; Cervantes-González, L.M.; González-Rodríguez, J.A.; Gutiérrez-Rodríguez, L.X.; Alvarado-Zermeño, A.; Alcaraz-Wong, A.A.; Gómez-Sánchez, E.; Carrillo-Núñez, G.G.; et al. Phase Angle and Nutritional Status: The Impact on Survival and Health-Related Quality of Life in Locally Advanced Uterine Cervical Cancer. Healthcare 2023, 11, 246. [Google Scholar] [CrossRef]
- PN-EN ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. Polski Komitet Normalizacyjny: Warsaw, Poland, 2022.
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef]
- Byker Shanks, C.; Bruening, M.; Yaroch, A.L. BMI or Not to BMI? Debating the Value of Body Mass Index as a Measure of Health in Adults. Int. J. Behav. Nutr. Phys. Act. 2025, 22, 23. [Google Scholar] [CrossRef]
- Guigoz, Y.; Lauque, S.; Vellas, B.J. Identifying the Elderly at Risk for Malnutrition. The Mini Nutritional Assessment. Clin. Geriatr. Med. 2002, 18, 737–757. [Google Scholar] [CrossRef]
- Wayan Harimawan, A.I.; Agung Sagung Mirah Prabandari, A.; Made Wihandani, D.; Made Jawi, I.; Wayan Weta, I.; Gde Agung Senapathi, T.; Nyoman Ayu Dewi, N.; Putu Ratna Sundari, L.; Ryalino, C.; Fernandes Da Costa, R.; et al. Association between Phase Angle and ECW/TBW Ratio with Body Composition in Individuals with Central Obesity: A Cross-Sectional Study. Front. Nutr. 2025, 12, 1638075. [Google Scholar] [CrossRef]
- Lai, T.F.; Park, J.H.; Jang, M.; Chen, J.; Shin, M.J.; Moon, E.; Kang, J.M.; Lee, J.W.; Cho, Y.J.; Liao, Y.; et al. Elevated Extracellular Water to Total Body Water Ratio and Low Phase Angle in Relation to Muscle Function in Middle-Aged and Older Adults. J. Int. Soc. Sports Nutr. 2025, 22, 2536693. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.R.d.F.; Morais, N.d.S.d.; Azevedo, F.M.; Morais, D.d.C.; Pereira, P.F.; Peluzio, M.d.C.G.; Franceschini, S.d.C.C.; Priore, S.E. Leptin, CRP, and Adiponectin Correlate with Body Fat Percentage in Adolescents: Systematic Review and Meta-Analysis. Front. Nutr. 2025, 12, 1560080. [Google Scholar] [CrossRef]
- Stojsavljević, S.; Gomerčić Palčić, M.; Virović Jukić, L.; Smirčić Duvnjak, L.; Duvnjak, M. Adipokines and Proinflammatory Cytokines, the Key Mediators in the Pathogenesis of Nonalcoholic Fatty Liver Disease. World J. Gastroenterol. WJG 2014, 20, 18070. [Google Scholar] [CrossRef]
- Hori, T.; Nakamura, S.; Yamagami, H.; Yasui, S.; Hosoki, M.; Hara, T.; Mitsui, Y.; Masuda, S.; Kurahashi, K.; Yoshida, S.; et al. Phase Angle and Extracellular Water-to-Total Body Water Ratio Estimated by Bioelectrical Impedance Analysis Are Associated with Levels of Hemoglobin and Hematocrit in Patients with Diabetes. Heliyon 2023, 9, e14724. [Google Scholar] [CrossRef]
