Thyroid Health and Selenium: The Critical Role of Adequate Intake from Fetal Development to Adolescence
Abstract
1. Introduction
2. Methods
3. Thyroid Health and Selenium
3.1. Thyroid Development and Selenium
3.2. Thyroid Function and Selenium
4. Selenium Intake During Developmental Stages
5. Clinical Nutrition Insights
6. Evidence on the Role of Selenium in Thyroid Disorders
7. Effective Strategies to Ensure Adequate Selenium Intake in Children
8. Limitations
9. Future Directions
10. Public Health and Policy Considerations
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahid, M.A.; Ashraf, M.A.; Sharma, S. Physiology, Thyroid Hormone; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bettendorf, M. Thyroid Disorders in Children from Birth to Adolescence. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, S439–S446. [Google Scholar] [CrossRef] [PubMed]
- Köhrle, J. Selenium, Iodine and Iron–Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int. J. Mol. Sci. 2023, 24, 3393. [Google Scholar] [CrossRef] [PubMed]
- Bano, I.; Hassan, M.F.; Kieliszek, M. A Comprehensive Review of Selenium as a Key Regulator in Thyroid Health. Biol. Trace Elem. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Vassalle, C.; Del Seppia, C.; Iervasi, G. Deiodinases and the Three Types of Thyroid Hormone Deiodination Reactions. Endocrinol. Metab. 2021, 36, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; Braun, D. Selenium and Iodothyronine Deiodinases. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013; pp. 1898–1904. ISBN 978-1-4614-1532-9. [Google Scholar]
- Modzelewska, D.; Solé-Navais, P.; Brantsæter, A.L.; Flatley, C.; Elfvin, A.; Meltzer, H.M.; Sengpiel, V.; Barman, M.; Jacobsson, B. Maternal Dietary Selenium Intake during Pregnancy and Neonatal Outcomes in the Norwegian Mother, Father, and Child Cohort Study. Nutrients 2021, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, G.; Capperucci, A.; Tanini, D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Batyrova, G.; Taskozhina, G.; Umarova, G.; Umarov, Y.; Morenko, M.; Iriskulov, B.; Kudabayeva, K.; Bazargaliyev, Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J. Clin. Med. 2025, 14, 1274. [Google Scholar] [CrossRef] [PubMed]
- Chanoine, J. Selenium and Thyroid Function in Infants, Children and Adolescents. BioFactors 2003, 19, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hisbiyah, Y.; Endaryanto, A.; Setyoboedi, B.; Rochmah, N.; Faizi, M.; Fedora, K. Selenium Level Correlates Negatively with Antibodies but Positively with Thyroid Function in Children with down Syndrome: An Indonesian Study. Front. Endocrinol. 2023, 14, 1177373. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Feng, W.; Chen, H.; Shi, H.; Jiang, L.; Zheng, X.; Liu, X.; Zhang, W.; Ge, Y.; Liu, Y.; et al. Effect of Selenium on Thyroid Autoimmunity and Regulatory T Cells in Patients with Hashimoto’s Thyroiditis: A Prospective Randomized-controlled Trial. Clin. Transl. Sci. 2021, 14, 1390–1402. [Google Scholar] [CrossRef] [PubMed]
- Bonfig, W.; Gäertner, R.; Schmidt, H. Selenium Supplementation Does Not Decrease Thyroid Peroxidase Antibody Concentration in Children and Adolescents with Autoimmune Thyroiditis. Sci. World J. 2010, 10, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Hisbiyah, Y.; Endaryanto, A.; Setyoboedi, B.; Rochmah, N.; Faizi, M.; Wungu, C.D.K.; Putri, Q.A.N. Effectiveness of Selenium Supplementation in Children with Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Int. J. Health Sci. 2022, 1395–1410. [Google Scholar] [CrossRef]
- Tian, X.; Li, N.; Su, R.; Dai, C.; Zhang, R. Selenium Supplementation May Decrease Thyroid Peroxidase Antibody Titer via Reducing Oxidative Stress in Euthyroid Patients with Autoimmune Thyroiditis. Int. J. Endocrinol. 2020, 2020, 9210572. [Google Scholar] [CrossRef] [PubMed]
