The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
- Female;
- Caucasian race;
- Body Mass Index (BMI) value ranging between 18.5 kg/m2 and 29.9 kg/m2;
- Age between 18 and 45;
- No physical complaints in the month preceding this study.
- Diagnosed diet-related diseases: diabetes, hypercholesterolemia, obesity, hypertension, endocrine disorders, liver diseases, and autoimmune diseases;
- Acute diseases;
- Cancer in the last 5 years;
- Taking hypoglycemic, lipid-lowering, hypertensive, and psychotropic drugs, which are pharmacotherapeutics that might affect digestion and absorption of protein;
- Antibiotic therapy within the last month;
- Taking dietary supplements and beverages that include collagen in the last 3 months;
- Pregnancy;
- Breastfeeding;
- Lactation;
- Smoking.
2.3. Methods
2.3.1. Nutritional Status and Skin Elasticity Assessment
2.3.2. Dietary Intervention
- Group 1 received fish collagen supplementation for 40 days, followed by a 40-day washout period, then water for 40 days.
- Group 2 received water for 40 days, followed by a 40-day washout period, then fish collagen supplementation for 40 days.
2.3.3. The Amino Acid Composition of Collagen
2.3.4. Serum Sample Pretreatment
2.3.5. MALDI-TOF Proteomic Profiling
2.3.6. NanoLC-MALDI-TOF/TOF MS Discriminative Peaks Identification
2.3.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Li, H.; Xiong, G.; Cai, J.; Liao, T.; Zu, X. Extraction, identification and anti-photoaging activity evaluation of collagen peptides from silver carp (Hypophthalmichthys molitrix) skin. LWT 2023, 173, 11438. [Google Scholar] [CrossRef]
- Hadzik, J.; Kubasiewicz-Ross, P.; Kunert-Keil, C.; Jurczyszyn, K.; Nawrot-Hadzik, I.; Dominiak, M.; Gedrange, T. A silver carp skin derived collagen in bone defect treatment—A histological study in a rat model. Ann. Anat.-Anat. Anz. 2016, 208, 123–128. [Google Scholar] [CrossRef]
- Shen, Q.; Ou, A.; Liu, S.; Elango, J.; Wang, S.; Henriques da Silva, T.; Wu, W.; Robinson, J.; Bao, B. Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides. J. Food Biochem. 2019, 43, e12789. [Google Scholar] [CrossRef]
- Lin, P.; Hua, N.; Hsu, Y.C.; Kan, K.W.; Chen, J.H.; Lin, Y.H.; Lin, Y.H.; Kuan, C.M. Oral Collagen Drink for Antiaging: Antioxidation, Facilitation of the Increase of Collagen Synthesis, and Improvement of Protein Folding and DNA Repair in Human Skin Fibroblasts. Oxidative Med. Cell. Longev. 2020, 11, 8031795. [Google Scholar] [CrossRef] [PubMed]
- Lapi, I.; Kolliniati, O.; Aspevik, T.; Deiktakis, E.E.; Axarlis, K.; Daskalaki, M.G.; Dermitzaki, E.; Tzardi, M.; Kampranis, S.C.; Marsni, Z.E.; et al. Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar. Drugs 2021, 19, 396. [Google Scholar] [CrossRef] [PubMed]
- Gou, F.; Gao, S.; Li, B. Lipid-Induced Oxidative Modifications Decrease the Bioactivities of Collagen Hydrolysates from Fish Skin: The Underlying Mechanism Based on the Proteomic Strategy. Foods 2024, 13, 583. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.C.; Kadler, K.E. Importance of the circadian clock in tendon development. Curr. Top. Dev. Biol. 2019, 133, 309–342. [Google Scholar]
