Research Progress of Nattokinase in Reducing Blood Lipid
Abstract
:1. Introduction
2. Characterization of NK
2.1. Chemical Structure and Physicochemical Properties
2.2. Sources and Production
3. Dangers of Dyslipidemia and Current Status
3.1. Health Problems Caused by Dyslipidemia
3.2. Epidemiologic Findings
4. Mechanism of Action of NK in Lipid Lowering
5. Evidence from Clinical Studies of Lipid Lowering by Nattokinase
5.1. Review of Early Small-Scale Clinical Trials
5.2. Review of Early Large-Scale Clinical Trials
5.3. Analysis of Different Population Subgroups
6. Comparison and Combination of NK and Other Lipid-Lowering Methods
6.1. Comparison with Conventional Lipid-Lowering Drugs
6.2. Synergies of Joint Applications
6.3. The Common Lipid-Lowering Food in Life
7. Current Application Status and Safety Considerations of NK Products
7.1. Types of NK Preparations in the Market
7.2. Safety Assessment and Considerations
8. Prospects for Future Research Directions
8.1. Strengthen Basic Research and Reveal the Mechanism of Action in Depth
8.2. Conducting Large-Scale, Long-Term Clinical Trials
9. Limitations of Research on Lipid-Lowering Effect of Nattokinase
9.1. Exploration of Mechanism of Action
9.2. Sample Size and Heterogeneity
9.3. Clinical Transformation Level
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diet-Related Mortality from Cardiovascular Disease Rises Sharply. China Food News, 16 August 2023; p. 003.
- China Cardiovascular Health and Disease Report 2021 (Coronary Heart Disease Section). J. Cardiopulm. Vasc. Dis. 2023, 42, 1191–1198.
- Fredrickson, D.S.; Levy, R.I.; Lees, R.S. Fat Transport in Lipoproteins-an Integrated Approach to Mechanisms and Disorders. Nutr. Rev. 2009, 45, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Tohà-Dalmau, A.; Rosinés-Fonoll, J.; Romero, E.; Mazzanti, F.; Martin-Pinardel, R.; Marias-Perez, S.; Bernal-Morales, C.; Castro-Dominguez, R.; Mendez, A.; Ortega, E. Machine Learning Prediction of Cardiovascular Risk in Type 1 Diabetes Mellitus Using Radiomics Features from Multimodal Retinal Images. arXiv 2025, 35, 231–238. [Google Scholar]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial Hypercholesterolaemia Is Underdiagnosed and Undertreated in the General Population: Guidance for Clinicians to Prevent Coronary Heart Disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L. Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar]
- Kimura, A.; Kuwazawa, S.; Wada, Y.; Kyutoku, Y.; Okamoto, M.; Yamaguchi, Y.; Masuda, T.; Dan, I. Conjoint Analysis on the Purchase Intent for Traditional Fermented Soy Product (Natto) among Japanese Housewives. J. Food Sci. 2011, 76. [Google Scholar] [CrossRef]
- Sumi, H.; Hamada, H.; Tsushima, H.; Mihara, H.; Muraki, H. A Novel Fibrinolytic Enzyme (Nattokinase) in the Vegetable Cheese Natto; a Typical and Popular Soybean Food in the Japanese Diet. Experientia 1987, 43, 1110. [Google Scholar] [CrossRef]
- Chen, H.; McGowan, E.M.; Ren, N.; Lal, S.; Nassif, N.; Shad-Kaneez, F.; Qu, X.; Lin, Y. Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomark. Insights 2018, 13, 1–8. [Google Scholar] [CrossRef]
- A Pilot Study on the Serum Pharmacokinetics of Nattokinase in Humans Following a Single, Oral, Daily Dose. Altern. Ther. Health Med. 2013, 19, 16–19.
