Retarded Learning in a Rabbit Model of Metabolic Syndrome Created by Long-Term Feeding of High-Fat Diet and High Sucrose
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Apparatus and NMR Procedures for Behavioral Experiments
2.3. Comprehensive Metabolic Panel
2.4. Intravenous Glucose Tolerance Test (GTT)
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Statistical Analysis
3. Results
3.1. Weight
3.2. Lipid Panel Monitoring
3.3. Glucose Tolerance Test
3.4. Triglyceride–Glucose Index
3.5. Terminal Clinical Measures
3.6. Lipase
3.7. Leptin and Adiponectin Levels
3.8. Trace Conditioning and Delay Conditioning
3.9. Tone Intensity Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Despres, J.P.; et al. A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement from the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Nikolaou, M. From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework. Biomolecules 2025, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, B.; van Breukelen-van der Stoep, D.F.; de Vries, M.A.; Klop, B.; van Zeben, J.; van de Geijn, G.M.; van der Meulen, N.; Birnie, E.; Prinzen, L.; Castro Cabezas, M. Progression of subclinical atherosclerosis in subjects with rheumatoid arthritis and the metabolic syndrome. Atherosclerosis 2018, 271, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Litwiller, R.D.; Lahr, B.D.; Bailey, K.R.; Owen, W.G.; Mulvagh, S.L.; Heit, J.A.; Hodis, H.N.; Harman, S.M.; Miller, V.M. Alterations in platelet function and cell-derived microvesicles in recently menopausal women: Relationship to metabolic syndrome and atherogenic risk. J. Cardiovasc. Transl. Res. 2011, 4, 811–822. [Google Scholar] [CrossRef]
- Dearborn, J.L.; Viscoli, C.M.; Inzucchi, S.E.; Young, L.H.; Kernan, W.N. Metabolic syndrome identifies normal weight insulin-resistant stroke patients at risk for recurrent vascular disease. Int. J. Stroke 2019, 14, 639–645. [Google Scholar] [CrossRef]
- Weinstock, R.S.; Drews, K.L.; Caprio, S.; Leibel, N.I.; McKay, S.V.; Zeitler, P.S.; Group, T.S. Metabolic syndrome is common and persistent in youth-onset type 2 diabetes: Results from the TODAY clinical trial. Obesity 2015, 23, 1357–1361. [Google Scholar] [CrossRef]
- Yen, H.Y.; Lin, Y.H.; Wang, Y.F.; Fuh, J.L.; Wang, S.J.; Chen, H.S.; Chiang, S.C.; Li, S.R.; Lin, M.H.; Chen, T.J.; et al. The association between metabolic syndrome components and cognitive function in community-dwelling middle-aged and older adults: The first wave result of a cohort study. J. Health Popul. Nutr. 2025, 44, 94. [Google Scholar] [CrossRef]
- Lee, J.Y.; Han, K.; Kim, J.; Lim, J.S.; Cheon, D.Y.; Lee, M. Association Between Metabolic Syndrome and Young-Onset Dementia: A Nationwide Population-Based Study. Neurology 2025, 104, e213599. [Google Scholar] [CrossRef]
- Qureshi, D.; Luben, R.; Hayat, S.; Talarico, R.; Allen, N.E.; Kuzma, E.; Littlejohns, T.J. Role of age and exposure duration in the association between metabolic syndrome and risk of incident dementia: A prospective cohort study. Lancet Healthy Longev. 2024, 5, 100652. [Google Scholar] [CrossRef]
- Lee, C.J.; Lee, J.Y.; Han, K.; Kim, D.H.; Cho, H.; Kim, K.J.; Kang, E.S.; Cha, B.S.; Lee, Y.H.; Park, S. Blood Pressure Levels and Risks of Dementia: A Nationwide Study of 4.5 Million People. Hypertension 2022, 79, 218–229. [Google Scholar] [CrossRef]
