Short-Chain Fatty Acids and Colorectal Cancer: A Systematic Review and Integrative Bayesian Meta-Analysis of Microbiome–Metabolome Interactions and Intervention Efficacy
Abstract
1. Introduction
1.1. Research Background
1.2. Limitations of Existing Studies
1.3. Innovation and Scientific Value of This Study
2. Research Methods
2.1. Inclusion and Exclusion Criteria for Studies
2.1.1. Study Types
2.1.2. Exposure Factors
2.1.3. Outcome Indicators
2.1.4. Population and Data Requirements
2.1.5. Exclusion Criteria
2.2. Literature Search and Screening
2.2.1. Search Strategy
2.2.2. Screening and Data Extraction
2.3. Statistical Analysis Methods
2.3.1. Bayesian Meta-Analysis
2.3.2. Multi-Ancestry Meta-Analysis
2.3.3. Intervention Efficacy and Microbiota Interaction Analysis
2.3.4. Publication Bias Assessment and Technical Parameter Specification
3. Results
3.1. Literature Inclusion
3.2. Results of Bayesian Meta-Analysis on the Association Between SCFAs and CRC/A-CRA Risk
3.2.1. Overall and Subtype Effects
3.2.2. Differences in Sample Types
3.3. Results of Multi-Ancestry Meta-Analysis
3.4. Results of SCFA Intervention Efficacy
3.5. Results of SCFA–Gut Microbiota Interaction
3.6. Publication Bias Assessment
3.7. Model Validation and Robustness Check
4. Discussion
4.1. Interpretation of Core Results
4.2. Similarities and Differences with Existing Studies
4.3. Mechanism Discussion
4.3.1. Metabolic Mechanism
4.3.2. Microbiota Mechanism
4.4. Study Limitations
4.5. Clinical and Public Health Significance
4.5.1. Clinical Application
4.5.2. Public Health Recommendations
4.5.3. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SCFAs | Short-Chain Fatty Acids |
| CRC | Colorectal Cancer |
| A-CRA | Advanced Colorectal Adenoma |
| FAP | Familial Adenomatous Polyposis |
| HAMSB | High-amylose maize starch butyrate |
| ArgB | Arginine Butyrate |
| GC-FID | Gas Chromatography-Flame Ionization Detection |
| LC-MS/MS | Liquid Chromatography-Tandem Mass Spectrometry |
| HPLC | High Performance Liquid Chromatography |
| GC-MS | Gas Chromatography-Mass Spectrometry |
| CV | Coefficient of Variation |
| APC | Adenomatous Polyposis Coli |
| HDAC | Histone Deacetylase |
| NF-κB | Nuclear Factor-kappa B |
| TNF-α | Tumor Necrosis Factor-alpha |
| IL-2 | Interleukin-2 |
| IL-6 | Interleukin-6 |
| GPR43 | G-protein-coupled receptor 43 |
| GPR109a | G-protein-coupled receptor 109a |
| O6MeG | O6-Methylguanine |
| HSP70 | Heat Shock Protein 70 |
| MTD | Maximum Tolerated Dose |
| RECIST | Response Evaluation Criteria in Solid Tumors |
| CFU | Colony-Forming Unit |
| OR | Odds Ratio |
| MD | Mean Difference |
| CrI | Credible Intervals |
| CI | Confidence Interval |
| NOS | Newcastle-Ottawa Scale |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PROSPERO | International Prospective Register of Systematic Reviews |
| I2 | I2 Statistics |
| HR | Hazard Ratio |
References
- El Tekle, G.; Andreeva, N.; Garrett, W.S. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu. Rev. Physiol. 2024, 86, 453–478. [Google Scholar] [CrossRef]
- Demb, J.; Kolb, J.M.; Dounel, J.; Fritz, C.D.L.; Advani, S.M.; Cao, Y.; Coppernoll-Blach, P.; Dwyer, A.J.; Perea, J.; Heskett, K.M.; et al. Red Flag Signs and Symptoms for Patients with Early-Onset Colorectal Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2413157. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Tong, H.; Jiang, Y.; Jiang, Y.; Ma, X. Nutrient acquisition of gut microbiota: Implications for tumor immunity. Semin. Cancer Biol. 2025, 114, 88–103. [Google Scholar] [CrossRef]