- Huwiler, V.V.; Maissen-Abgottspon, S.; Stanga, Z.; Mühlebach, S.; Trepp, R.; Bally, L.; Bano, A. Selenium Supplementation in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Thyroid 2024, 34, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Negro, R. Selenium and Thyroid Autoimmunity. Biol. Targets Ther. 2008, 2, 265–273. [Google Scholar] [CrossRef]
- Sadler, R.A.; Mallard, B.A.; Shandilya, U.K.; Hachemi, M.A.; Karrow, N.A. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024, 16, 3324. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Fagman, H. Development of the Thyroid Gland. Development 2017, 144, 2123–2140. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.P.; López-Márquez, A.; Santisteban, P. Thyroid Transcription Factors in Development, Differentiation and Disease. Nat. Rev. Endocrinol. 2015, 11, 29–42. [Google Scholar] [CrossRef] [PubMed]
- De Felice, M.; Di Lauro, R. Thyroid Development and Its Disorders: Genetics and Molecular Mechanisms. Endocr. Rev. 2004, 25, 722–746. [Google Scholar] [CrossRef] [PubMed]
- Marelli, F.; Rurale, G.; Persani, L. From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Front. Endocrinol. 2021, 12, 664557. [Google Scholar] [CrossRef] [PubMed]
- Haerlingen, B.; Opitz, R.; Vandernoot, I.; Molinaro, A.; Shankar, M.P.; Gillotay, P.; Trubiroha, A.; Costagliola, S. Mesodermal FGF and BMP Govern the Sequential Stages of Zebrafish Thyroid Specification. Development 2023, 150, dev201023. [Google Scholar] [CrossRef] [PubMed]
- Polak, M.; Sura-Trueba, S.; Chauty, A.; Szinnai, G.; Carré, A.; Castanet, M. Molecular Mechanisms of Thyroid Dysgenesis. Horm. Res. Paediatr. 2004, 62, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Qian, J.; Yang, L.; Chen, X.; Wang, X.; Lin, X.; Wang, X.; Zhao, B. Modeling Human Thyroid Development by Fetal Tissue-Derived Organoid Culture. Adv. Sci. 2022, 9, 2105568. [Google Scholar] [CrossRef] [PubMed]
- Kaloumenou, I.; Alevizaki, M.; Ladopoulos, C.; Antoniou, A.; Duntas, L.H.; Mastorakos, G.; Chiotis, D.; Mengreli, C.; Livadas, S.; Xekouki, P.; et al. Thyroid Volume and Echostructure in Schoolchildren Living in an Iodine-Replete Area: Relation to Age, Pubertal Stage, and Body Mass Index. Thyroid 2007, 17, 875–881. [Google Scholar] [CrossRef] [PubMed]
- García-García, E.; Vázquez-López, M.A.; García-Fuentes, E.; Galera-Martínez, R.; Gutiérrez-Repiso, C.; García-Escobar, I.; Bonillo-Perales, A. Thyroid Function and Thyroid Autoimmunity in Relation to Weight Status and Cardiovascular Risk Factors in Children and Adolescents: A Population-Based Study. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 157–162. [Google Scholar] [CrossRef]
- Sinha, R.A.; Yen, P.M. Metabolic Messengers: Thyroid Hormones. Nat. Metab. 2024, 6, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. Thyroid Hormones, Brain Function and Cognition: A Brief Review. Neurosci. Biobehav. Rev. 2002, 26, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Springer, D.; Jiskra, J.; Limanova, Z.; Zima, T.; Potlukova, E. Thyroid in Pregnancy: From Physiology to Screening. Crit. Rev. Clin. Lab. Sci. 2017, 54, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Na, J.Y.; Seok, J.; Park, S.; Kim, J.S.; Kim, G.J. Effects of Selenium on the Survival and Invasion of Trophoblasts. Clin. Exp. Reprod. Med. 2018, 45, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Minnetti, M.; Sada, V.; Feola, T.; Giannetta, E.; Pozza, C.; Gianfrilli, D.; Isidori, A.M.; Cozzolino, A. Selenium Supplementation in Pregnant Women with Autoimmune Thyroiditis: A Practical Approach. Nutrients 2022, 14, 2234. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, M.; Yeates, A.J.; McSorley, E.M.; Van Wijngaarden, E.; Shamlaye, C.F.; Myers, G.J.; Strain, J.; Mulhern, M.S. Potential Role of Selenium in Modifying the Effect of Maternal Methylmercury Exposure on Child Neurodevelopment—A Review. NeuroToxicology 2023, 99, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; McLay, J.; Campbell, F.M. Selenium Supplementation in Pregnancy-Maternal and Newborn Outcomes. J. Nutr. Metab. 2022, 2022, 4715965. [Google Scholar] [CrossRef] [PubMed]
