Association between Physical Activity and Phase Angle Obtained via Bioelectrical Impedance Analysis in South Korean Adults Stratified by Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data
2.2. Measures
2.2.1. Phase Angle
2.2.2. Physical Activity
2.2.3. Covariates
2.2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet 2017, 389, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.; Ärnlöv, J. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 2013, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Schoeller, D.A. Bioelectrical impedance analysis what does it measure? Ann. N. Y. Acad. Sci. 2000, 904, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef] [PubMed]
- Amano, K.; Bruera, E.; Hui, D. Diagnostic and prognostic utility of phase angle in patients with cancer. Rev. Endocr. Metab. Disord. 2023, 24, 479–489. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.G.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Yamada, Y.; Buehring, B.; Krueger, D.; Anderson, R.M.; Schoeller, D.A.; Binkley, N. Electrical properties assessed by bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2017, 72, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin. Nutr. 2020, 39, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, O.; Yoon, S.; Williams, J. The value of bioelectrical impedance analysis and phase angle in the evaluation of malnutrition and quality of life in cancer patients—A comprehensive review. Eur. J. Clin. Nutr. 2015, 69, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Umehara, T.; Kaneguchi, A.; Watanabe, K.; Katayama, N.; Teramoto, H.; Kuwahara, D.; Kaneyashiki, R.; Mizuno, T.; Kito, N.; Kakehashi, M. Improvement of muscle quality assessed using the phase angle is influenced by recovery of knee extension strength in patients with hip fractures. Clin. Nutr. 2024, 43, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; de Lima, T.R.; Silva, A.M.; Silva, D.A.S. Association of phase angle with muscle strength and aerobic fitness in different populations: A systematic review. Nutrition 2022, 93, 111489. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Itoi, A.; Yoshida, T.; Nakagata, T.; Yokoyama, K.; Fujita, H.; Kimura, M.; Miyachi, M. Association of bioelectrical phase angle with aerobic capacity, complex gait ability and total fitness score in older adults. Exp. Gerontol. 2021, 150, 111350. [Google Scholar] [CrossRef] [PubMed]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Casirati, A.; Crotti, S.; Raffaele, A.; Caccialanza, R.; Cereda, E. The use of phase angle in patients with digestive and liver diseases. Rev. Endocr. Metab. Disord. 2023, 24, 503–524. [Google Scholar] [CrossRef]
- De Benedetto, F.; Marinari, S.; De Blasio, F. Phase angle in assessment and monitoring treatment of individuals with respiratory disease. Rev. Endocr. Metab. Disord. 2023, 24, 491–502. [Google Scholar] [CrossRef]
- García-García, C.; Vegas-Aguilar, I.M.; Rioja-Vázquez, R.; Cornejo-Pareja, I.; Tinahones, F.J.; García-Almeida, J.M. Rectus femoris muscle and phase angle as prognostic factor for 12-month mortality in a longitudinal cohort of patients with cancer (AnyVida Trial). Nutrients 2023, 15, 522. [Google Scholar] [CrossRef] [PubMed]
- Montagnani, M.; Montomoli, M.; Mulinari, M.; Guzzo, G.; Scopetani, N.; Gennari, C. Relevance of hydration state of the fat free mass in estimating fat mass by body impedance analysis. Appl. Radiat. Isot. 1998, 49, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Habibi Maleki, A.; Sakhaei, M.H.; Rosenkranz, S.K.; Pourvaghar, M.J.; Ehsanifar, M.; Bayat, H.; Korivi, M.; Liu, Y. The effects of exercise training on body composition in postmenopausal women: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1183765. [Google Scholar] [CrossRef] [PubMed]
- Marzuca-Nassr, G.N.; Alegría-Molina, A.; SanMartín-Calísto, Y.; Artigas-Arias, M.; Huard, N.; Sapunar, J.; Salazar, L.A.; Verdijk, L.B.; van Loon, L.J. Muscle mass and strength gains following resistance exercise training in older adults 65–75 years and older adults above 85 years. Int. J. Sport Nutr. Exerc. Metab. 2023, 34, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lai, T.-F.; Lin, C.-Y.; Hsueh, M.-C.; Park, J.-H.; Liao, Y. Associations between objectively measured overall and intensity-specific physical activity and phase angle in older adults. Sci. Rep. 2024, 14, 7309. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Baek, J.Y.; Lee, E.; Jung, H.-W.; Jang, I.-Y. A comparative study of high-frequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating body composition. Life 2022, 12, 994. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Oliveira, R.; Brito, J.P.; Costa, T.; Ramalho, F.; Pimenta, N.; Santos-Rocha, R. Phase angle cutoff value as a marker of the health status and functional capacity in breast cancer survivors. Physiol. Behav. 2021, 235, 113400. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T.; Hori, K.; Yoneda, K. Phase angle is associated with sarcopenic obesity in post-stroke patients. Clin. Nutr. 2023, 42, 2051–2057. [Google Scholar] [CrossRef]
- Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- WHO. GPAQ: Global Physical Activity Questionnaire (Version 2.0); Department of Chronic Diseases and Health Promotion: Geneva, Switzerland, 2010.