- Suzuki, Y.; Kondo, K.; Ichise, H.; Tsukamoto, Y.; Urano, T.; Umemura, K. Dietary Supplementation with Fermented Soybeans Suppresses Intimal Thickening. Nutrition 2003, 19, 261–264. [Google Scholar] [CrossRef]
- Yu, X.M. Construction of Highly Active and Stable Recombinant Nattokinase Based on Free Energy Computational Design. Master’s Thesis, Liaoning University, Shenyang, China, 2022. [Google Scholar]
- Cai, Y.J.; Wei, B.; Yan, J.; Yan, Y. Directed Evolution Improves the Fibrinolytic Activity of Nattokinase from Bacillus Natto. FEMS Microbiol. Lett. 2011, 325, 155–161. [Google Scholar]
- Weng, M.; Zheng, Z.; Bao, W.; Cai, Y.; Yin, Y.; Zou, G. Enhancement of Oxidative Stability of the Subtilisin Nattokinase by Site-Directed Mutagenesis Expressed in Escherichia Coli. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2009, 1794, 1566–1572. [Google Scholar] [CrossRef]
- Weng, M.; Deng, X.; Bao, W.; Zhu, L.; Wu, J.; Cai, Y.; Jia, Y.; Zheng, Z.; Zou, G. Improving the Activity of the Subtilisin Nattokinase by Site-Directed Mutagenesis and Molecular Dynamics Simulation. Biochem. Biophys. Res. Commun. 2015, 465, 580–586. [Google Scholar] [CrossRef]
- Deepak, V.; Kalishwaralal, K.; Ramkumarpandian, S.; Babu, S.V.; Senthilkumar, S.R.; Sangiliyandi, G. Optimization of Media Composition for Nattokinase Production by Bacillus Subtilis Using Response Surface Methodology. Bioresour. Technol. 2008, 99, 8170–8174. [Google Scholar] [CrossRef]
- Ren, L.; Wang, X.; Wu, H.; Shang, B.; Wang, J. Conjugation of Nattokinase and Lumbrukinase with Magnetic Nanoparticles for the Assay of Their Thrombolytic Activities. J. Mol. Catal. B Enzym. 2010, 62, 190–196. [Google Scholar] [CrossRef]
- Deepak, V.; Ram Kumar Pandian, S.B.; Kalishwaralal, K.; Gurunathan, S. Purification, Immobilization, and Characterization of Nattokinase on PHB Nanoparticles. Bioresour. Technol. 2009, 100, 6644–6646. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Luo, M.; Wei, X. Preparation of the Antithrombotic and Antimicrobial Coating through Layer-by-Layer Self-Assembly of Nattokinase-Nanosilver Complex and Polyethylenimine. Colloids Surf. B Biointerfaces 2014, 116, 418–423. [Google Scholar]
- Fujita, M.; Nomura, K.; Hong, K.; Ito, Y.; Asada, A.; Nishimuro, S. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 1993, 197, 1340. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.; Yu, Z. Advances in Natto and Bacillus Subtilis Research. Chin. Seas. 2022, 47, 201–205. [Google Scholar]
- Zhu, Y.; Xie, Y.; Yang, Z. Response Surface Methodology to Investigate the Retention Conditions of Nattokinase Activity and the Protective Effect of Enterosoluble Capsules. China Food Addit. 2024, 35, 171–178. [Google Scholar]
- Wang, R. Immobilization Studies of Nattokinase; Jilin University: Changchun, China, 2023. [Google Scholar]
- Pan, D.; Zhang, X.; Yang, C. Optimization of Nattokinase Fermentation Medium by Response Surface Methodology. China Brew. 2022, 41, 183–189. [Google Scholar]
- Zhou, Y. Purification and Characterization of Fibrinolytic Enzymes from Bacillus Cereus and Evaluation of Thrombolytic Effect In Vitro and In Vivo. Ph.D. Thesis, Guangxi University, Nanning, China, 2022. [Google Scholar]
- Li, D.; Hou, L.; Hu, M.; Gao, Y.; Tian, Z.; Fan, B.; Li, S.; Wang, F. Recent Advances in Nattokinase-Enriched Fermented Soybean Foods: A Review. Foods 2022, 11, 1867. [Google Scholar] [CrossRef] [PubMed]
- Man, L.L.; Xiang, D.J.; Zhang, C.L. Strain Screening from Traditional Fermented Soybean Foods and Induction of Nattokinase Production in Bacillus Subtilis MX-6. Probiotics Antimicro. Prot. 2019, 11, 283–294. [Google Scholar] [CrossRef]
- Cui, W.; Suo, F.; Cheng, J.; Han, L.; Hao, W.; Guo, J.; Zhou, Z. Stepwise Modifications of Genetic Parts Reinforce the Secretory Production of Nattokinase in Bacillus Subtilis. Microb. Biotechnol. 2018, 11, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Cheng, N.; Liu, Y. Effect of Paeoniflorin-Regulated miR-24 Expression on Atherosclerotic Plaque Formation and Oxidative Stress in ApoE-/-Mice. Chin. J. Gerontol. 2025, 45, 368–375. [Google Scholar]
- Lü, Y.; Wang, Y.; Zhang, L.; Li, Y. Random Forest-Based Risk Identification Model for Coronary Artery Stenosis. J. Sun Yat-Sen Univ. (Med. Sci. Ed.) 2025, 46, 138–146. [Google Scholar]
- Liu, W.; Xu, G. Improvement of Cardiac Function and Serum Indices in Patients with Coronary Artery Disease with Hyperlipidemia Treated with Rosuvastatin. Electron. J. Mod. Med. Health Res. 2025, 9, 40–42. [Google Scholar]
- Qian, P. What Is the Relationship between Fatty Liver and Metabolic Syndrome. Fam. Life Guide 2024, 40, 100–101. [Google Scholar]
- Overview of the China Cardiovascular Health and Disease Report 2020. China Cardiovasc. Dis. Res. 2021, 19, 9.