- Hofstee, P.; Bartho, L.A.; McKeating, D.R.; Radenkovic, F.; McEnroe, G.; Fisher, J.J.; Holland, O.J.; Vanderlelie, J.J.; Perkins, A.V.; Cuffe, J.S.M. Maternal Selenium Deficiency during Pregnancy in Mice Increases Thyroid Hormone Concentrations, Alters Placental Function and Reduces Fetal Growth. J. Physiol. 2019, 597, 5597–5617. [Google Scholar] [CrossRef] [PubMed]
- Skröder, H.M.; Hamadani, J.D.; Tofail, F.; Persson, L.Å.; Vahter, M.E.; Kippler, M.J. Selenium Status in Pregnancy Influences Children’s Cognitive Function at 1.5 Years of Age. Clin. Nutr. 2015, 34, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Amorós, R.; Murcia, M.; Ballester, F.; Broberg, K.; Iñiguez, C.; Rebagliato, M.; Skröder, H.; González, L.; Lopez-Espinosa, M.-J.; Llop, S. Selenium Status during Pregnancy: Influential Factors and Effects on Neuropsychological Development among Spanish Infants. Sci. Total Environ. 2018, 610–611, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [PubMed]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochem. Mosc. 2022, 87, S168–S177. [Google Scholar] [CrossRef] [PubMed]
- Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, J.L.; Miniard, A.C.; Driscoll, D.M. Characterization of the UGA-Recoding and SECIS-Binding Activities of SECIS-Binding Protein 2. RNA Biol. 2014, 11, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xue, S.; Zhang, L.; Chen, G. Trace Elements and the Thyroid. Front. Endocrinol. 2022, 13, 904889. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Gorini, F.; Sabatino, L.; Pingitore, A.; Vassalle, C. Selenium: An Element of Life Essential for Thyroid Function. Molecules 2021, 26, 7084. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A.; Lu, J. Thioredoxin and Thioredoxin Reductase: Current Research with Special Reference to Human Disease. Biochem. Biophys. Res. Commun. 2010, 396, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Zhu, H.; Danelisen, I. Role of Peroxiredoxins in Protecting Against Cardiovascular and Related Disorders. Cardiovasc. Toxicol. 2020, 20, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium Biochemistry and Its Role for Human Health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; STRECKFUß, F.; Pelt, P.; Carlson, B.A.; Hatfield, D.L.; Köhrle, J.; Schomburg, L. Hepatically Derived Selenoprotein P Is a Key Factor for Kidney but Not for Brain Selenium Supply. Biochem. J. 2005, 386, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, L.; Riese, C.; Michaelis, M.; Griebert, E.; Klein, M.O.; Sapin, R.; Schweizer, U.; Köhrle, J. Synthesis and Metabolism of Thyroid Hormones Is Preferentially Maintained in Selenium-Deficient Transgenic Mice. Endocrinology 2006, 147, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- FAO; Weltgesundheitsorganisation; Internationale Atomenergie-Organisation. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; ISBN 978-92-4-156173-0. [Google Scholar]
- Società Italiana di Nutrizione Umana (SINU). LARN—Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; Società Italiana di Nutrizione Umana (SINU): Milan, Italy, 2014. [Google Scholar]