- Bučan Nenadić, D.; Radić, J.; Kolak, E.; Vučković, M.; Novak, I.; Selak, M.; Radić, M. Phase Angle Association with Dietary Habits and Metabolic Syndrome in Diabetic Hypertensive Patients: A Cross-Sectional Study. Nutrients 2022, 14, 5058. [Google Scholar] [CrossRef]
- Toida, T.; Toida, R.; Ebihara, S.; Takahashi, R.; Komatsu, H.; Uezono, S.; Sato, Y.; Fujimoto, S. Association between Serum Zinc Levels and Clinical Index or the Body Composition in Incident Hemodialysis Patients. Nutrients 2020, 12, 3187. [Google Scholar] [CrossRef]


| Bioimpedance Parameters Mean ± SD | Total n = 126 | Women n = 106 | Men n = 20 | p-Value |
|---|---|---|---|---|
| BMI (kg/m2) | 27.1 ± 4.7 | 27.1 ± 5.0 | 27.6 ± 3.3 | 0.55 |
| Relative fat mass (%) | 39.9 ± 6.7 | 41.5 ± 5.3 | 31.4 ± 6.7 | <0.001 |
| Absolute fat mass (kg) | 28.6 ± 8.4 | 28.9 ± 8.5 | 26.9 ± 8.4 | 0.34 |
| Fat-free mass FFM (kg) | 42.5 ± 8.9 | 39.7 ± 5.9 | 57.5 ± 6.5 | <0.001 |
| Skeletal muscle mass (kg) | 18.7 ± 5.1 | 17.1 ± 3.5 | 27.1 ± 4.0 | <0.001 |
| SMM TO (kg) | 8.3 ± 2.5 | 7.5 ± 1.6 | 12.7 ± 1.8 | <0.001 |
| SMM RL (kg) | 4.2 ± 1.0 | 3.9 ± 0.9 | 5.5 ± 0.9 | <0.001 |
| SMM LL (kg) | 4.2 ± 1.1 | 3.9 ± 0.9 | 5.6 ± 1.0 | <0.001 |
| SMM LA (kg) | 1.0 ± 0.4 | 0.9 ± 0.2 | 1.6 ± 0.3 | <0.001 |
| SMM RA (kg) | 1.0 ± 0.4 | 0.9 ± 0.2 | 1.7 ± 0.3 | <0.001 |
| Total Body Water (L) | 30.0 ± 4.5 | 42.5 ± 4.5 | 32.0 ± 4.9 | <0.001 |
| Extracellular Water (L) | 15.4 ± 2.6 | 14.7 ± 2.1 | 19.1 ± 1.9 | <0.001 |
| Bioimpedance Parameters Mean ± SD | Total n = 126 | Women n = 106 | Men n = 20 | p-Value |
|---|---|---|---|---|
| Waist circumference (m) | 0.92 ± 0.13 | 0.90 ± 0.12 | 1.00 ± 0.11 | 0.001 |
| Weight (kg) | 71.1 ± 14.2 | 68.6 ± 13.1 | 84.4 ± 11.9 | <0.001 |
| Height (cm) | 1.62 ± 0.08 | 1.59 ± 0.06 | 1.75 ± 0.06 | <0.001 |
| TEE (kcal) | 2304 ± 425 | 2194 ± 359 | 2880 ± 249 | <0.001 |
| REE (kcal) | 1351 ± 231 | 1287 ± 183 | 1687 ± 153 | <0.001 |
| Energy Content (×10−3 kcal) | 317.6 ± 83.6 | 317.4 ± 84.3 | 318.7 ± 81.2 | 0.950 |
| FFMI (kg/m2) | 16.1 ± 2.2 | 15.6 ± 2.0 | 18.8 ± 1.5 | <0.001 |
| FMI (kg/m2) | 11.01 ± 3.38 | 11.42 ± 3.33 | 8.81 ± 2.77 | 0.001 |
| Z (FFMI) | −0.55 ± 1.41 | −0.54 ± 1.48 | −0.59 ± 0.99 | 0.879 |
| Z (FMI) | 0.94 ± 1.02 | 0.94 ± 1.03 | 0.89 ± 0.98 | 0.834 |
| Phase Angle (°) | 4.49 ± 0.54 | 4.42 ± 0.51 | 4.89 ± 0.57 | <0.001 |
| VAT | 12.9 ± 2.0 | 13.0 ± 1.9 | 12.8 ± 2.5 | 0.712 |