- Paradis, V.; Perlemuter, G.; Bonvoust, F.; Dargere, D.; Parfait, B.; Vidaud, M.; Conti, M.; Huet, S.; Ba, N.; Buffet, C.; et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 2001, 34 Pt 1, 738–744. [Google Scholar] [CrossRef]
- Svegliati-Baroni, G.; Ridolfi, F.; Di Sario, A.; Casini, A.; Marucci, L.; Gaggiotti, G.; Orlandoni, P.; Macarri, G.; Perego, L.; Benedetti, A.; et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: Differential effects on signal transduction pathways. Hepatology 1999, 29, 1743–1751. [Google Scholar] [CrossRef]
- Kim, D.U.; Chung, H.C.; Choi, J.; Sakai, Y.; Lee, B.Y. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity, and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2018, 10, 826. [Google Scholar] [CrossRef]
- Inoue, N.; Sugihara, F.; Wang, X. Ingestion of bioactive collagen hydrolysates enhance facial skin moisture and elasticity and reduce facial ageing signs in a randomised double-blind placebo-controlled clinical study. J. Sci. Food Agric. 2016, 96, 4077–4081. [Google Scholar] [CrossRef]
- Gibson, R.; Krug, L.; Ramsey, D.L.; Safaei, A.; Aspley, S. Beneficial Effects of Multi-Micronutrient Supplementation with Collagen Peptides on Global Wrinkles, Skin Elasticity and Appearance in Healthy Female Subjects. Dermatol. Ther. 2024, 14, 1599–1614. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Segger, D.; Degwert, J.; Schunck, M.; Zague, V.; Oesser, S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Ski. Pharmacol. Physiol. 2014, 27, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Oertzen-Hagemann, V.; Kirmse, M.; Eggers, B.; Pfeiffer, K.; Marcus, K.; de Marées, M.; Platen, P. Effects of 12 Weeks of Hypertrophy Resistance Exercise Training Combined with Collagen Peptide Supplementation on the Skeletal Muscle Proteome in Recreationally Active Men. Nutrients 2019, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Matuszewska, E.; Kowalski, M.L.; Kosiński, S.W.; Smorawska-Sabanty, E.; Matysiak, J. Association between Venom Immunotherapy and Changes in Serum Protein-Peptide Patterns. Vaccines 2021, 9, 249. [Google Scholar] [CrossRef]
- Matuszewska, E.; Matysiak, J.; Bręborowicz, A.; Olejniczak, K.; Kycler, Z.; Kokot, Z.J.; Matysiak, J. Proteomic features characterization of Hymenoptera venom allergy. Allergy Asthma Clin. Immunol. 2019, 15, 77. [Google Scholar] [CrossRef]
- Swiatly, A.; Horala, A.; Hajduk, J.; Matysiak, J.; Nowak-Markwitz, E.; Kokot, Z.J. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer 2017, 17, 472. [Google Scholar] [CrossRef]
- Jarosz, M.; Bułhak-Jachymczyk, B. Normy Żywienia Człowieka Podstawy Prewencji Otyłości i Chorób Niezakaźnych; PZWL: Warszawa, Poland, 2023; pp. 30–70. [Google Scholar]
- Ribeiro, F.M.; Anderson, M.; Aguiar, S.; Gabriela, E.; Petriz, B.; Franco, O.L. Systematic review and meta-analysis of gut peptides expression during fasting and postprandial states in individuals with obesity. Nutr. Res. 2024, 127, 27–39. [Google Scholar] [CrossRef]