- Thulasinathan, B.; Suvilesh, K.N.; Maram, S.; Grossmann, E.; Ghouri, Y.; Teixeiro, E.P.; Chan, J.; Kaifi, J.T.; Rachagani, S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025, 17, 2483780. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Liu, B.; Fan, D.; Lu, Y.; Zhao, X. Modulating the gut microbiota: A novel perspective in colorectal cancer treatment. Cancer Lett. 2025, 612, 217459. [Google Scholar] [CrossRef]
- White, M.T.; Sears, C.L. The microbial landscape of colorectal cancer. Nature reviews. Microbiology 2024, 22, 240–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Zhou, L.; Wei, S.; Xu, L.; Li, X.; Yu, J. Bacteria-metabolite butyrate boosts anti-PD1 efficacy in colorectal cancer patient-derived organoids through activating autologous tumour-infiltrating GNLY (+)CD8(+) T cells. Gut 2025, 74, 1755–1758. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, J.; Tung Lau, E.Y.; Zeng, Y.; Lam Li, S.W.; Au, T.H.; Ye, S.; Zhou, T.; Chan, F.K.L.; Liang, J.Q. Fusobacterium nucleatum enhances cholesterol biosynthesis in colorectal cancer via miR-130a-3p-mediated AMPK inhibition, a process counteracted by butyrate. Cancer Lett. 2025, 627, 217810. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, H.; Li, H.; Zheng, M.; Zuo, X.; Wang, W.; Wang, S.; Lu, Y.; Wang, J.; Li, Y.; et al. Intratumor microbiome-derived butyrate promotes lung cancer metastasis. Cell Rep. Med. 2024, 5, 101488. [Google Scholar] [CrossRef] [PubMed]
- Glymenaki, M.; Curio, S.; Shrestha, S.; Zhong, Q.; Rushton, L.; Barry, R.; El-Bahrawy, M.; Marchesi, J.R.; Wang, Y.; Gooderham, N.J.; et al. Roux-en-Y gastric bypass-associated fecal tyramine promotes colon cancer risk via increased DNA damage, cell proliferation, and inflammation. Microbiome 2025, 13, 60. [Google Scholar] [CrossRef]
- Wasiewska, L.A.; Uhlig, F.; Barry, F.; Teixeira, S.; Clarke, G.; Schellekens, H. Advancements in sensors for rapid detection of short-chain fatty acids (SCFAs): Applications and limitations in gut health and the microbiota-gut-brain axis. Trends Anal. Chem. 2024, 184, 118118. [Google Scholar] [CrossRef]
- Ladabaum, U.; Mannalithara, A.; Weng, Y.; Schoen, R.E.; Dominitz, J.A.; Desai, M.; Lieberman, D.A. Sa1146 comparative effectiveness and cost-effectiveness of colorectal cancer (CRC) screening with blood-based biomarkers (liquid biopsy) vs. fecal tests or colonoscopy. Gastroenterology 2024, 166, S359–S360. [Google Scholar] [CrossRef]
- Nshanian, M.; Gruber, J.J.; Geller, B.S.; Chleilat, F.; Lancaster, S.M.; White, S.M.; Alexandrova, L.; Camarillo, J.M.; Kelleher, N.L.; Zhao, Y.; et al. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat. Metab. 2025, 7, 196–211. [Google Scholar] [CrossRef]
- Thomas, M.; Su, Y.R.; Rosenthal, E.A.; Sakoda, L.C.; Schmit, S.L.; Timofeeva, M.N.; Chen, Z.; Fernandez-Rozadilla, C.; Law, P.J.; Murphy, N.; et al. Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations. Nat. Commun. 2023, 14, 6147. [Google Scholar] [CrossRef]
- Wei, R.; Song, J.; Liu, C.; Zhao, Z.; Liu, X.; Yamamoto, M.; Tsukamoto, T.; Nomura, S.; Liu, F.; Wang, Y.; et al. FAP upregulates PD-L1 expression in cancer-associated fibroblasts to exacerbate T cells dysfunction and suppress anti-tumor immunity. Cancer Lett. 2025, 612, 217475. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Bai, R.; Zhang, Y.; Chen, H.; Wu, J.; Chen, Z.; Wang, H.; Zhao, L. METTL3-VISTA axis-based combination immunotherapy for APC truncation colorectal cancer. J. Immunother. Cancer 2024, 12, e009865. [Google Scholar] [CrossRef]