- Avendano, M.; Jürges, H.; Mackenbach, J.P. Educational level and changes in health across Europe: Longitudinal results from SHARE. J. Eur. Soc. Policy 2009, 19, 301–316. [Google Scholar] [CrossRef]
- Eberhardt, M.S.; Pamuk, E.R. The importance of place of residence: Examining health in rural and nonrural areas. Am. J. Public Health 2004, 94, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019.
- Verbrugge, L.M. Marital status and health. J. Marriage Fam. 1979, 41, 267–285. [Google Scholar] [CrossRef]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Bellafronte, N.T.; Diani, L.M.; Vega-Piris, L.; Cuadrado, G.B.; Chiarello, P.G. Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance for body composition measurements in adults with chronic kidney disease: A cross-sectional, longitudinal, multi-treatment analysis. Nutrition 2021, 82, 111059. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.R.; Skou, S.T.; Brønd, J.C.; Ried-Larsen, M.; Petersen, T.L.; Jørgensen, L.B.; Jepsen, R.; Tang, L.H.; Bruun-Rasmussen, N.E.; Grøntved, A. Detailed descriptions of physical activity patterns among individuals with diabetes and prediabetes: The Lolland-Falster Health Study. BMJ Open Diabetes Res. Care 2023, 11, e003493. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J. Congruence between physical activity patterns and dietary patterns inferred from analysis of sex differences in lifestyle Behaviors of late adolescents from Poland: Cophylogenetic approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J. The discriminant power of specific physical activity and dietary Behaviors to distinguish between lean, Normal and excessive fat groups in late adolescents. Nutrients 2023, 15, 1230. [Google Scholar] [CrossRef]
- Godala, M.; Krzyżak, M.; Maślach, D.; Gaszyńska, E. Relationship between Dietary Behaviors and physical activity and the components of metabolic syndrome: A case-control study. Int. J. Environ. Res. Public Health 2022, 19, 6562. [Google Scholar] [CrossRef]
- Lin, L.; Guo, J.; Aqeel, M.M.; Gelfand, S.B.; Delp, E.J.; Bhadra, A.; Richards, E.A.; Hennessy, E.; Eicher-Miller, H.A. Joint temporal dietary and physical activity patterns: Associations with health status indicators and chronic diseases. Am. J. Clin. Nutr. 2022, 115, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Oliveira, K.J.; Oliveira-Junior, A.V.; Gonçalves, M.C.; Koury, J.C. Biological determinants of phase angle among Brazilian elite athletes. Proc. Nutr. Soc. 2008, 67, E332. [Google Scholar] [CrossRef]
- Holtermann, A.; Hansen, J.V.; Burr, H.; Søgaard, K.; Sjøgaard, G. The health paradox of occupational and leisure-time physical activity. Br. J. Sports Med. 2012, 46, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Mozumdar, A.; Liguori, G. Occupational physical activity and the metabolic syndrome among working women: A Go Red North Dakota study. J. Phys. Act. Health 2011, 8, 321–331. [Google Scholar] [CrossRef] [PubMed]
- McTiernan, A.; Sorensen, B.; Irwin, M.L.; Morgan, A.; Yasui, Y.; Rudolph, R.E.; Surawicz, C.; Lampe, J.W.; Lampe, P.D.; Ayub, K. Exercise effect on weight and body fat in men and women. Obesity 2007, 15, 1496–1512. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.S.; Derleth, C.; Stratton, J.R.; Levy, W.C. The influence of age, gender, and training on exercise efficiency. J. Am. Coll. Cardiol. 2006, 47, 1049–1057. [Google Scholar] [CrossRef]