- Dobrzyńska, M.; Kaczmarek, K.; Przysławski, J.; Drzymała-Czyż, S. Selenium in Infants and Preschool Children Nutrition: A Literature Review. Nutrients 2023, 15, 4668. [Google Scholar] [CrossRef] [PubMed]
- Martens, I.B.G.; Cardoso, B.R.; Hare, D.J.; Niedzwiecki, M.M.; Lajolo, F.M.; Martens, A.; Cozzolino, S.M.F. Selenium Status in Preschool Children Receiving a Brazil Nut–Enriched Diet. Nutrition 2015, 31, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Bryliński, Ł.; Kostelecka, K.; Woliński, F.; Komar, O.; Miłosz, A.; Michalczyk, J.; Biłogras, J.; Machrowska, A.; Karpiński, R.; Maciejewski, M.; et al. Effects of Trace Elements on Endocrine Function and Pathogenesis of Thyroid Diseases—A Literature Review. Nutrients 2025, 17, 398. [Google Scholar] [CrossRef] [PubMed]
- Shreenath, A.P.; Hashmi, M.F.; Dooley, J. Selenium Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ojeda, M.L.; Nogales, F.; Romero-Herrera, I.; Carreras, O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021, 13, 2085. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.W.; Kim, K.; Park, S.K.; Ju, D.L.; Park, Y.J.; Shin, C.H.; Jun, J.K.; Chung, J.K.; Song, Y.J.; Lee, Y.A.; et al. Selenium Levels and Their Association with Thyroid Autoimmunity and Severe Preeclampsia in Pregnancy: Insights from a Prospective Ideal Breast Milk Cohort Study. Eur. Thyroid J. 2024, 13, e240007. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Vargas-Fernández, E.; Whitacre, M. Selenium Fortification of Infant Formulas: Does Selenium Form Matter? Food Funct. 2017, 8, 3856–3868. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific Opinion on the Tolerable Upper Intake Level for Selenium. EFSA J. 2023, 21, e07704. [Google Scholar] [CrossRef] [PubMed]
- Valent, F.; Horvat, M.; Mazej, D.; Stibilj, V.; Barbone, F. Maternal Diet and Selenium Concentration in Human Milk From an Italian Population. J. Epidemiol. 2011, 21, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, L.; Proto, A.; Ceroni, F.; Morniroli, D.; Martinelli, S.; Mosca, F.; Giannì, M.L. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life 2021, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Lossow, K.; Pellowski, D.; Kipp, K.; Achatz, M.; Klasen, N.; Schwerdtle, T.; Dawczynski, C.; Kipp, A.P. Improving the Selenium Supply of Vegans and Omnivores with Brazil Nut Butter Compared to a Dietary Supplement in a Randomized Controlled Trial. Eur. J. Nutr. 2025, 64, 74. [Google Scholar] [CrossRef] [PubMed]
- Weder, S.; Zerback, E.H.; Wagener, S.M.; Koeder, C.; Fischer, M.; Alexy, U.; Keller, M. How Does Selenium Intake Differ among Children (1–3 Years) on Vegetarian, Vegan, and Omnivorous Diets? Results of the VeChi Diet Study. Nutrients 2022, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Stråvik, M.; Kampouri, M.; Gustin, K.; Sandin, A.; Wold, A.E.; Barman, M.; Sandberg, A.-S. Food and Nutrient Intake at 1 Year of Age in Northern Sweden: Results from the Swedish NICE Birth Cohort. Front. Nutr. 2025, 12, 1548512. [Google Scholar] [CrossRef] [PubMed]
- García-Blanco, L.; De La, O.V.; Santiago, S.; Pouso, A.; Martínez-González, M.Á.; Martín-Calvo, N. High Consumption of Ultra-Processed Foods Is Associated with Increased Risk of Micronutrient Inadequacy in Children: The SENDO Project. Eur. J. Pediatr. 2023, 182, 3537–3547. [Google Scholar] [CrossRef] [PubMed]
- Joy, E.J.M.; Ander, E.L.; Young, S.D.; Black, C.R.; Watts, M.J.; Chilimba, A.D.C.; Chilima, B.; Siyame, E.W.P.; Kalimbira, A.A.; Hurst, R.; et al. Dietary Mineral Supplies in Africa. Physiol. Plant. 2014, 151, 208–229. [Google Scholar] [CrossRef] [PubMed]
- Elmadfa, I.; Elmadfa, I. (Eds.) European Nutrition and Health Report 2009; Forum of Nutrition; S. Karger AG: Basel, Switzerland, 2009; ISBN 978-3-8055-9296-3. [Google Scholar]