- Park, K.M.; Sung, J.M.; Kim, W.J.; An, S.K.; Namkoong, K.; Lee, E.; Chang, H.J. Population-based dementia prediction model using Korean public health examination data: A cohort study. PLoS ONE 2019, 14, e0211957. [Google Scholar] [CrossRef]
- Alsuwaidi, H.N.; Ahmed, A.I.; Alkorbi, H.A.; Ali, S.M.; Altarawneh, L.N.; Uddin, S.I.; Roueentan, S.R.; Alhitmi, A.A.; Djouhri, L.; Chivese, T. Association Between Metabolic Syndrome and Decline in Cognitive Function: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2023, 16, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.M.; Lee, C.L.; Wang, J.S. Sex Disparity in the Association of Metabolic Syndrome with Cognitive Impairment. J. Clin. Med. 2024, 13, 2571. [Google Scholar] [CrossRef] [PubMed]
- Robison, L.S.; Gannon, O.J.; Salinero, A.E.; Zuloaga, K.L. Contributions of sex to cerebrovascular function and pathology. Brain Res. 2019, 1710, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Kim, M.A.; Oh, S.; Kim, M.; Park, S.M.; Yoon, H.J.; Shin, M.S.; Hong, K.S.; Shin, G.J.; Shim, W.J. Sex Difference in the Association Between Metabolic Syndrome and Left Ventricular Diastolic Dysfunction. Metab. Syndr. Relat. Disord. 2016, 14, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zheng, Y.; Chen, Y.; Chen, Y.; Li, Q.; Zhu, C.; Wang, N.; Han, B.; Zhai, H.; Lin, D.; et al. Age and gender-specific distribution of metabolic syndrome components in East China: Role of hypertriglyceridemia in the SPECT-China study. Lipids Health Dis. 2018, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Nishimura, K.; Matoba, M.; Maekawa, N.; Mabuchi, H. Generation and gender differences in the components contributing to the diagnosis of the metabolic syndrome according to the Japanese criteria. Circ. J. 2007, 71, 1734–1737. [Google Scholar] [CrossRef] [PubMed]
- Ramezankhani, A.; Azizi, F.; Hadaegh, F. Gender differences in changes in metabolic syndrome status and its components and risk of cardiovascular disease: A longitudinal cohort study. Cardiovasc. Diabetol. 2022, 21, 227. [Google Scholar] [CrossRef]
- Park, J.B.; Kim, S.A.; Sung, K.C.; Kim, J.Y. Gender-specific differences in the incidence of microalbuminuria in metabolic syndrome patients after treatment with fimasartan: The K-MetS study. PLoS ONE 2017, 12, e0189342. [Google Scholar] [CrossRef]
- Niu, H.; Alvarez-Alvarez, I.; Guillen-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Arias-Mutis, O.J.; Marrachelli, V.G.; Ruiz-Sauri, A.; Alberola, A.; Morales, J.M.; Such-Miquel, L.; Monleon, D.; Chorro, F.J.; Such, L.; Zarzoso, M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLoS ONE 2017, 12, e0178315. [Google Scholar] [CrossRef]
- Helfenstein, T.; Fonseca, F.A.; Ihara, S.S.; Bottos, J.M.; Moreira, F.T.; Pott, H., Jr.; Farah, M.E.; Martins, M.C.; Izar, M.C. Impaired glucose tolerance plus hyperlipidaemia induced by diet promotes retina microaneurysms in New Zealand rabbits. Int. J. Exp. Pathol. 2011, 92, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Ojeda, S.; Marchio, P.; Gimeno-Raga, M.; Arias-Mutis, O.J.; San-Miguel, T.; Valles, S.; Aldasoro, M.; Vila, J.M.; Zarzoso, M.; Mauricio, M.D. PPARgamma as an indicator of vascular function in an experimental model of metabolic syndrome in rabbits. Atherosclerosis 2021, 332, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Antic, V.; Tempini, A.; Montani, J.P. Serial changes in cardiovascular and renal function of rabbits ingesting a high-fat, high-calorie diet. Am. J. Hypertens. 1999, 12, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Comeglio, P.; Guarnieri, G.; Filippi, S.; Cellai, I.; Acciai, G.; Holyer, I.; Zetterberg, F.; Leffler, H.; Kahl-Knutson, B.; Sarchielli, E.; et al. The galectin-3 inhibitor selvigaltin reduces liver inflammation and fibrosis in a high fat diet rabbit model of metabolic-associated steatohepatitis. Front. Pharmacol. 2024, 15, 1430109. [Google Scholar] [CrossRef] [PubMed]