- Zhou, J.; Kang, X.; An, H.; Lv, Y.; Liu, X. The function and pathogenic mechanism of filamin A. Gene 2021, 784, 145575. [Google Scholar] [CrossRef]
- Dave, J.M.; Bayless, K.J. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2014, 21, 333–344. [Google Scholar] [CrossRef]
- Feng, Y.; Walsh, C.A. The many faces of filamin: A versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 2004, 6, 1034–1038. [Google Scholar] [CrossRef]
- Kao, Y.C.; Chen, Z.H.; Wang, W.Y.; Lee, C.H.; Kuo, P.L. Hydrostatic pressure promotes migration and filamin-A activation in fibroblasts with increased p38 phosphorylation and TGF-? production. Biochem. Biophys. Res. Commun. 2021, 568, 15–22. [Google Scholar] [CrossRef]
- Ridge, K.M.; Eriksson, J.E.; Pekny, M.; Goldman, R.D. Roles of vimentin in health and disease. Genes Dev. 2022, 36, 391–407. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, G.; Rogel, M.R.; Baker, M.A.; Troken, J.R.; Urich, D.; Morales-Nebreda, L.; Sennello, J.A.; Kutuzov, M.A.; Sitikov, A.; Davis, J.M.; et al. Vimentin regulates activation of the NLRP3 inflammasome. Nat. Commun. 2015, 6, 6574. [Google Scholar] [CrossRef] [PubMed]
- Kweon, Y.O.; Goodman, Z.D.; Dienstag, J.L.; Schiff, E.R.; Brown, N.A.; Burchardt, E.; Schoonhoven, R.; Brenner, D.A.; Fried, M.W. Decreasing fibrogenesis: An immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J. Hepatol. 2001, 35, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Stakhneva, E.M.; Meshcheryakova, I.A.; Demidov, E.A.; Starostin, K.V.; Sadovski, E.V.; Peltek, S.E.; Voevoda, M.I.; Chernyavskii, A.M.; Volkov, A.M.; Ragino, Y.I. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics 2019, 9, 177. [Google Scholar] [CrossRef]
- Bi, N.; Sun, Y.; Lei, S.; Zeng, Z.; Zhang, Y.; Sun, C.; Yu, C. Identification of 40S ribosomal protein S8 as a novel biomarker for alcohol-associated hepatocellular carcinoma using weighted gene co-expression network analysis. Oncol. Rep. 2020, 44, 611–627. [Google Scholar] [CrossRef]
- Goldie, S.J.; Mulder, K.W.; Tan, D.W.; Lyons, S.K.; Sims, A.H.; Watt, F.M. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 2012, 72, 3424–3436. [Google Scholar] [CrossRef]
- Martiskainen, H.; Viswanathan, J.; Nykänen, N.P.; Kurki, M.; Helisalmi, S.; Natunen, T.; Sarajärvi, T.; Kurkinen, K.M.; Pursiheimo, J.P.; Rauramaa, T.; et al. Transcriptomics and mechanistic elucidation of Alzheimer’s disease risk genes in the brain and in vitro models. Neurobiol. Aging 2015, 36, 1221.e15–1221.e28. [Google Scholar] [CrossRef]
- Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science 1999, 285, 1028–1032. [Google Scholar] [CrossRef]
- Heino, J. Cellular signaling by collagen-binding integrins. Adv. Exp. Med. Biol. 2014, 819, 143–155. [Google Scholar]
- Kristó, I.; Bajusz, I.; Bajusz, C.; Borkúti, P.; Vilmos, P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem. Cell Biol. 2016, 145, 373–388. [Google Scholar] [CrossRef]