| ECW/TBW (%) | 13.7 ± 2.5 | 13.8 ± 2.5 | 13.1 ± 2.5 | 0.264 |
| Laboratory Test Results Mean ± SD | Total n = 126 | Women n = 106 | Men n = 20 | p-Value |
|---|---|---|---|---|
| Ghrelin (ng/mL) | 1.77 ± 1.11 | 1.78 ± 1.10 | 1.72 ± 1.20 | 0.828 |
| Leptin (ng/mL) | 8.1 ± 14.3 | 8.9 ± 14.7 | 3.7 ± 11.0 | 0.078 |
| Fe (μg/dL) | 98.4 ± 30.6 | 95.4 ± 29.8 | 114.4 ± 30.3 | 0.016 |
| CRP (mg/L) | 1.96 ± 2.06 | 1.89 ± 1.81 | 2.36 ± 3.07 | 0.515 |
| Ca (mmol/L) | 2.36 ± 0.10 | 2.36 ± 0.10 | 2.36 ± 0.09 | 0.829 |
| Albumins (g/dL) | 4.29 ± 0.22 | 4.28 ± 0.22 | 4.34 ± 0.21 | 0.299 |
| Zinc (μmol/L) | 15.0 ± 3.5 | 14.9 ± 3.8 | 15.6 ± 1.7 | 0.164 |
| Vitamin D (ng/mL) | 38.9 ± 14.2 | 39.9 ± 14.6 | 33.2 ± 10.2 | 0.017 |
| Total cholesterol (mg/dL) | 195 ± 43 | 198 ± 43 | 181 ± 41 | 0.126 |
| HDL (mg/dL) | 59.4 ± 13.8 | 61.4 ± 13.5 | 47.6 ± 8.7 | <0.001 |
| Non-cholesterol (mg/dL) | 136 ± 40 | 136 ± 41 | 133 ± 36 | 0.771 |
| LDL-D (mg/dL) | 117 ± 39 | 118 ± 39 | 111 ± 37 | 0.520 |
| TG (mg/dL) | 106 ± 46 | 102 ± 44 | 124 ± 52 | 0.119 |
| AST (IU/L) | 26.6 ± 8.2 | 26.2 ± 7.6 | 29.3 ± 10.8 | 0.235 |
| ALT (IU/L) | 23.3 ± 14.4 | 22.6 ± 14.5 | 27.4 ± 13.6 | 0.170 |
| HGB (g/dL) | 13.2 ± 1.5 | 13.0 ± 1.3 | 14.4 ± 1.6 | 0.002 |
| HCT (%) | 40.2 ± 3.3 | 39.7 ± 2.8 | 42.9 ± 4.6 | 0.009 |
| RCB (×106/μL) | 4.76 ± 4.00 | 4.78 ± 4.34 | 4.67 ± 0.62 | 0.807 |
| MCV (fL) | 91.6 ± 4.2 | 91.4 ± 3.7 | 92.5 ± 6.3 | 0.466 |
| MCH (pg) | 30.3 ± 1.6 | 30.1 ± 1.4 | 31.0 ± 2.0 | 0.021 |
| MCHC (g/dL) | 35.6 ± 27.8 | 35.9 ± 30.3 | 33.6 ± 0.7 | 0.426 |
| RDW-CV (%) | 13.3 ± 0.7 | 13.3 ± 0.7 | 13.1 ± 0.6 | 0.414 |
| WBC (×103/μL) | 6.09 ± 1.55 | 6.01 ± 1.50 | 6.52 ± 1.82 | 0.263 |
| LYMPH (×103/μL) | 1.99 ± 1.05 | 2.01 ± 1.12 | 1.86 ± 0.61 | 0.408 |
| MONO (×103/μL) | 0.51 ± 0.16 | 0.48 ± 0.14 | 0.62 ± 0.21 | 0.015 |
| NEUT (×103/μL) | 3.42 ± 1.10 | 3.36 ± 1.01 | 3.77 ± 1.48 | 0.260 |
| EOS (×103/μL) | 0.18 ± 0.12 | 0.18 ± 0.12 | 0.18 ± 0.14 | 0.783 |
| BASO (×103/μL) | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.936 |
| IG (×103/μL) | 0.02 ± 0.03 | 0.02 ± 0.01 | 0.04 ± 0.06 | 0.316 |
| PLT (×103/μL) | 243 ± 61 | 249 ± 62 | 212 ± 44 | 0.004 |
| MPV (%) | 10.8 ± 0.9 | 10.8 ± 1.0 | 10.8 ± 0.9 | 0.984 |
| Bioimpedance Parameters Me [Q1; Q3] | MNA | p-Value | |
|---|---|---|---|
| Risk of Malnutrition n = 29 | Proper Nutritional Status n = 97 | ||
| BMI (kg/m2) | 25.8 [22.2; 28.4] | 27.1 [24.8; 29.8] | 0.064 |
| Relative fat mass (%) | 41.8 [37.4; 43.4] | 40.2 [34.7; 44.7] | 0.467 |
| Absolute fat mass (kg) | 26.6 [21.4; 30.4] | 28.1 [23.8; 33.3] | 0.138 |