- Filippi, S.; Vignozzi, L.; Morelli, A.; Chavalmane, A.K.; Sarchielli, E.; Fibbi, B.; Saad, F.; Sandner, P.; Ruggiano, P.; Vannelli, G.B.; et al. Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J. Sex. Med. 2009, 6, 3274–3288. [Google Scholar] [CrossRef]
- Morelli, A.; Filippi, S.; Comeglio, P.; Sarchielli, E.; Cellai, I.; Pallecchi, M.; Bartolucci, G.; Danza, G.; Rastrelli, G.; Corno, C.; et al. Physical activity counteracts metabolic syndrome-induced hypogonadotropic hypogonadism and erectile dysfunction in the rabbit. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E519–E535. [Google Scholar] [CrossRef]
- Marchiani, S.; Vignozzi, L.; Filippi, S.; Gurrieri, B.; Comeglio, P.; Morelli, A.; Danza, G.; Bartolucci, G.; Maggi, M.; Baldi, E. Metabolic syndrome-associated sperm alterations in an experimental rabbit model: Relation with metabolic profile, testis and epididymis gene expression and effect of tamoxifen treatment. Mol. Cell Endocrinol. 2015, 401, 12–24. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Chen, Y.; Cen, X.; Zhang, H.; Chen, D. A high-fat plus high-sucrose diet induces age-related macular degeneration in an experimental rabbit model. Dis. Model. Mech. 2024, 17, dmm052015. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Lui, H.; Nakagawa, K.; Iida, N.; Desrochers, C.; Wan, R.; Adam, E.; Larson, D.; Amadio, P.; Gingery, A. Impact of High Fat Diet and Sex in a Rabbit Model of Carpal Tunnel Syndrome. bioRxiv 2023. [Google Scholar] [CrossRef]
- Schreurs, B.G.; Alkon, D.L. US-US conditioning of the rabbit’s nictitating membrane response: Emergence of a conditioned response without alpha conditioning. Psychobiology 1990, 18, 312–320. [Google Scholar] [CrossRef]
- Gormezano, I. Classical conditioning. In Experimental Methods and Instrumentation in Psychology; Sidowski, J., Ed.; McGraw-Hill: New York, NY, USA, 1966; pp. 385–420. [Google Scholar]
- Buck, D.L.; Seager, M.A.; Schreurs, B.G. Conditioning-specific reflex modification of the rabbit (Oryctolagus cuniculus) nictitating membrane response: Generality and nature of the phenomenon. Behav. Neurosci. 2001, 115, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.R., Jr.; Deyo, R.A.; Disterhoft, J.F. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 1990, 104, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, B.G.; Shi, T.; Pineda, S., 3rd; Buck, D.L. Conditioning the unconditioned response: Modification of the rabbit’s (Oryctolagus cuniculus) unconditioned nictitating membrane response. J. Exp. Psychol. Anim. Behav. Process 2000, 26, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Weiss, C.; Bertolino, N.; Procissi, D.; Aleppo, G.; Smith, Q.C.; Viola, K.L.; Bartley, S.C.; Klein, W.L.; Disterhoft, J.F. Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement. 2022, 8, e12241. [Google Scholar] [CrossRef]
- Moughaizel, M.; Dagher, E.; Jablaoui, A.; Thorin, C.; Rhimi, M.; Desfontis, J.C.; Mallem, Y. Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS ONE 2022, 17, e0264215. [Google Scholar] [CrossRef]