- Osumi, H.; Ooki, A.; Fukada, I.; Yoshino, K.; Tamba, M.; Udagawa, S.; Fukuoka, S.; Wakatsuki, T.; Ogura, M.; Takahari, D.; et al. Clinicopathological characteristics and survival in metastatic colorectal cancer with short-form APC mutations. J. Clin. Oncol. 2024, 42, 3555. [Google Scholar] [CrossRef]
- Iacucci, M.; Nardone, O.M.; Ditonno, I.; Capobianco, I.; Pugliano, C.L.; Maeda, Y.; Majumder, S.; Zammarchi, I.; Santacroce, G.; Ghosh, S. Advancing Inflammatory Bowel Disease-Driven Colorectal Cancer Management: Molecular Insights and Endoscopic Breakthroughs Towards Precision Medicine. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lässle, C.; Mauerer, B.; Marx, L.; Feuerstein, R.; Braumüller, H.; Broghammer, V.; Schäfer, L.; Enderle, C.; Lünstedt, J.; Seifert, G.; et al. Metabolic surgery reduces CRC disease progression through circulating bile acid diversion. Sci. Transl. Med. 2025, 17, eads9705. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Mao, W.; Song, Y.; Wang, Y.; Zhang, L.; Xu, Y.; Gu, H.; Yao, S.; Yao, Y.; Liu, Z.; et al. Butyrate alleviates food allergy by improving intestinal barrier integrity through suppressing oxidative stress-mediated Notch signaling. iMeta 2025, 4, e70024. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, M.; Yuan, Y.; Hu, J.; Wang, Z.; Sun, Z.; Zheng, M.; Shi, L.; Li, J.; Mao, T. Gut microbiota-derived butyrate mediates the anticolitic effect of indigo supplementation through regulating CD4+ T cell differentiation. iMeta 2025, 4, e70040. [Google Scholar] [CrossRef]
- Katayama, T.; Kuroda, S.; Sakamoto, M.S.; Takeda, E.; Mikane, Y.; Hanzawa, S.; Kadowaki, D.; Yoshida, Y.Y.; Hashimoto, M.; Kanaya, N.; et al. Abstract 2211: A novel combined immunotherapy of gut microbial metabolite butyrate and oncolytic adenovirus in colorectal cancer. Cancer Res. 2025, 85, 2211. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Louis, P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat. Rev. Microbiol. 2025, 23, 635–651. [Google Scholar] [CrossRef]
- Qu, L.; Zhang, R.; Chu, Z.; Cai, J.; He, Y.; Zhang, X.; Liu, J.; Xie, X.; Cao, Y. Gut microbiota: A key player for soluble dietary fiber in regulating inflammatory disease. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Alvandi, E.; Wong, W.K.M.; Joglekar, M.V.; Spring, K.J.; Hardikar, A.A. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: A systematic review and meta-analysis. BMC Med. 2022, 20, 323. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.Y.; Xu, C.; Jones, K.L.; O’Neill, P.H.; Venkateshwar, M.; Chiliveru, S.; Kim, H.G.; Doescher, M.; Morris, K.T.; Manne, U.; et al. Molecular disparities in colorectal cancers of White Americans, Alabama African Americans, and Oklahoma American Indians. NPJ Precis. Oncol. 2023, 7, 79. [Google Scholar] [CrossRef]
- Navarro, S.; Tsui, J.; Barzi, A.; Stern, M.C.; Pickering, T.; Farias, A.J. Associations Between Patient Experience with Care, Race and Ethnicity, and Receipt of CRC Treatment Among SEER-CAHPS Patients with Multiple Comorbidities. J. Natl. Compr. Cancer Netw. 2023, 22, e237074. [Google Scholar] [CrossRef]