- Wang, R.; Yan, Q.; Dong, Y.; Lv, X.; Tang, X.; Li, X.; Niu, Y. Nutritional Patterns and Nutrients Associated with Dyslipidemia in U.S. Adults: 2011–2018 National Health and Nutrition Examination Survey (NHANES) Data (in English). In Abstract Book of the 14th Asian Congress of Nutrition--Public Nutrition & Health; Asian Federation of Nutrition Societies, Chinese Nutrition Society: Chengdu, China, 2023; p. 1. [Google Scholar]
- Li, Y.; Wang, H.; Yu, K.; Ma, A.; Zhu, W.; Li, T.; Ma, Y.; Ma, Y.; Li, J. Mechanism of Influence of Nattokinase Terminal Sequence on Catalytic Performance and Molecular Modification. Int. J. Biol. Macromol. 2025, 307, 141872. [Google Scholar] [CrossRef]
- Chiu, H.W.; Chou, C.L.; Lee, K.T.; Shih, C.C.; Huang, T.H.; Sung, L.C. Nattokinase Attenuates Endothelial Inflammation through the Activation of SRF and THBS1. Int. J. Biol. Macromol. 2024, 268, 131779. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Yang, J.; Wang, C.; Sun, X.; Yan, L. Microbial Nattokinase: From Synthesis to Potential Application. Food Funct. 2023, 14, 2568–2585. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, C.; Gui, Y.; Guo, Y.; Zhang, Y.; Pan, J.; Tang, H.; Gao, C.; Xing, J.; Han, Y.; et al. A Nattokinase-Loaded Nanozyme for Alleviating Acute Myocardial Infarction via Thrombolysis and Antioxidation. Adv Healthc. Mater. 2025, 14, 2402763. [Google Scholar] [CrossRef]
- Park, K.J.; Kang, J.I.; Kim, T.; Yeo, I. The Antithrombotic and Fibrinolytic Effect of Natto in Hyperlipidemic Rats. Proc. Korean Acad. Food Nutr. Sci. 2011, 17, 78–82. [Google Scholar] [CrossRef]
- Dong, X.; Tian, W. Research Progress of Combined Lipid-Lowering Therapy for Mixed Hyperlipidemia. Adv. Cardiovasc. Dis. 2018, 39, 430–434. [Google Scholar]
- Wang, J.; Zhao, L.; Liu, X.; Zhao, Y. Cloning of the Gene Encoding Mouse Apolipoprotein C II. Tianjin Pharm. 2006, 8, 559–560+594. [Google Scholar]
- Universidade Federal Fluminense. Effects of Nattokinase on Inflammation and Cardiovascular Risk Markers in Patients with Dyslipidemia; Clinical Trial Registration NCT06183307; clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT06183307 (accessed on 27 April 2024).