- Mensink, G.B.M.; Fletcher, R.; Gurinovic, M.; Huybrechts, I.; Lafay, L.; Serra-Majem, L.; Szponar, L.; Tetens, I.; Verkaik-Kloosterman, J.; Baka, A.; et al. Mapping Low Intake of Micronutrients across Europe. Br. J. Nutr. 2013, 110, 755–773. [Google Scholar] [CrossRef] [PubMed]
- Demirdas, S.; Van Spronsen, F.J.; Hollak, C.E.M.; Van Der Lee, J.H.; Bisschop, P.H.; Vaz, F.M.; Ter Horst, N.M.; Rubio-Gozalbo, M.E.; Bosch, A.M. Micronutrients, Essential Fatty Acids and Bone Health in Phenylketonuria. Ann. Nutr. Metab. 2017, 70, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Okano, Y.; Hattori, T.; Fujimoto, H.; Noi, K.; Okamoto, M.; Watanabe, T.; Watanabe, R.; Fujii, R.; Tamaoki, T. Nutritional Status of Patients with Phenylketonuria in Japan. Mol. Genet. Metab. Rep. 2016, 8, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.R.A.; Starling, A.L.P.; Kanufre, V.C.; Soares, R.D.L.; Norton, R.D.C.; Aguiar, M.J.B.; Januario, J.N. Selenium Intake and Nutritional Status of Children with Phenylketonuria in Minas Gerais, Brazil. J. Pediatr. 2012, 88, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Galeazzi, T.; Quattrini, S.; Lionetti, E.; Gatti, S. Micronutrient Deficiencies in Pediatric IBD: How Often, Why, and What to Do? Nutrients 2025, 17, 1425. [Google Scholar] [CrossRef] [PubMed]
- Day, A.S. Crohn’s and Colitis in Children and Adolescents. World J. Gastroenterol. 2012, 18, 5862. [Google Scholar] [CrossRef] [PubMed]
- Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; De Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Falcão, R.C.T.M.D.A.; Lyra, C.D.O.; Morais, C.M.M.D.; Pinheiro, L.G.B.; Pedrosa, L.F.C.; Lima, S.C.V.C.; Sena-Evangelista, K.C.M. Processed and Ultra-Processed Foods Are Associated with High Prevalence of Inadequate Selenium Intake and Low Prevalence of Vitamin B1 and Zinc Inadequacy in Adolescents from Public Schools in an Urban Area of Northeastern Brazil. PLoS ONE 2019, 14, e0224984. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The Share of Ultra-Processed Foods and the Overall Nutritional Quality of Diets in the US: Evidence from a Nationally Representative Cross-Sectional Study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Rousham, E.K.; Goudet, S.; Markey, O.; Griffiths, P.; Boxer, B.; Carroll, C.; Petherick, E.S.; Pradeilles, R. Unhealthy Food and Beverage Consumption in Children and Risk of Overweight and Obesity: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 1669–1696. [Google Scholar] [CrossRef] [PubMed]
- Khandpur, N.; Neri, D.A.; Monteiro, C.; Mazur, A.; Frelut, M.-L.; Boyland, E.; Weghuber, D.; Thivel, D. Ultra-Processed Food Consumption among the Paediatric Population: An Overview and Call to Action from the European Childhood Obesity Group. Ann. Nutr. Metab. 2020, 76, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Błażewicz, A.; Klatka, M.; Astel, A.; Korona-Glowniak, I.; Dolliver, W.; Szwerc, W.; Kocjan, R. Serum and Urinary Selenium Levels in Obese Children: A Cross-Sectional Study. J. Trace Elem. Med. Biol. 2015, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Jericho, H.; Patton, T.; Sriram, S.; Hebert, T.; Weinstein, D.; Pompeii-Wolfe, C.; Wroblewski, K.; Sentongo, T. Factors Affecting Selenium Status in Infants on Parenteral Nutrition Therapy. J. Pediatr. Gastroenterol. Nutr. 2021, 73, e73–e78. [Google Scholar] [CrossRef] [PubMed]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group; et al. A.S.P.E.N. Position Paper: Recommendations for Changes in Commercially Available Parenteral Multivitamin and Multi–Trace Element Products. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef] [PubMed]