- Devarakonda, S.L.S.; Superdock, D.K.; Ren, J.; Johnson, L.M.; Loinard-González, A.P.; Poole, A.C. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation. Gut Microbes 2024, 16, 2367301. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, X.; Yuan, Z.; Xu, G.; Li, X.; Wan, Z.; Zhu, M.; Liang, X.; Li, P.; Lan, Q.; et al. Activation of IL-2/IL-2R pathway by Hedyotis diffusa polysaccharide improves immunotherapy in colorectal cancer. Int. J. Biol. Macromol. 2025, 306, 141013. [Google Scholar] [CrossRef] [PubMed]
- Amaria, R.; Knisely, A.; Vining, D.; Kopetz, S.; Overman, M.J.; Javle, M.; Antonoff, M.B.; Tzeng, C.D.; Wolff, R.A.; Pant, S.; et al. Efficacy and safety of autologous tumor-infiltrating lymphocytes in recurrent or refractory ovarian cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. J. Immunother. Cancer 2024, 12, e006822. [Google Scholar] [CrossRef]
- Yang, H.; Yue, G.G.; Leung, P.C.; Wong, C.K.; Zhang, Y.J.; Lau, C.B. Anti-metastatic effects of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose in colorectal cancer: Regulation of cathepsin B-mediated extracellular matrix dynamics and epithelial-to-mesenchymal transition. Pharmacol. Res. 2022, 184, 106457. [Google Scholar] [CrossRef]
- Toffoli, E.C.; van Vliet, A.A.; Verheul, H.W.M.; van der Vliet, H.J.; Tuynman, J.; Spanholtz, J.; de Gruijl, T.D. Allogeneic NK cells induce monocyte-to-dendritic cell conversion, control tumor growth, and trigger a pro-inflammatory shift in patient-derived cultures of primary and metastatic colorectal cancer. J. Immunother. Cancer 2023, 11, e007554. [Google Scholar] [CrossRef] [PubMed]
- Coker, O.O.; Liu, C.; Wu, W.K.K.; Wong, S.H.; Jia, W.; Sung, J.J.Y.; Yu, J. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome 2022, 10, 35. [Google Scholar] [CrossRef]
- Lin, Y.; Lau, H.C.; Liu, Y.; Kang, X.; Wang, Y.; Ting, N.L.; Kwong, T.N.; Han, J.; Liu, W.; Liu, C.; et al. Altered Mycobiota Signatures and Enriched Pathogenic Aspergillus rambellii Are Associated with Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology 2022, 163, 908–921. [Google Scholar] [CrossRef]
- de Wit, S.; Geerlings, L.; Shi, C.; Dronkers, J.; Schouten, E.M.; Blancke, G.; Andries, V.; Yntema, T.; Meijers, W.C.; Koonen, D.P.Y.; et al. Heart failure-induced microbial dysbiosis contributes to colonic tumour formation in mice. Cardiovasc. Res. 2024, 120, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Zhang, Y.; Ma, Y.; Zhou, X.; Sun, L.; Jiang, C.; Zhang, Z.; Fu, W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv. Sci. 2023, 10, e2205563. [Google Scholar] [CrossRef]
- Genua, F.; Mirković, B.; Mullee, A.; Levy, M.; Gallagher, W.M.; Vodicka, P.; Hughes, D.J. Association of circulating short chain fatty acid levels with colorectal adenomas and colorectal cancer. Clin. Nutr. ESPEN 2021, 46, 297–304. [Google Scholar] [CrossRef]
- Watling, C.Z.; Kelly, R.K.; Murphy, N.; Gunter, M.; Piernas, C.; Bradbury, K.E.; Schmidt, J.A.; Key, T.J.; Perez-Cornago, A. Prospective Analysis Reveals Associations between Carbohydrate Intakes, Genetic Predictors of Short-Chain Fatty Acid Synthesis, and Colorectal Cancer Risk. Cancer Res. 2023, 83, 2066–2076. [Google Scholar] [CrossRef]
- Hylla, S.; Gostner, A.; Dusel, G.; Anger, H.; Bartram, H.P.; Christl, S.U.; Kasper, H.; Scheppach, W. Effects of resistant starch on the colon in healthy volunteers: Possible implications for cancer prevention. Am. J. Clin. Nutr. 1998, 67, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Loftfield, E.; Falk, R.T.; Sampson, J.N.; Huang, W.Y.; Hullings, A.; Murphy, G.; Weinstein, S.J.; Albanes, D.; Freedman, N.D.; Sinha, R. Prospective Associations of Circulating Bile Acids and Short-Chain Fatty Acids with Incident Colorectal Cancer. JNCI Cancer Spectr. 2022, 6, pkac027. [Google Scholar] [CrossRef]