- Sparks, D.L.; Schreurs, B.G. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 11065–11069. [Google Scholar] [CrossRef]
- Nagashima, M.; McLean, J.W.; Lawn, R.M. Cloning and mRNA tissue distribution of rabbit cholesteryl ester transfer protein. J. Lipid Res. 1988, 29, 1643–1649. [Google Scholar] [CrossRef]
- Zarzoso, M.; Mironov, S.; Guerrero-Serna, G.; Willis, B.C.; Pandit, S.V. Ventricular remodelling in rabbits with sustained high-fat diet. Acta Physiol. 2014, 211, 36–47. [Google Scholar] [CrossRef]
- Carroll, J.F.; Dwyer, T.M.; Grady, A.W.; Reinhart, G.A.; Montani, J.P.; Cockrell, K.; Meydrech, E.F.; Mizelle, H.L. Hypertension, cardiac hypertrophy, and neurohumoral activity in a new animal model of obesity. Am. J. Physiol. 1996, 271, H373–H378. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Irewole, E.A.; Bays, L.D.; Smith, M.D.; Schreurs, B.G. A long-term mild high-fat diet facilitates rabbit discrimination learning and alters glycerophospholipid metabolism. Neurobiol. Learn. Mem. 2025, 219, 108053. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, G.; Roco, J.; Medina, A.; Van Nieuwenhove, C.; Medina, M.; Jerez, S. Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets. J. Biomed. Sci. 2016, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yuan, Z.; Wang, Z.; Yang, B.; Yang, Y. A diet high in saturated fat and sucrose alters glucoregulation and induces aortic fatty streaks in New Zealand White rabbits. Int. J. Exp. Diabetes Res. 2002, 3, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, B.; Li, M.; Yu, Y.; Wang, Z.; Chen, S. Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet. Diabetes Res. Clin. Pract. 2016, 115, 140–149. [Google Scholar] [CrossRef]
- Waqar, A.B.; Koike, T.; Yu, Y.; Inoue, T.; Aoki, T.; Liu, E.; Fan, J. High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis 2010, 213, 148–155. [Google Scholar] [CrossRef]
- Marquine, M.J.; Gallo, L.C.; Tarraf, W.; Wu, B.; Moore, A.A.; Vasquez, P.M.; Talavera, G.; Allison, M.; Munoz, E.; Isasi, C.R.; et al. The Association of Stress, Metabolic Syndrome, and Systemic Inflammation with Neurocognitive Function in the Hispanic Community Health Study/Study of Latinos and Its Sociocultural Ancillary Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2022, 77, 860–871. [Google Scholar] [CrossRef]
- Power, M.C.; Rawlings, A.; Sharrett, A.R.; Bandeen-Roche, K.; Coresh, J.; Ballantyne, C.M.; Pokharel, Y.; Michos, E.D.; Penman, A.; Alonso, A.; et al. Association of midlife lipids with 20-year cognitive change: A cohort study. Alzheimers Dement. 2018, 14, 167–177. [Google Scholar] [CrossRef]
- Chavez-Gutierrez, E.; Fuentes-Venado, C.E.; Rodriguez-Paez, L.; Guerra-Araiza, C.; Larque, C.; Martinez-Herrera, E.; Ocharan-Hernandez, M.E.; Lomeli, J.; Loza-Mejia, M.A.; Salazar, J.R.; et al. High Fructose and High Fat Diet Impair Different Types of Memory through Oxidative Stress in a Sex- and Hormone-Dependent Manner. Metabolites 2022, 12, 341. [Google Scholar] [CrossRef]
- El Gaamouch, F.; Lin, H.Y.; Wang, Q.; Zhao, W.; Pan, J.; Liu, K.; Wong, J.; Wu, C.; Yuan, C.; Cheng, H.; et al. Peripheral and cognitive benefits of physical exercise in a mouse model of midlife metabolic syndrome. Sci. Rep. 2022, 12, 3260. [Google Scholar] [CrossRef]