- Zemrani, B.; McCallum, Z.; Bines, J.E. Trace Element Provision in Parenteral Nutrition in Children: One Size Does Not Fit All. Nutrients 2018, 10, 1819. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Verduci, E.; Milanta, C.; Agostinelli, M.; Todisco, C.F.; Bona, F.; Dolor, J.; La Mendola, A.; Tosi, M.; Zuccotti, G. Micronutrient Deficiency in Children and Adolescents with Obesity—A Narrative Review. Children 2023, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Rostami, R.; Nourooz-Zadeh, S.; Mohammadi, A.; Khalkhali, H.R.; Ferns, G.; Nourooz-Zadeh, J. Serum Selenium Status and Its Interrelationship with Serum Biomarkers of Thyroid Function and Antioxidant Defense in Hashimoto’s Thyroiditis. Antioxidants 2020, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Wichman, J.; Winther, K.H.; Bonnema, S.J.; Hegedüs, L. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Thyroid 2016, 26, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Mameli, C.; Rossi, V.; Magenes, V.C.; Massini, G.; Perazzi, C.; Verduci, E.; Zuccotti, G. What We Know about the Relationship between Autoimmune Thyroid Diseases and Gut Microbiota: A Perspective on the Role of Probiotics on Pediatric Endocrinology. Minerva Pediatr. 2023, 74, S2724–S5276. [Google Scholar] [CrossRef] [PubMed]
- Winther, K.H.; Wichman, J.E.M.; Bonnema, S.J.; Hegedüs, L. Insufficient Documentation for Clinical Efficacy of Selenium Supplementation in Chronic Autoimmune Thyroiditis, Based on a Systematic Review and Meta-Analysis. Endocrine 2017, 55, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-Q.; Qiu, G.-Y.; Yang, Z.-B.; Tan, Z.-X.; Quan, X.-Q. Clinical Efficacy of Selenium Supplementation in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e33791. [Google Scholar] [CrossRef]
- Federige, M.A.F.; Romaldini, J.H.; Miklos, A.B.P.P.; Koike, M.K.; Takei, K.; Portes, E.D.S. Serum Selenium and Selenoprotein-P Levels in Autoimmune Thyroid Diseases Patients in a Select Center: A Transversal Study. Arch. Endocrinol. Metab. 2017, 61, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Radetti, G. Clinical Aspects of Hashimoto’s Thyroiditis. In Paediatric Thyroidology; Szinnai, G., Ed.; S. Karger AG: Basel, Switzerland, 2014; ISBN 978-3-318-02720-4. [Google Scholar]
- Ambroziak, U.; Hybsier, S.; Shahnazaryan, U.; Krasnodębska-Kiljańska, M.; Rijntjes, E.; Bartoszewicz, Z.; Bednarczuk, T.; Schomburg, L. Severe Selenium Deficits in Pregnant Women Irrespective of Autoimmune Thyroid Disease in an Area with Marginal Selenium Intake. J. Trace Elem. Med. Biol. 2017, 44, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Isidori, A.M.; Moretti, C.; Di Dato, C.; Greco, E.; Ciolli, P.; Bonomi, M.; Petrone, L.; Fumarola, A.; Campagna, G.; et al. Selenium Supplementation in the Management of Thyroid Autoimmunity during Pregnancy: Results of the “SERENA Study”, a Randomized, Double-Blind, Placebo-Controlled Trial. Endocrine 2019, 66, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Hanke, W.; Krol, A.; Gromadzinska, J.; Kuras, R.; Janasik, B.; Wasowicz, W.; Mirabella, F.; Chiarotti, F.; Calamandrei, G. Micronutrients during Pregnancy and Child Psychomotor Development: Opposite Effects of Zinc and Selenium. Environ. Res. 2017, 158, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, L.; Xu, J.; Liu, Z.; Liu, J.; Yan, C. Prenatal Maternal Low Selenium, High Thyrotropin, and Low Birth Weights. Biol. Trace Elem. Res. 2021, 199, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Shulhai, A.-M.; Rotondo, R.; Petraroli, M.; Patianna, V.; Predieri, B.; Iughetti, L.; Esposito, S.; Street, M.E. The Role of Nutrition on Thyroid Function. Nutrients 2024, 16, 2496. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, E.; Reza Mirhafez, S.; Niroumand, S. Assessment of the Selenium Status in Hypothyroid Children from North East of Iran. J. Biol. Todays World 2017, 6, 21–26. [Google Scholar] [CrossRef]