| Fat-free mass (kg) | 38.3 [32.8; 42.1] | 42.3 [37.4; 47.3] | 0.001 |
| Skeletal muscle mass (kg) | 15.8 [12.9; 18.1] | 18.7 [16.3; 21.6] | <0.001 |
| SMM TO (kg) | 7.06 [5.37; 8.17] | 8.16 [7.08; 9.67] | 0.001 |
| SMM RL (kg) | 3.60 [2.99; 4.02] | 4.15 [3.59; 4.91] | <0.001 |
| SMM LL (kg) | 3.50 [2.90; 4.02] | 4.19 [3.56; 4.81] | <0.001 |
| SMM LA (kg) | 0.77 [0.67; 1.00] | 0.95 [0.81; 1.16] | 0.001 |
| SMM RA (kg) | 0.82 [0.72; 0.97] | 1.01 [0.88; 1.22] | <0.001 |
| Total Body Water (L) | 29.0 [24.8; 31.7] | 32.0 [28.4; 35.6] | 0.001 |
| Extracellular Water (L) | 14.3 [12.1; 15.6] | 15.4 [13.7; 17.3] | 0.004 |
| R (Ω), 5 kHz, LA | 403 [385; 442] | 385 [347; 406] | 0.008 |
| R (Ω), 5 kHz, RA | 393 [379; 432] | 377 [336; 403] | 0.013 |
| R (Ω), 5 kHz, LL | 275 [247; 299] | 267 [238; 285] | 0.276 |
| R (Ω), 5 kHz, RL | 267 [248; 303] | 262 [241; 282] | 0.310 |
| R (Ω), 5 kHz, LB | 715 [640; 755] | 667 [618; 717] | 0.049 |
| R (Ω), 5 kHz, RB | 697 [649; 730] | 664 [611; 717] | 0.041 |
| R (Ω), 5 kHz, TO | 24.3 [23.2; 26.6] | 24.5 [22.6; 26.9] | 0.596 |
| R (Ω), 7.5 kHz, LA | 398 [381; 438] | 381 [344; 402] | 0.008 |
| R (Ω), 7.5 kHz, RA | 391 [376; 429] | 373 [333; 400] | 0.012 |
| R (Ω), 7.5 kHz, LL | 273 [245; 297] | 265 [236; 283] | 0.256 |
| R (Ω), 7.5 kHz, RL | 265 [247; 300] | 260 [239; 280] | 0.292 |
| R (Ω), 7.5 kHz, LB | 709 [636; 749] | 662 [612; 711] | 0.047 |
| R (Ω), 7.5 kHz, RB | 690 [644; 726] | 658 [606; 711] | 0.040 |
| R (Ω), 7.5 kHz, TO | 24.0 [22.9; 26.3] | 24.2 [22.3; 26.7] | 0.566 |
| R (Ω), 50 kHz, LA | 365 [347; 407] | 349 [316; 371] | 0.011 |
| R (Ω), 50 kHz, RA | 359 [346; 399] | 343 [307; 370] | 0.007 |
| R (Ω), 50 kHz, LL | 254 [227; 274] | 239 [217; 259] | 0.171 |
| R (Ω), 50 kHz, RL | 244 [230; 272] | 237 [218; 258] | 0.135 |
| R (Ω), 50 kHz, LB | 649 [594; 697] | 606 [551; 649] | 0.030 |
| R (Ω), 50 kHz, RB | 631 [598; 690] | 604 [555; 652] | 0.021 |
| R (Ω), 50 kHz, TO | 21.5 [20.0; 23.4] | 21.2 [19.1; 23.1] | 0.360 |
| R (Ω), 75 kHz, LA | 357 [337; 398] | 341 [309; 363] | 0.010 |
| R (Ω), 75 kHz, RA | 350 [338; 390] | 335 [300; 362] | 0.007 |
| R (Ω), 75 kHz, LL | 248 [220; 267] | 233 [211; 252] | 0.147 |
| R (Ω), 75 kHz, RL | 237 [225; 265] | 231 [213; 250] | 0.105 |
| R (Ω), 75 kHz, LB | 633 [582; 682] | 593 [534; 635] | 0.026 |
| R (Ω), 75 kHz, RB | 615 [584; 678] | 590 [540; 637] | 0.018 |
| R (Ω), 75 kHz, TO | 20.9 [19.6; 22.8] | 20.6 [18.5; 22.4] | 0.309 |
| |Xc| (Ω), 5 kHz, LA | 12.9 [11.8; 14.4] | 13.0 [11.8; 14.1] | 0.698 |