- Chen, H.; Chen, J.; Zhang, F.; Li, Y.; Wang, R.; Zheng, Q.; Zhang, X.; Zeng, J.; Xu, F.; Lin, Y. Effective Management of Atherosclerosis Progress and Hyperlipidemia with Nattokinase: A Clinical Study with 1062 Participants. Front. Cardiovasc. Med. 2022, 9, 964977. [Google Scholar]
- Zhang, H.X. Correlation Analysis of Lipid Distribution Characteristics and Multimorbidity Co-Morbidity in a Community-Based Geriatric Health Checkup Population. China Geriatr. 2024, 22, 96–98, 103. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Zhao, Y. Characterization of Cardiovascular Disease Risk Factors in Physical Examination Population in Dalian Area, 2012–2021. Chin. Cardiovasc. J. 2024, 29, 563–570. [Google Scholar]
- Yi, C.X.; Zhao, Y.J.; Zhang, W. Correlation between Serum Parathyroid Hormone and 25-Hydroxyvitamin D Levels and Left Ventricular Hypertrophy in Middle-Aged and Elderly Patients with Essential Hypertension. Chin. J. Hypertens. (Engl. Chin.) 2024, 32, 1149–1155. [Google Scholar]
- He, R.R.; Nie, H.; Chen, Z. Exploring the Clinical Efficacy of Combining Western Medicine with Phlegm-Expelling and Dampness-Expelling Tea Drink in the Treatment of Metabolic Syndrome Based on the Doctrine of Constitution in Chinese Medicine. Shandong J. Tradit. Chin. Med. 2024, 43, 957–964. [Google Scholar]
- Jin, L. Pros and Cons of Statins. Food Health 2024, 36, 40–41. [Google Scholar]
- Yang, Y.; Zhao, M.; Luo, Y.Q. Exploring the Ameliorative Effect of Scutellaria Baicalensis Hongqu Tang on Hyperlipidemic Rats Based on the Intestinal Flora-Bile Acid Metabolic Pathway. Chin. Med. Pharmacol. Clin. 2025, 41, 33–38. [Google Scholar]
- Wang, Z.W.; Liu, J.; Wu, N.Q. Chinese Guidelines for Lipid Management. China Circ. Mag. 2023, 38, 237–271. [Google Scholar]
- Tian, D.; Guan, L.; Chen, D. Advances in Drug Research for the Treatment of Dyslipidemia. Chin. J. Clin. Pharm. 2024, 33, 793–800. [Google Scholar]
- Liu, M.; Xu, Z.; Wang, Z.; Wang, D.; Yang, M.; Li, H.; Zhang, W.; He, R.; Cheng, H.; Guo, P.; et al. Lipid-Lowering, Antihypertensive, and Antithrombotic Effects of Nattokinase Combined with Red Yeast Rice in Patients with Stable Coronary Artery Disease: A Randomized, Double-Blinded, Placebo-Controlled Trial. Front. Nutr. 2024, 11, 1380727. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; Li, F.; Liu, X. Construction, Characterization, and in Vitro Hypolipidemic Activity of Auricularia Auricula-Judae Soluble Dietary Fiber-Phenol Complexes. Food Biosci. 2024, 58, 103657. [Google Scholar] [CrossRef]
- Al-Otaibi, S.N.; Alshammari, G.M.; AlMohanna, F.H.; Al-Khalifa, A.S.; Yahya, M.A. Antihyperlipidemic and Hepatic Antioxidant Effects of Leek Leaf Methanol Extract in High Fat Diet-Fed Rats. All Life 2020, 13, 373–385. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.; He, F.; Pan, Z.; Wang, J.; Sun, Y.; Li, M. Exploring the Mechanism of Allicin in Lowering Blood Lipids Based on the CSE/H2S Pathway. Food Biosci. 2024, 59, 103838. [Google Scholar] [CrossRef]
- Ahmad, I.; Arif, M.; Xu, M.; Zhang, J.; Ding, Y.; Lyu, F. Therapeutic Values and Nutraceutical Properties of Shiitake Mushroom (Lentinula Edodes): A Review. Trends Food Sci. Technol. 2023, 134, 123–135. [Google Scholar] [CrossRef]
- Yao, L.; Zhu, L.; Chen, C.; Wang, X.; Zhang, A.; Gao, S.; Wu, J.; Qin, L. A Systematic Review on Polysaccharides from Fermented Cordyceps Sinensis: Advances in the Preparation, Structural Characterization, Bioactivities, Structure-Activity Relationships. Int. J. Biol. Macromol. 2024, 282, 137275. [Google Scholar] [CrossRef]
- Yao, M.J.; Yang, Y.; Jing, F. Research Progress on Microbial Production and Physiological Function of Nattokinase. Technol. Food Ind. 2022, 43, 435–444. [Google Scholar]
- Hu, Z.; Su, Y.; Jia, J.; Bian, X.; Gu, Y.; Lv, G.; Chen, S.; Jiang, N. Mulberry—Nutritional Value, Health Benefits, and Its Applications in Food, Biomaterials, and Medicine: A Systematic Review with Bibliometric Analysis. Nat. Prod. Commun. 2025, 20. [Google Scholar] [CrossRef]