- Riching, K.M.; Keely, P.J. Rho family GTPases: Making it to the third dimension. Int. J. Biochem. Cell Biol. 2015, 59, 111–115. [Google Scholar] [CrossRef]
- Bucknall, M.; Fung, K.Y.; Duncan, M.W. Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 1015–1027. [Google Scholar] [CrossRef]
Total protein content (%) | 65.66 |
Amino acid (g per 100 g protein) | |
Asparagine | 6.64 |
Threonine | 2.84 |
Serine | 3.44 |
Glutamic acid | 10.61 |
Proline | 13.55 |
Cysteine | - |
Glycine | 21.83 |
Alanine | 10.54 |
Valine | 2.27 |
Methionine | 2.25 |
Isoleucine | 1.57 |
leucine | 2.95 |
Tyrosine | 1.32 |
Phenylalanine | 3.03 |
Histidine | 1.21 |
Lysine | 3.38 |
Arginine | 7.56 |
Hydroxyproline | 5.01 |
Analyzed Parameter | Mean | SD | Median | p-Value | |
---|---|---|---|---|---|
Body Weight [kg] | Before | 66.3 | 7.2 | 66.3 | 0.8990 |
After | 66.3 | 7.3 | 66.5 | ||
Body Heigh [cm] | Before | 168.3 | 4.66 | 168 | - |
Fat Mass [%] | Before | 29.8 | 5.3 | 29.7 | 0.5629 |
After | 31.2 | 9.9 | 29.6 | ||
Fat Free Mass [kg] | Before | 43.8 | 3.7 | 44.2 | 0.1761 |
After | 43.8 | 3.7 | 44.3 | ||
Bone Mass [kg] | Before | 2.33 | 0.2 | 2.5 | 0.8531 |
After | 2.33 | 0.2 | 2.5 | ||
Visceral Fat Mass [kg] | Before | 3.9 | 1.5 | 4.0 | 0.9121 |
After | 3.9 | 1.5 | 4.0 | ||
Body Mass Index [kg/m2] | Before | 23.4 | 2.1 | 23.3 | 0.9838 |
After | 23.4 | 2.2 | 23.0 | ||
Water Content [%] | Before | 51.4 | 4.1 | 52.1 | <0.0001 |
After | 52.1 | 4.2 | 52.8 | ||
Hip Circumference [cm] | Before | 97.8 | 9.2 | 97.5 | 0.1664 |
After | 97.9 | 9.3 | 97.5 | ||
Waist Circumference [cm] | Before | 89.1 | 7.5 | 89.0 | 0.2011 |
After | 89.3 | 7.4 | 89.3 | ||
Waist-to-Hip Ratio | Before | 0.91 | 0.82 | 0.87 | 0.0867 |
After | 0.91 | 0.80 | 0.88 | ||
Waist-to-Heigh Ratio | Before | 0.53 | 0.04 | 0.52 | 0.1512 |
After | 0.53 | 0.04 | 0.52 |
Analyzed Parameter | Mean | SD | % of Recommended Intake |
---|---|---|---|
Energy [kcal] | 1863 | 353 | 84.7 |
Protein [g] | 65.9 | 7.8 | 110.9 |
Fat [g] | 36.5 | 8 | 89.5 |
Cholesterol [mg] | 272.4 | 62.1 | <300 |
Carbohydrates [g] | 318 | 33.8 | 115.9 |
Dietary fiber [g] | 19.7 | 4.9 | 65.7 |
Calcium [mg] | 557 | 93 | 55.7 |
Magnesium [mg] | 196 | 61 | 62.3 |
Iron [mg] | 7 | 1 | 48.0 |
Vitamin A [μg] | 488 | 65 | 69.7 |
Vitamin C [mg] | 53 | 13 | 70.5 |
Vitamin E [mg] | 5 | 1 | 67.5 |
Precursor Ion m/z | p-Value of Wilcoxon Test | Sequence | Accession | Protein Name | Protein Expression in Individuals Before vs. After Supplementation |
---|---|---|---|---|---|
1506.38 | <0.000001 | K.ISSLLEEQFQQGK.L | RS8_HUMAN | 40S ribosomal protein S8 | ↓ |
1099.38 | 0.0188 | K.GTVEPQLEAR.G | FLNA_HUMAN | Filamin-A | ↓ |
1821.60 | <0.000001 | M.DDDIAALVVDNGSGMCK.A | ACTB_HUMAN | Actin, cytoplasmic 1 | ↓ |
1283.44 | <0.000001 | K.VTVLFAGQHIAK.S | FLNA_HUMAN | Filamin-A | ↓ |
1061.01 | <0.000001 | K.DMLAALKSR.Q | FRM4A_HUMAN | FERM domain-containing protein 4A | ↓ |
1488.31 | <0.000001 | K.ATDAEADVASLNRR.I | TPM2_HUMAN | Tropomyosin beta chain | ↓ |
1750.66 | 0.00000233 | R.LQDEIQNMKEEMAR.H | VIME_HUMAN | Vimentin | ↑ |