- Gashu, D.; Stoecker, B.J.; Adish, A.; Haki, G.D.; Bougma, K.; Aboud, F.E.; Marquis, G.S. Association of Serum Selenium with Thyroxin in Severely Iodine-Deficient Young Children from the Amhara Region of Ethiopia. Eur. J. Clin. Nutr. 2016, 70, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Moravej, H.; Rakhshandehroo, S.; Ilkhanipoor, H.; Amirhakimi, A.; Rostami, K.; Yazdani, N.; Moghtaderi, M.; Mazlumi-abrazgah, S. Role of Selenium Deficiency in Pediatrics with Acquired Hypothyroidism. Int. J. Prev. Med. 2021, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Cayir, A.; Doneray, H.; Kurt, N.; Orbak, Z.; Kaya, A.; Turan, M.I.; Yildirim, A. Thyroid Functions and Trace Elements in Pediatric Patients with Exogenous Obesity. Biol. Trace Elem. Res. 2014, 157, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Kyrgios, I.; Giza, S.; Kotanidou, E.P.; Kleisarchaki, A.; Tsinopoulou, V.R.; Papadopoulou, A.; Markantonatou, A.-M.; Kanellidou, E.; Giannakou, A.; Galli-Tsinopoulou, A. L-Selenomethionine Supplementation in Children and Adolescents with Autoimmune Thyroiditis: A Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Clin. Pharm. Ther. 2019, 44, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Onal, H.; Keskindemirci, G.; Adal, E.; Ersen, A.; Korkmaz, O. Effects of Selenium Supplementation in the Early Stage of Autoimmune Thyroiditis in Childhood: An Open-Label Pilot Study. J. Pediatr. Endocrinol. Metab. 2012, 25, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.R.; Neves, C.; Melo, M.; Soares, P. Selenium and Selenoproteins in Immune Mediated Thyroid Disorders. Diagnostics 2018, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, M.; Ahmadpour, F.; Chahardoli, B.; Malekpour-Dehkordi, Z.; Nourbakhsh, M.; Hosseini-Fard, S.R.; Doustimotlagh, A.; Golestani, A.; Razzaghy-Azar, M. Selenium and Its Relationship with Selenoprotein P and Glutathione Peroxidase in Children and Adolescents with Hashimoto’s Thyroiditis and Hypothyroidism. J. Trace Elem. Med. Biol. 2016, 34, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Blasig, S.; Kühnen, P.; Schuette, A.; Blankenstein, O.; Mittag, J.; Schomburg, L. Positive Correlation of Thyroid Hormones and Serum Copper in Children with Congenital Hypothyroidism. J. Trace Elem. Med. Biol. 2016, 37, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Varsi, K.; Bolann, B.; Torsvik, I.; Rosvold Eik, T.; Høl, P.; Bjørke-Monsen, A.-L. Impact of Maternal Selenium Status on Infant Outcome during the First 6 Months of Life. Nutrients 2017, 9, 486. [Google Scholar] [CrossRef] [PubMed]
- Atazadegan, M.A.; Heidari-Beni, M.; Riahi, R.; Kelishadi, R. Association of Selenium, Zinc and Copper Concentrations during Pregnancy with Birth Weight: A Systematic Review and Meta-Analysis. J. Trace Elem. Med. Biol. 2022, 69, 126903. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Sajdak, S.; Lubiński, J. Serum Selenium Level in Early Healthy Pregnancy as a Risk Marker of Pregnancy Induced Hypertension. Nutrients 2019, 11, 1028. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed]
- Silva Junior, E.C.; Wadt, L.H.O.; Silva, K.E.; Lima, R.M.B.; Batista, K.D.; Guedes, M.C.; Carvalho, G.S.; Carvalho, T.S.; Reis, A.R.; Lopes, G.; et al. Natural Variation of Selenium in Brazil Nuts and Soils from the Amazon Region. Chemosphere 2017, 188, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake and Food Sources of Zinc, Selenium, and Vitamins A, E and C in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 697. [Google Scholar] [CrossRef]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global Estimation of Dietary Micronutrient Inadequacies: A Modelling Analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- WHO European. Action Plan for Food and Nutrition Policy 2007–2012; WHO European: Copenhagen, Denmark, 2025. [Google Scholar]