- Ji, H.; Gulati, M.; Huang, T.Y.; Kwan, A.C.; Ouyang, D.; Ebinger, J.E.; Casaletto, K.; Moreau, K.L.; Skali, H.; Cheng, S. Sex differences in association of physical activity with all-cause and cardiovascular mortality. J. Am. Coll. Cardiol. 2024, 83, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Zouhal, H.; Jacob, C.; Delamarche, P.; Gratas-Delamarche, A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008, 38, 401–423. [Google Scholar] [CrossRef]
- Ivey, F.M.; Roth, S.M.; Ferrell, R.E.; Tracy, B.L.; Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Siegel, E.L.; Fozard, J.L.; Metter, E.J. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M641–M648. [Google Scholar] [CrossRef]
- Bamman, M.M.; Hill, V.J.; Adams, G.R.; Haddad, F.; Wetzstein, C.J.; Gower, B.A.; Ahmed, A.; Hunter, G.R. Gender differences in resistance-training-induced myofiber hypertrophy among older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, B108–B116. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Chamari, K.; Slimani, M.; Shephard, R.; Yousfi, N.; Tabka, Z.; Bouhlel, E. Effects of recreational soccer on physical fitness and health indices in sedentary healthy and unhealthy subjects. Biol. Sport 2016, 33, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Kuchnia, A.J.; Teigen, L.M.; Cole, A.J.; Mulasi, U.; Gonzalez, M.C.; Heymsfield, S.B.; Vock, D.M.; Earthman, C.P. Phase angle and impedance ratio: Reference cut-points from the United States National Health and nutrition examination survey 1999–2004 from bioimpedance spectroscopy data. J. Parenter. Enter. Nutr. 2017, 41, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
Variables | PhA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male (N = 1755) | Female (N = 2241) | |||||||||||||
Total | Above Average a | Below Average a | p-Value | Total | Above Average a | Below Average a | p-Value | |||||||
N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | |||
Physical activity b | <0.0001 | <0.0001 | ||||||||||||
Inactive | 899 | (51.2) | 381 | (42.4) | 518 | (57.6) | 1353 | (60.4) | 641 | (47.4) | 712 | (52.6) | ||
Insufficiently active | 293 | (16.7) | 171 | (58.4) | 122 | (41.6) | 350 | (15.6) | 209 | (59.7) | 141 | (40.3) | ||
Sufficiently active | 563 | (32.1) | 383 | (68.0) | 180 | (32.0) | 538 | (24.0) | 342 | (63.6) | 196 | (36.4) | ||
Age | <0.0001 | <0.0001 | ||||||||||||
19–28 | 218 | (12.4) | 165 | (75.7) | 53 | (24.3) | 257 | (11.5) | 138 | (53.7) | 119 | (46.3) | ||
29–39 | 252 | (14.4) | 201 | (79.8) | 51 | (20.2) | 310 | (13.8) | 207 | (66.8) | 103 | (33.2) | ||
40–49 | 283 | (16.1) | 211 | (74.6) | 72 | (25.4) | 406 | (18.1) | 265 | (65.3) | 141 | (34.7) | ||
50–59 | 299 | (17.0) | 199 | (66.6) | 100 | (33.4) | 414 | (18.5) | 275 | (66.4) | 139 | (33.6) | ||
60–69 | 379 | (21.6) | 133 | (35.1) | 246 | (64.9) | 487 | (21.7) | 245 | (50.3) | 242 | (49.7) | ||
70+ | 324 | (18.5) | 26 | (8.0) | 298 | (92.0) | 367 | (16.4) | 62 | (16.9) | 305 | (83.1) | ||
Body mass index c | <0.0001 | <0.0001 | ||||||||||||
Underweight | 41 | (2.3) | 7 | (17.1) | 34 | (82.9) | 127 | (5.7) | 41 | (32.3) | 86 | (67.7) | ||