1450.69 | <0.000001 | R.EAEMDSIPMGLNK.H | DHX8_HUMAN | ATP-dependent RNA helicase DHX8 | ↑ |
1655.67 | 0.000262 | R.GAGGQGKLDVTILSPSR.K | FLNB_HUMAN | Filamin-B | ↓ |
1020.95 | 0.000079 | K.DMLAALKSR.Q | FRM4A_HUMAN | FERM domain-containing protein 4A | ↓ |
Precursor Ion m/z | p-Value of Wilcoxon Test | Sequence | Accession | Protein Name | Protein Expression in Individuals Before vs. After Water Intake |
---|---|---|---|---|---|
1538.54 | 0.00515 | K.LGMAKNEVHLEIK.D | NRCAM_HUMAN | Neuronal cell adhesion molecule | ↓ |
Protein Name | Biological Process | Molecular Function | Pathway |
---|---|---|---|
40S ribosomal protein S8 | Cellular and metabolic processes | Structural molecule activity | Not assigned |
Filamin-A | Not assigned | Not assigned | Dopamine receptor mediated signaling pathway, Integrin signaling pathway, Nicotine pharmacodynamics pathway |
Actin, cytoplasmic 1 | Cellular process, Developmental process, Multicellular organismal process | Binding, Structural molecule activity | Alzheimer’s disease–presenilin pathway, Cadherin signaling pathway, Cytoskeletal regulation by Rho GTPase, Huntington disease, Inflammation mediated by chemokine and cytokine signaling pathway, Integrin signaling pathway, Nicotinic acetylcholine receptor signaling pathway, Wnt signaling pathway |
FERM domain-containing protein 4A | Not assigned | Not assigned | Not assigned |
Tropomyosin beta chain | Cellular process, Multicellular organismal process | Binding | Not assigned |
Vimentin | Cellular process | Structural molecule activity | Not assigned |
ATP-dependent RNA helicase DHX8 | Cellular and metabolic processes | ATP-dependent activity, Binding, catalytic activity | Not assigned |
Filamin-B | Not assigned | Not assigned | Integrin signaling pathway |
Neuronal cell adhesion molecule | Brain development Cell–cell adhesion Axon guidance | Cell–cell adhesion mediator activity | Not assigned |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelmach-Mardas, M.; Matuszewska-Mach, E.; Kustra, K.; Pietkiewicz, D.; Matysiak, J.; Hojan-Jezierska, D.; Mardas, M.; Kubisz, L. The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study. Nutrients 2025, 17, 3052. https://doi.org/10.3390/nu17193052
Stelmach-Mardas M, Matuszewska-Mach E, Kustra K, Pietkiewicz D, Matysiak J, Hojan-Jezierska D, Mardas M, Kubisz L. The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study. Nutrients. 2025; 17(19):3052. https://doi.org/10.3390/nu17193052
Chicago/Turabian StyleStelmach-Mardas, Marta, Eliza Matuszewska-Mach, Krzysztof Kustra, Dagmara Pietkiewicz, Jan Matysiak, Dorota Hojan-Jezierska, Marcin Mardas, and Leszek Kubisz. 2025. "The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study" Nutrients 17, no. 19: 3052. https://doi.org/10.3390/nu17193052
APA StyleStelmach-Mardas, M., Matuszewska-Mach, E., Kustra, K., Pietkiewicz, D., Matysiak, J., Hojan-Jezierska, D., Mardas, M., & Kubisz, L. (2025). The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study. Nutrients, 17(19), 3052. https://doi.org/10.3390/nu17193052