| |Xc| (Ω), 5 kHz, RA | 13.5 [11.9; 15.2] | 13.7 [12.4; 15.0] | 0.867 |
| |Xc| (Ω), 5 kHz, LL | 8.75 [6.89; 9.93] | 9.22 [8.04; 10.62] | 0.101 |
| |Xc| (Ω), 5 kHz, RL | 9.11 [6.84; 9.68] | 9.31 [8.02; 10.54] | 0.154 |
| |Xc| (Ω), 5 kHz, LB | 22.9 [20.1; 24.9] | 23.0 [21.0; 25.6] | 0.369 |
| |Xc| (Ω), 5 kHz, RB | 23.7 [20.2; 24.8] | 24.0 [20.9; 26.3] | 0.342 |
| |Xc| (Ω), 5 kHz, TO | 1.28 [1.10; 1.47] | 1.34 [1.20; 1.56] | 0.324 |
| |Xc| (Ω), 7.5 kHz, LA | 16.0 [14.0; 17.5] | 15.8 [14.3; 17.1] | 0.598 |
| |Xc| (Ω), 7.5 kHz, RA | 16.4 [14.5; 18.4] | 16.4 [14.7; 18.0] | 0.963 |
| |Xc| (Ω), 7.5 kHz, LL | 10.6 [8.6; 12.2] | 11.2 [9.7; 13.0] | 0.108 |
| |Xc| (Ω), 7.5 kHz, RL | 11.2 [8.2; 11.9] | 11.3 [9.8; 13.0] | 0.195 |
| |Xc| (Ω), 7.5 kHz, LB | 27.2 [24.1; 30.2] | 27.8 [24.4; 30.9] | 0.396 |
| |Xc| (Ω), 7.5 kHz, RB | 28.7 [24.4; 29.7] | 28.8 [24.5; 31.4] | 0.270 |
| |Xc| (Ω), 7.5 kHz, TO | 1.22 [1.12; 1.44] | 1.36 [1.20; 1.56] | 0.060 |
| |Xc| (Ω), 50 kHz, LA | 28.4 [26.3; 30.1] | 27.3 [24.6; 29.5] | 0.102 |
| |Xc| (Ω), 50 kHz, RA | 28.3 [26.8; 30.7] | 28.3 [26.1; 30.2] | 0.467 |
| |Xc| (Ω), 50 kHz, LL | 19.4 [14.9; 21.5] | 19.7 [17.0; 22.0] | 0.434 |
| |Xc| (Ω), 50 kHz, RL | 20.0 [15.4; 21.6] | 19.5 [17.2; 22.0] | 0.560 |
| |Xc| (Ω), 50 kHz, LB | 48.8 [42.2; 51.4] | 47.6 [43.2; 52.2] | 0.958 |
| |Xc| (Ω), 50 kHz, RB | 49.4 [42.3; 51.4] | 48.7 [44.1; 53.0] | 0.783 |
| |Xc| (Ω), 50 kHz, TO | 1.88 [1.63; 2.08] | 2.12 [1.78; 2.36] | 0.025 |
| |Xc| (Ω), 75 kHz, LA | 28.4 [27.3; 30.3] | 27.4 [25.0; 29.6] | 0.046 |
| |Xc| (Ω), 75 kHz, RA | 28.9 [27.2; 31.5] | 28.5 [26.1; 30.5] | 0.309 |
| |Xc| (Ω), 75 kHz, LL | 19.2 [14.7; 20.9] | 18.8 [16.5; 21.4] | 0.543 |
| |Xc| (Ω), 75 kHz, RL | 19.7 [15.2; 21.1] | 19.2 [16.7; 21.4] | 0.741 |
| |Xc| (Ω), 75 kHz, LB | 48.0 [41.7; 50.5] | 46.9 [42.4; 51.2] | 0.774 |
| |Xc| (Ω), 75 kHz, RB | 48.4 [42.8; 50.8] | 47.7 [43.4; 51.8] | 0.993 |
| |Xc| (Ω), 75 kHz, TO | 1.82 [1.55; 1.97] | 2.00 [1.72; 2.29] | 0.030 |
| Waist circumference (m) | 0.90 [0.81; 0.98] | 0.91 [0.85; 1.01] | 0.335 |
| Weight (kg) | 65.2 [55.8; 71.7] | 71.0 [63.0; 82.1] | 0.004 |
| Height (cm) | 1.58 [1.55; 1.63] | 1.62 [1.56; 1.68] | 0.018 |
| TEE (kcal) | 2242 [1893; 2333] | 2328 [2070; 2628] | 0.034 |
| REE (kcal) | 1252 [1168; 1310] | 1334 [1244; 1507] | 0.002 |
| Energy Content (×10−3 kcal) | 291 [243; 334] | 314 [277; 363] | 0.071 |
| FFMI (kg/m2) | 15.4 [13.5; 16.1] | 16.2 [15.2; 17.8] | 0.003 |
| FMI (kg/m2) | 11.1 [8.3; 12.0] | 10.6 [8.8; 13.2] | 0.616 |
| Z(FFMI) | −1.17 [−2.08; −0.21] | −0.53 [−1.14; 0.18] | 0.018 |