Normal weight | 532 | (30.3) | 185 | (34.8) | 347 | (65.2) | 964 | (43.0) | 441 | (45.7) | 523 | (54.3) | ||
Overweight | 412 | (23.5) | 228 | (55.3) | 184 | (44.7) | 491 | (21.9) | 289 | (58.9) | 202 | (41.1) | ||
Obese | 770 | (43.9) | 515 | (66.9) | 255 | (33.1) | 659 | (29.4) | 421 | (63.9) | 238 | (36.1) | ||
Education level | <0.0001 | <0.0001 | ||||||||||||
Lower than middle school | 350 | (19.9) | 92 | (26.3) | 258 | (73.7) | 605 | (27.0) | 222 | (36.7) | 383 | (63.3) | ||
High school | 612 | (34.9) | 338 | (55.2) | 274 | (44.8) | 741 | (33.1) | 433 | (58.4) | 308 | (41.6) | ||
College or above | 793 | (45.2) | 505 | (63.7) | 288 | (36.3) | 895 | (39.9) | 537 | (60.0) | 358 | (40.0) | ||
Alcohol status d | <0.0001 | <0.0001 | ||||||||||||
Non-drinker | 597 | (34.0) | 252 | (42.2) | 345 | (57.8) | 1334 | (59.5) | 636 | (47.7) | 698 | (52.3) | ||
Social drinker | 593 | (33.8) | 344 | (58.0) | 249 | (42.0) | 637 | (28.4) | 386 | (60.6) | 251 | (39.4) | ||
Current drinker | 565 | (32.2) | 339 | (60.0) | 226 | (40.0) | 270 | (12.0) | 170 | (63.0) | 100 | (37.0) | ||
Smoking status | <0.0001 | 0.0050 | ||||||||||||
Ever-smoker | 508 | (28.9) | 311 | (61.2) | 197 | (38.8) | 104 | (4.6) | 67 | (64.4) | 37 | (35.6) | ||
Non-smoker | 1247 | (71.1) | 624 | (50.0) | 623 | (50.0) | 2137 | (95.4) | 1125 | (52.6) | 1012 | (47.4) | ||
Region of residence | 0.5787 | 0.4775 | ||||||||||||
Metropolitan | 745 | (42.5) | 399 | (53.6) | 346 | (46.4) | 988 | (44.1) | 513 | (51.9) | 475 | (48.1) | ||
Urban | 660 | (37.6) | 358 | (54.2) | 302 | (45.8) | 843 | (37.6) | 452 | (53.6) | 391 | (46.4) | ||
Rural | 350 | (19.9) | 178 | (50.9) | 172 | (49.1) | 410 | (18.3) | 227 | (55.4) | 183 | (44.6) | ||
Marital status | <0.0001 | <0.0001 | ||||||||||||
Married | 1213 | (69.1) | 583 | (48.1) | 630 | (51.9) | 1435 | (64.0) | 827 | (57.6) | 608 | (42.4) | ||
Single | 542 | (30.9) | 352 | (64.9) | 190 | (35.1) | 806 | (36.0) | 365 | (45.3) | 441 | (54.7) | ||
Income level e | 0.5767 | 0.9105 | ||||||||||||
Low | 419 | (23.9) | 212 | (50.6) | 207 | (49.4) | 538 | (24.0) | 292 | (54.3) | 246 | (45.7) | ||
Middle-low | 426 | (24.3) | 234 | (54.9) | 192 | (45.1) | 553 | (24.7) | 288 | (52.1) | 265 | (47.9) | ||
Middle-high | 453 | (25.8) | 247 | (54.5) | 206 | (45.5) | 581 | (25.9) | 310 | (53.4) | 271 | (46.6) | ||
High | 457 | (26.0) | 242 | (53.0) | 215 | (47.0) | 569 | (25.4) | 302 | (53.1) | 267 | (46.9) | ||
Employment status | <0.0001 | <0.0001 | ||||||||||||
Employed | 1250 | (71.2) | 781 | (62.5) | 469 | (37.5) | 1256 | (56.0) | 732 | (58.3) | 524 | (41.7) | ||
Unemployed | 505 | (28.8) | 154 | (30.5) | 351 | (69.5) | 985 | (44.0) | 460 | (46.7) | 525 | (53.3) | ||
Sleep duration | <0.0001 | 0.0003 | ||||||||||||
<6 h | 215 | (12.3) | 98 | (45.6) | 117 | (54.4) | 364 | (16.2) | 160 | (44.0) | 204 | (56.0) | ||
≥6 h and <8 h | 1043 | (59.4) | 604 | (57.9) | 439 | (42.1) | 1277 | (57.0) | 702 | (55.0) | 575 | (45.0) | ||
≥8 h and <10 h | 469 | (26.7) | 224 | (47.8) | 245 | (52.2) | 564 | (25.2) | 316 | (56.0) | 248 | (44.0) | ||
≥10 h | 28 | (1.6) | 9 | (32.1) | 19 | (67.9) | 36 | (1.6) | 14 | (38.9) | 22 | (61.1) | ||
Diabetes | <0.0001 | <0.0001 | ||||||||||||