- Johnson, L.A.; Zuloaga, K.L.; Kugelman, T.L.; Mader, K.S.; Morre, J.T.; Zuloaga, D.G.; Weber, S.; Marzulla, T.; Mulford, A.; Button, D.; et al. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma. EBioMedicine 2016, 3, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Nagga, K.; Gustavsson, A.M.; Stomrud, E.; Lindqvist, D.; van Westen, D.; Blennow, K.; Zetterberg, H.; Melander, O.; Hansson, O. Increased midlife triglycerides predict brain beta-amyloid and tau pathology 20 years later. Neurology 2018, 90, e73–e81. [Google Scholar] [CrossRef] [PubMed]
- Dakterzada, F.; Jove, M.; Huerto, R.; Carnes, A.; Sol, J.; Pamplona, R.; Pinol-Ripoll, G. Changes in Plasma Neutral and Ether-Linked Lipids Are Associated with the Pathology and Progression of Alzheimer’s Disease. Aging Dis. 2023, 14, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.D.; Manemann, S.M.; Larson, N.B.; St Sauver, J.L.; Takahashi, P.Y.; Mielke, M.M.; Rocca, W.A.; Olson, J.E.; Roger, V.L.; Remaley, A.T.; et al. Association Between Fluctuations in Blood Lipid Levels Over Time with Incident Alzheimer Disease and Alzheimer Disease-Related Dementias. Neurology 2023, 101, e1127–e1136. [Google Scholar] [CrossRef]
- Avadhani, R.; Fowler, K.; Barbato, C.; Thomas, S.; Wong, W.; Paul, C.; Aksakal, M.; Hauser, T.H.; Weinger, K.; Goldfine, A.B. Glycemia and cognitive function in metabolic syndrome and coronary heart disease. Am. J. Med. 2015, 128, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Gentreau, M.; Reynes, C.; Sabatier, R.; Maller, J.J.; Meslin, C.; Deverdun, J.; Le Bars, E.; Raymond, M.; Berticat, C.; Artero, S. Glucometabolic Changes Are Associated with Structural Gray Matter Alterations in Prodromal Dementia. J. Alzheimers Dis. 2022, 89, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Thirumangalakudi, L.; Prakasam, A.; Zhang, R.; Bimonte-Nelson, H.; Sambamurti, K.; Kindy, M.S.; Bhat, N.R. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J. Neurochem. 2008, 106, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, H.; Tang, Y.; Liu, X.; Liao, Q.; Fan, C.; Wang, S. CYP1B1 deiciency ameliorates learning and memory deficits caused by high fat diet in mice. Am. J. Transl. Res. 2019, 11, 2194–2206. [Google Scholar]
- Hao, S.; Dey, A.; Yu, X.; Stranahan, A.M. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav. Immun. 2016, 51, 230–239. [Google Scholar] [CrossRef]
- Molteni, R.; Barnard, R.J.; Ying, Z.; Roberts, C.K.; Gomez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002, 112, 803–814. [Google Scholar] [CrossRef]
- Abi-Ghanem, C.; Salinero, A.E.; Kordit, D.; Mansour, F.M.; Kelly, R.D.; Venkataganesh, H.; Kyaw, N.R.; Gannon, O.J.; Riccio, D.; Fredman, G.; et al. Sex differences in the effects of high fat diet on underlying neuropathology in a mouse model of VCID. Biol. Sex. Differ. 2023, 14, 31. [Google Scholar] [CrossRef]
- Rapp, C.; Hamilton, J.; Blum, K.; Thanos, P.K. The long-term interaction of diet and dopamine D2 gene expression on brain microglial activation. Psychiatry Res. Neuroimaging 2022, 320, 111430. [Google Scholar] [CrossRef]
- Evans, M.B.; Tonini, R.; Shope, C.D.; Oghalai, J.S.; Jerger, J.F.; Insull, W., Jr.; Brownell, W.E. Dyslipidemia and auditory function. Otol. Neurotol. 2006, 27, 609–614. [Google Scholar] [CrossRef]
- Frisina, S.T.; Mapes, F.; Kim, S.; Frisina, D.R.; Frisina, R.D. Characterization of hearing loss in aged type II diabetics. Hear. Res. 2006, 211, 103–113. [Google Scholar] [CrossRef]