| Z(FMI) | 0.81 [0.07; 1.16] | 0.89 [0.32; 1.51] | 0.260 |
| BIA vector R (Ω) | 641 [596; 696] | 605 [553; 648] | 0.025 |
| BIA vector |Xc| (Ω) | −48.6 [−51.5; −41.8] | −48.2 [−52.9; −43.6] | 0.880 |
| BIA vector Z(R) | 0.54 [−0.21; 1.27] | −0.09 [−0.87; 0.63] | 0.020 |
| BIA vector Z(|Xc|) | −0.74 [−1.69; −0.44] | −0.87 [−1.77; −0.39] | 0.687 |
| Phase Angle (°) | 4.36 [3.95; 4.59] | 4.44 [4.20; 4.96] | 0.016 |
| Visceral Adipose Tissue | 1.77 [1.47; 2.42] | 2.02 [1.44; 3.01] | 0.417 |
| ECW/TBW (%) | 49.9 [47.8; 51.9] | 48.2 [46.5; 49.5] | 0.001 |
| TBW | ECW | TBW/ECW | PA | BMI | BIVA Z(R) | |
|---|---|---|---|---|---|---|
| Fe (μg/dL) | 0.153 | 0.098 | −0.140 | 0.100 | −0.024 | 0.083 |
| Ca (mmol/L) | −0.002 | −0.012 | −0.033 | 0.005 | 0.017 | 0.106 |
| Zn (μmol/L) | 0.184 * | 0.103 | −0.330 *** | 0.324 *** | 0.034 | 0.037 |
| HCT (%) | 0.371 *** | 0.271 ** | −0.420 *** | 0.366 *** | 0.061 | 0.001 |
| CRP (mg/L) | 0.268 ** | 0.306 *** | −0.033 | 0.062 | 0.419 *** | −0.274 ** |
| ALB (g/dL) | 0.038 | −0.061 | −0.289 ** | 0.293 ** | −0.106 | 0.204 * |
| Vit. D (ng/mL) | −0.227 * | −0.216 * | 0.148 | −0.111 | −0.183 * | 0.041 |
| CHOL (mg/dL) | −0.155 | −0.179 * | −0.004 | −0.048 | −0.153 | 0.160 |
| Leptin (ng/mL) | 0.097 | 0.180 * | 0.107 | −0.111 | 0.377 *** | −0.312 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasiewicz, A.; Targowski, T.; Makuch, S.; Polański, J.; Tański, W. The Relationship Between Bioelectrical Impedance Analysis Parameters and Laboratory Biomarkers in an Elderly Polish Cohort: A Cross-Sectional Study. Nutrients 2025, 17, 3843. https://doi.org/10.3390/nu17243843
Tomasiewicz A, Targowski T, Makuch S, Polański J, Tański W. The Relationship Between Bioelectrical Impedance Analysis Parameters and Laboratory Biomarkers in an Elderly Polish Cohort: A Cross-Sectional Study. Nutrients. 2025; 17(24):3843. https://doi.org/10.3390/nu17243843
Chicago/Turabian StyleTomasiewicz, Anna, Tomasz Targowski, Sebastian Makuch, Jacek Polański, and Wojciech Tański. 2025. "The Relationship Between Bioelectrical Impedance Analysis Parameters and Laboratory Biomarkers in an Elderly Polish Cohort: A Cross-Sectional Study" Nutrients 17, no. 24: 3843. https://doi.org/10.3390/nu17243843
APA StyleTomasiewicz, A., Targowski, T., Makuch, S., Polański, J., & Tański, W. (2025). The Relationship Between Bioelectrical Impedance Analysis Parameters and Laboratory Biomarkers in an Elderly Polish Cohort: A Cross-Sectional Study. Nutrients, 17(24), 3843. https://doi.org/10.3390/nu17243843