Age Group | EFSA–AI (µg/day) | WHO–RNI (µg/day) |
---|---|---|
0–6 months | 12.5 | 6 |
7–12 months | 15 | 10 |
1–3 years | 15 | 17 |
4–6 years | 20 | 22 |
7–10 years | 30 | 30–40 |
11–14 years | 55 | 45 |
14–18 years | 65–70 | 60 |
Author(s) | Study Type | Patients | Location | Main Findings |
---|---|---|---|---|
Wichman et al. (2016) [89] | Meta-analysis | Various | Multiple | ↓ TPO-Ab post-Se supplementation, esp. with L-T4 |
Ambroziak et al. (2017) [95] | Observational | 74 pregnant women | Poland | ↓ Se during pregnancy; not correlated with autoantibody levels |
Mantovani et al. (2019) [96] | Multicenter clinical trial | 45 pregnant women with thyroiditis | Italy | 83 mcg/day Se ↓ postpartum thyroiditis risk and autoantibodies |
Polanska et al. (2017) [97] | Survey/observational | 683 children and women | Sub-Saharan Africa | Maternal Se deficiency ↑ child Se deficiency risk 4x |
Khorasani et al. (2017) [100] | Clinical study | Hypothyroid children | Iran | ↓ Se associated with ↓ TSH, ↑ T4; impacts L-T4 dosing |
Gashu et al. (2016) [101] | Clinical study | Children | Ethiopia | Elevated T4 in Se- and iodine-deficient children |
Hisbiyah et al. (2023) [12] | Observational | Children with Down syndrome + AITD | Not specified | ↓ SePP and GPX3; correlated with ↓ thyroid antibodies, ↑ thyroid function |
Onal et al. (2012) [105] | Intervention study | Children with euthyroid HT | Not specified | Se supplementation ↓ thyroid volume, no change in antibody titers |
Santos et al. (2018) [106] | Intervention/observational | Children | Iodine-deficient regions | Se alone ↑ T4 → T3 conversion |
Santos et al. (2018) [106] | Observational | Children | Not specified | In iodine-deficient regions, Se supplementation alone increases peripheral T4 to T3 conversion |
Nourbakhsh et al. (2016) [107] | Observational | Children and adolescents with HT and hypothyroidism | Not specified | No difference in SePP and GPX levels in well-treated patients; limited correlation with thyroid hormones |
Blasig et al. (2016) [108] | Observational | Children with congenital hypothyroidism | Not specified | Positive correlation between thyroid hormones and serum copper; Se’s role possibly attenuated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Cena, H.; Scavone, I.A.M.; Zambon, I.; Taranto, S.; Ricciardi Rizzo, C.; Ferrara, C.; Diotti, M.; Zuccotti, G. Thyroid Health and Selenium: The Critical Role of Adequate Intake from Fetal Development to Adolescence. Nutrients 2025, 17, 2362. https://doi.org/10.3390/nu17142362
Calcaterra V, Cena H, Scavone IAM, Zambon I, Taranto S, Ricciardi Rizzo C, Ferrara C, Diotti M, Zuccotti G. Thyroid Health and Selenium: The Critical Role of Adequate Intake from Fetal Development to Adolescence. Nutrients. 2025; 17(14):2362. https://doi.org/10.3390/nu17142362
Chicago/Turabian StyleCalcaterra, Valeria, Hellas Cena, Ilaria Anna Maria Scavone, Ilaria Zambon, Silvia Taranto, Cecilia Ricciardi Rizzo, Chiara Ferrara, Marianna Diotti, and Gianvincenzo Zuccotti. 2025. "Thyroid Health and Selenium: The Critical Role of Adequate Intake from Fetal Development to Adolescence" Nutrients 17, no. 14: 2362. https://doi.org/10.3390/nu17142362
APA StyleCalcaterra, V., Cena, H., Scavone, I. A. M., Zambon, I., Taranto, S., Ricciardi Rizzo, C., Ferrara, C., Diotti, M., & Zuccotti, G. (2025). Thyroid Health and Selenium: The Critical Role of Adequate Intake from Fetal Development to Adolescence. Nutrients, 17(14), 2362. https://doi.org/10.3390/nu17142362