- Yang, Y.; Trevethan, M.; Wang, S.; Zhao, L. Beneficial Effects of Citrus Flavanones Naringin and Naringenin and Their Food Sources on Lipid Metabolism: An Update on Bioavailability, Pharmacokinetics, and Mechanisms. J. Nutr. Biochem. 2022, 104, 108967. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.C.; Liu, Z.H.; Qi, D. Research Progress of Seabuckthorn Flavonoids and Its Pharmacological Effects. Chin. J. Med. Chem. 2023, 33, 598–617. [Google Scholar]
- Mousa, A.M.; Allemailem, K.S. Could Hawthorn Have a Cardioprotective Impact against Obesity-Induced Cardiac Injury in Rats via Antioxidant, Hypolipidemic, Anti-Inflammatory, Antiapoptotic, and Antifibrotic Properties? Tissue Cell 2025, 93, 102673. [Google Scholar] [CrossRef]
- Yang, L.; Jin, F.; Li, S. Research Progress on Anti-Atherosclerosis of Garlic and Black Garlic. J. Jilin Med. Coll. 2019, 40, 283–285. [Google Scholar]
- Li, W.Y. Study on the Lipid-Lowering Effect and Mechanism of Onion Alcohol Extract on Hyperlipidemia Rat Model; North Sichuan Medical College: Nanchong, China, 2021. [Google Scholar]
- Luo, J.J.; Yu, X.; Deng, J. Research Progress on Extraction Biological Activity and Application of Capsaicin. Agric. Prod. Process. 2024, 24, 85–87. [Google Scholar]
- Zhu, Y.; Zhang, Y.Y.; Zhu, H.B. Research Progress on Biological Functions of Lycopene. Food Res. Dev. 2020, 41, 202–207. [Google Scholar]
- Liang, S.; Wang, K.; Wang, P. Research Progress on Structure, Biological Activity and Mechanism of Yam Polysaccharide. Food Sci. 2022, 43, 296–304. [Google Scholar]
Food Name | Bioactive Components | Mechanisms | Ref. |
---|---|---|---|
Natto | Nattokinase | Serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced. | [58] |
Mulberry | Ethyl acetate | Reduces serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, thereby preventing atherosclerosis. | [59] |
Citrus | Naringin | Increases anti-lipid peroxidation in liver, decreases SOD activity and oxygen free radical generation, and significantly reduces MDA content. | [60] |
Sea Buckthorn Fruit | Quercetin | Promotes the conversion of cholesterol into bile acids, promotes cholesterol efflux, inhibits cholesterol de novo synthesis, and accelerates fatty acid oxidation. | [61] |
Hawthorn | Hypericin and Ursolic acid | Can prevent the accumulation of fat in the liver, affect the PPARr-PPRE signaling system, and inhibit the synthesis of endogenous lipids. | [62] |
Garlic | Garlicn | The levels of serum TC, TG, and LDL-C were significantly decreased, and the content of high-density lipoprotein cholesterol (HDL-C) was increased. The activities of serum lecithin cholesterol acyltransferase, myocardial lipoprotein lipase, and hepatic lipase were increased to varying degrees. | [63] |
Onion | Onion alcohol extract | Increases the expression of LDLR protein and reduces the expression of HMG CR protein to play its lipid-lowering effect. | [64] |
Capsicum | Capsaicin | Promotes the secretion of the nerve conduction substances acetylcholine and thyroid gland, and promotes body fat oxidation. | [65] |
Tomato | Lycopene | Inhibits acyl-CoA. | [66] |
Yam | Yam polysaccharide | Improves the activity of total superoxide dismutase (T-SOD), catalase, insulin sensitivity, and antioxidant activity. | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Cai, R.; Song, Y.; Liu, X.; Xu, H.-L. Research Progress of Nattokinase in Reducing Blood Lipid. Nutrients 2025, 17, 1784. https://doi.org/10.3390/nu17111784
Wei C, Cai R, Song Y, Liu X, Xu H-L. Research Progress of Nattokinase in Reducing Blood Lipid. Nutrients. 2025; 17(11):1784. https://doi.org/10.3390/nu17111784
Chicago/Turabian StyleWei, Chuyang, Ruitao Cai, Yingte Song, Xiaoyong Liu, and Hui-Lian Xu. 2025. "Research Progress of Nattokinase in Reducing Blood Lipid" Nutrients 17, no. 11: 1784. https://doi.org/10.3390/nu17111784
APA StyleWei, C., Cai, R., Song, Y., Liu, X., & Xu, H.-L. (2025). Research Progress of Nattokinase in Reducing Blood Lipid. Nutrients, 17(11), 1784. https://doi.org/10.3390/nu17111784