- Ziemons, J.; Aarnoutse, R.; Heuft, A.; Hillege, L.; Waelen, J.; de Vos-Geelen, J.; Valkenburg-van Iersel, L.; van Hellemond, I.E.G.; Creemers, G.M.; Baars, A.; et al. Fecal levels of SCFA and BCFA during capecitabine in patients with metastatic or unresectable colorectal cancer. Clin. Exp. Med. 2023, 23, 3919–3933. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Bennouna, J.; Vavasseur, F.; Deporte-Fety, R.; Thomare, P.; Giacalone, F.; Meflah, K. Phase I trial of interleukin-2 and high-dose arginine butyrate in metastatic colorectal cancer. Cancer Immunol. Immunother. 2000, 49, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; Boussioutas, A.; Flanders, B.; Lockett, T.; Harrap, K.; Saunders, I.; Lynch, P.; Appleyard, M.; Spigelman, A.; Cameron, D.; et al. Can butyrate prevent colon cancer? The AusFAP study: A randomised, crossover clinical trial. Contemp. Clin. Trials Commun. 2023, 32, 101092. [Google Scholar] [CrossRef]
- Le Leu, R.K.; Winter, J.M.; Christophersen, C.T.; Young, G.P.; Humphreys, K.J.; Hu, Y.; Gratz, S.W.; Miller, R.B.; Topping, D.L.; Bird, A.R.; et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: A randomised clinical trial. Br. J. Nutr. 2015, 114, 220–230. [Google Scholar] [CrossRef]
- Fechner, A.; Fenske, K.; Jahreis, G. Effects of legume kernel fibres and citrus fibre on putative risk factors for colorectal cancer: A randomised, double-blind, crossover human intervention trial. Nutr. J. 2013, 12, 101. [Google Scholar] [CrossRef]
- Sheflin, A.M.; Borresen, E.C.; Kirkwood, J.S.; Boot, C.M.; Whitney, A.K.; Lu, S.; Brown, R.J.; Broeckling, C.D.; Ryan, E.P.; Weir, T.L. Dietary supplementation with rice bran or navy bean alters gut bacterial metabolism in colorectal cancer survivors. Mol. Nutr. Food Res. 2017, 61, 1500905. [Google Scholar] [CrossRef]
- Yusuf, F.; Adewiah, S.; Fatchiyah, F. The Level Short Chain Fatty Acids and HSP 70 in Colorectal Cancer and Non-Colorectal Cancer. Acta Inform. Medica 2018, 26, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wei, H.; Zhou, Y.; Szeto, C.H.; Li, C.; Lin, Y.; Coker, O.O.; Lau, H.C.H.; Chan, A.W.H.; Sung, J.J.Y.; et al. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Gastroenterology 2022, 162, 135–149.e132. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Liu, C.; Ding, Y.; Ni, Y.; Ji, F.; Lau, H.C.H.; Jiang, L.; Sung, J.J.; Wong, S.H.; Yu, J. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8(+) T cells. Gut 2023, 72, 2112–2122. [Google Scholar] [CrossRef]
- Weng, W.; Goel, A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin. Cancer Biol. 2022, 80, 73–86. [Google Scholar] [CrossRef]
- Chen, H.M.; Yu, Y.N.; Wang, J.L.; Lin, Y.W.; Kong, X.; Yang, C.Q.; Yang, L.; Liu, Z.J.; Yuan, Y.Z.; Liu, F.; et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 2013, 97, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Cai, J.; Sun, L.; Gonzalez, F.J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022, 30, 289–300. [Google Scholar] [CrossRef]
- Cong, J.; Liu, P.; Han, Z.; Ying, W.; Li, C.; Yang, Y.; Wang, S.; Yang, J.; Cao, F.; Shen, J.; et al. Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8(+) T cell effector functions. Immunity 2024, 57, 876–889.e811. [Google Scholar] [CrossRef]