- Hwang, J.H.; Hsu, C.J.; Yu, W.H.; Liu, T.C.; Yang, W.S. Diet-induced obesity exacerbates auditory degeneration via hypoxia, inflammation, and apoptosis signaling pathways in CD/1 mice. PLoS ONE 2013, 8, e60730. [Google Scholar] [CrossRef]
- Kim, S.J.; Gajbhiye, A.; Lyu, A.R.; Kim, T.H.; Shin, S.A.; Kwon, H.C.; Park, Y.H.; Park, M.J. Sex differences in hearing impairment due to diet-induced obesity in CBA/Ca mice. Biol. Sex. Differ. 2023, 14, 10. [Google Scholar] [CrossRef]
Weight (kg) | Length (m) | Height (m) | Rib Cage (cm) | Length of Lower Leg (cm) | Abdominal Circumference | BMI (kg/m2) | Percentage of Body Fat | |
---|---|---|---|---|---|---|---|---|
HFSD Female | 4.53 ± 0.23 § | 0.35 ± 0.006 | 0.157 ± 0.004 | 34.63 ± 0.79 * | 13.88 ± 0.17 * | 35.94 ± 1.38 | 82.29 ± 1.77 * | 20.00 ± 1.19 |
Control Female | 4.04 ± 0.07 | 0.342 ± 0.008 | 0.163 ± 0.003 | 32.29 ± 0.49 | 13.29 ± 0.16 | 33.07 ± 0.81 | 72.91 ± 3.00 | 17.92 ± 0.79 |
HFSD Male | 4.53 ± 0.12 * | 0.352 ± 0.006 | 0.157 ± 0.004 | 35.50 ± 0.74 * | 13.88 ± 0.28 | 35.5 ± 0.96 * | 82.269 ± 2.18 * | 21.24 ± 1.11 § |
Control Male | 3.97 ± 0.18 | 0.341 ± 0.010 | 0.153 ± 0.004 | 32.29 ± 1.14 | 13.64 ± 0.31 | 32.57 ± 1.16 | 76.30 ± 3.56 | 17.17 ± 1.98 |
Total Fat (g) | Retroperitoneal Fat (g) | Mesenteric Fat (g) | % Visceral Fat | Liver (g) | Spleen (g) | Heart (g) | |
---|---|---|---|---|---|---|---|
HFSD Female | 602.48 ± 81.24 ** | 313.12 ± 58.43 * | 289.35 ± 40.99 * | 6.31 ± 0.77 * | 106.89 ± 11.44 * | 2.03 ± 0.29 | 7.49 ± 0.57 |
Control Female | 321.34 ± 18.26 | 155.56 ± 8.14 | 165.78 ± 15.07 | 4.11 ± 0.37 | 76.35 ± 7.38 | 1.93 ± 0.39 | 7.81 ± 0.46 |
HFSD Male | 494.88 ± 33.66 *** | 260.91 ± 15.16 *** | 233.97 ± 19.27 ** | 5.14 ± 0.33 ** | 119.04 ± 8.90 § | 1.31 ± 0.10 | 8.73 ± 0.44 |
Control Male | 264.83 ± 16.39 | 120.14 ± 3.97 | 144.69 ± 17.92 | 3.59 ± 0.26 | 94.75 ± 8.20 | 1.09 ± 0.13 | 8.02 ± 0.24 |
SBP (mmHg) | DBP (mmHg) | MAP (mmHg) | Heart Rate (BPM) | |
---|---|---|---|---|
HFSD Female | 128.94 ± 8.71 | 75.84 ± 8.17 | 93.54 ± 8.06 | 189.19 ± 10.83 * |
Control Female | 120.03 ± 3.00 | 59.87 ± 5.82 | 79.93 ± 4.26 | 160.54 ± 7.46 |
HFSD Male | 120.96 ± 5.04 | 66.94 ± 5.54 | 84.95 ± 5.26 | 191.2 ± 8.46 |
Control Male | 118.51 ± 3.84 | 60.24 ± 1.45 | 79.66 ± 1.78 | 181.89 ± 8.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Irewole, E.A.; Bays, L.D.; Smith, M.D.; Talkington, D.; Bell, R.W.; Lal, N.; Schreurs, B.G. Retarded Learning in a Rabbit Model of Metabolic Syndrome Created by Long-Term Feeding of High-Fat Diet and High Sucrose. Nutrients 2025, 17, 3143. https://doi.org/10.3390/nu17193143
Wang D, Irewole EA, Bays LD, Smith MD, Talkington D, Bell RW, Lal N, Schreurs BG. Retarded Learning in a Rabbit Model of Metabolic Syndrome Created by Long-Term Feeding of High-Fat Diet and High Sucrose. Nutrients. 2025; 17(19):3143. https://doi.org/10.3390/nu17193143
Chicago/Turabian StyleWang, Desheng, Ezekiel A. Irewole, Logan D. Bays, MacKinzie D. Smith, Delanie Talkington, Roger W. Bell, Neha Lal, and Bernard G. Schreurs. 2025. "Retarded Learning in a Rabbit Model of Metabolic Syndrome Created by Long-Term Feeding of High-Fat Diet and High Sucrose" Nutrients 17, no. 19: 3143. https://doi.org/10.3390/nu17193143
APA StyleWang, D., Irewole, E. A., Bays, L. D., Smith, M. D., Talkington, D., Bell, R. W., Lal, N., & Schreurs, B. G. (2025). Retarded Learning in a Rabbit Model of Metabolic Syndrome Created by Long-Term Feeding of High-Fat Diet and High Sucrose. Nutrients, 17(19), 3143. https://doi.org/10.3390/nu17193143