- Bai, X.; Duan, Z.; Deng, J.; Zhang, Z.; Fu, R.; Zhu, C.; Fan, D. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism. J. Adv. Res. 2025, 72, 37–52. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Cai, J.; Rimal, B.; Rocha, E.R.; Coleman, J.P.; Zhang, C.; Nichols, R.G.; Luo, Y.; Kim, B.; et al. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat. Commun. 2023, 14, 755. [Google Scholar] [CrossRef] [PubMed]
- Barnell, E.K.; Wurtzler, E.M.; La Rocca, J.; Fitzgerald, T.; Petrone, J.; Hao, Y.; Kang, Y.; Holmes, F.L.; Lieberman, D.A. Multitarget Stool RNA Test for Colorectal Cancer Screening. JAMA 2023, 330, 1760–1768. [Google Scholar] [CrossRef]
- Nordgaard, I.; Hove, H.; Clausen, M.R.; Mortensen, P.B. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand. J. Gastroenterol. 1996, 31, 1011–1020. [Google Scholar] [CrossRef]
- Wang, Z.; Dan, W.; Zhang, N.; Fang, J.; Yang, Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023, 15, 2236364. [Google Scholar] [CrossRef] [PubMed]
- Hester, C.M.; Jala, V.R.; Langille, M.G.; Umar, S.; Greiner, K.A.; Haribabu, B. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J. Gastroenterol. 2015, 21, 2759–2769. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, L.; Li, M.; Zhang, Y.; Sun, M.; Wang, L.; Lin, J.; Cui, Y.; Chen, Q.; Jin, C.; et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat. Commun. 2022, 13, 1248. [Google Scholar] [CrossRef] [PubMed]
- Zegarra Ruiz, D.F.; Kim, D.V.; Norwood, K.; Saldana-Morales, F.B.; Kim, M.; Ng, C.; Callaghan, R.; Uddin, M.; Chang, L.C.; Longman, R.S.; et al. Microbiota manipulation to increase macrophage IL-10 improves colitis and limits colitis-associated colorectal cancer. Gut Microbes 2022, 14, 2119054. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Hang, D.; Lau, H.C.; Du, J.; Liu, C.; Xie, M.; Pan, Y.; Wang, L.; Liang, C.; et al. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer Cell 2024, 42, 1386–1400.e1388. [Google Scholar] [CrossRef]
- Fernandez-Rozadilla, C.; Timofeeva, M.; Chen, Z.; Law, P.; Thomas, M.; Schmit, S.; Díez-Obrero, V.; Hsu, L.; Fernandez-Tajes, J.; Palles, C.; et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat. Genet. 2023, 55, 89–99. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Peng, K.; Tan, J.; Hao, Y.; Zhang, S.; Gao, C.; Li, L. Short-Chain Fatty Acids and Colorectal Cancer: A Systematic Review and Integrative Bayesian Meta-Analysis of Microbiome–Metabolome Interactions and Intervention Efficacy. Nutrients 2025, 17, 3552. https://doi.org/10.3390/nu17223552
He Y, Peng K, Tan J, Hao Y, Zhang S, Gao C, Li L. Short-Chain Fatty Acids and Colorectal Cancer: A Systematic Review and Integrative Bayesian Meta-Analysis of Microbiome–Metabolome Interactions and Intervention Efficacy. Nutrients. 2025; 17(22):3552. https://doi.org/10.3390/nu17223552
Chicago/Turabian StyleHe, Yingge, Ke Peng, Junze Tan, Yonghui Hao, Shiyan Zhang, Changqing Gao, and Liqi Li. 2025. "Short-Chain Fatty Acids and Colorectal Cancer: A Systematic Review and Integrative Bayesian Meta-Analysis of Microbiome–Metabolome Interactions and Intervention Efficacy" Nutrients 17, no. 22: 3552. https://doi.org/10.3390/nu17223552
APA StyleHe, Y., Peng, K., Tan, J., Hao, Y., Zhang, S., Gao, C., & Li, L. (2025). Short-Chain Fatty Acids and Colorectal Cancer: A Systematic Review and Integrative Bayesian Meta-Analysis of Microbiome–Metabolome Interactions and Intervention Efficacy. Nutrients, 17(22), 3552. https://doi.org/10.3390/nu17223552