No | 1461 | (83.2) | 828 | (56.7) | 633 | (43.3) | 1989 | (88.8) | 1089 | (54.8) | 900 | (45.2) | ||
Yes | 294 | (16.8) | 107 | (36.4) | 187 | (63.6) | 252 | (11.2) | 103 | (40.9) | 149 | (59.1) | ||
High blood pressure | <0.0001 | <0.0001 | ||||||||||||
No | 1108 | (63.1) | 682 | (61.6) | 426 | (38.4) | 1624 | (72.5) | 924 | (56.9) | 700 | (43.1) | ||
Yes | 647 | (36.9) | 253 | (39.1) | 394 | (60.9) | 617 | (27.5) | 268 | (43.4) | 349 | (56.6) | ||
Asthma | 0.0245 | 0.0566 | ||||||||||||
No | 1704 | (97.1) | 914 | (53.6) | 790 | (46.4) | 2172 | (96.9) | 1151 | (53.0) | 1021 | (47.0) | ||
Yes | 51 | (2.9) | 21 | (41.2) | 30 | (58.8) | 69 | (3.1) | 41 | (59.4) | 28 | (40.6) | ||
Kidney disease | 0.0208 | 0.0900 | ||||||||||||
No | 1722 | (98.1) | 923 | (53.6) | 799 | (46.4) | 2195 | (97.9) | 1165 | (53.1) | 1030 | (46.9) | ||
Yes | 33 | (1.9) | 12 | (36.4) | 21 | (63.6) | 46 | (2.1) | 27 | (58.7) | 19 | (41.3) | ||
Total | 1755 | (100.0) | 935 | (53.3) | 820 | (46.7) | 2241 | (100.0) | 1192 | (53.2) | 1049 | (46.8) |
Variables | Male (N = 1755) | Female (N = 2241) | ||||||
---|---|---|---|---|---|---|---|---|
Above-Average PhA a | Above-Average PhA a | |||||||
aOR b | 95% CI | aOR b | 95% CI | |||||
Physical activity c | ||||||||
Inactive | 1.000 | 1.000 | ||||||
Insufficiently active | 1.540 | 1.051 | – | 2.256 | 1.071 | 0.774 | – | 1.483 |
Sufficiently active | 1.952 | 1.373 | – | 2.776 | 1.333 | 1.019 | – | 1.745 |
Age | ||||||||
19–28 | 1.000 | 1.000 | ||||||
29–39 | 0.868 | 0.484 | – | 1.559 | 0.982 | 0.607 | – | 1.588 |
40–49 | 0.479 | 0.254 | – | 0.903 | 0.842 | 0.537 | – | 1.321 |
50–59 | 0.387 | 0.197 | – | 0.760 | 0.805 | 0.506 | – | 1.279 |
60–69 | 0.117 | 0.059 | – | 0.231 | 0.343 | 0.209 | – | 0.564 |
70+ | 0.021 | 0.010 | – | 0.045 | 0.066 | 0.036 | – | 0.120 |
Body mass index d | ||||||||
Underweight | 0.253 | 0.086 | – | 0.747 | 0.490 | 0.310 | – | 0.775 |
Normal weight | 1.000 | 1.000 | ||||||
Overweight | 2.811 | 1.989 | – | 3.973 | 2.483 | 1.821 | – | 3.386 |
Obese | 4.732 | 3.208 | – | 6.980 | 3.798 | 2.834 | – | 5.090 |
Education level | ||||||||
Lower than middle school | 1.504 | 0.907 | – | 2.495 | 1.149 | 0.818 | – | 1.615 |
High school | 1.096 | 0.780 | – | 1.539 | 1.102 | 0.840 | – | 1.447 |
College or above | 1.000 | 1.000 | ||||||
Alcohol status e | ||||||||
Non-drinker | 1.000 | 1.000 | ||||||
Social drinker | 1.216 | 0.846 | – | 1.748 | 1.069 | 0.844 | – | 1.352 |
Current drinker | 1.387 | 0.973 | – | 1.977 | 1.051 | 0.747 | – | 1.477 |
Smoking status | ||||||||
Ever-smoker | 1.404 | 1.054 | – | 1.870 | 1.667 | 1.051 | – | 2.643 |
Non-smoker | 1.000 | 1.000 | ||||||
Region of residence | ||||||||
Metropolitan | 1.000 | 1.000 | ||||||
Urban | 1.136 | 0.795 | – | 1.624 | 0.937 | 0.735 | – | 1.194 |
Rural | 2.144 | 1.439 | – | 3.195 | 1.304 | 0.956 | – | 1.778 |
Marital status | ||||||||
Married | 1.000 | 1.000 | ||||||
Single | 1.087 | 0.724 | – | 1.632 | 0.627 | 0.467 | – | 0.843 |
Income level f | ||||||||
Low | 1.000 | 1.000 | ||||||
Middle low | 1.173 | 0.736 | – | 1.868 | 0.877 | 0.655 | – | 1.173 |
Middle high | 1.085 | 0.730 | – | 1.613 | 1.007 | 0.732 | – | 1.385 |
High | 1.276 | 0.791 | – | 2.058 | 1.026 | 0.755 | – | 1.394 |
Employment status | ||||||||
Employed | 1.000 | 1.000 | ||||||
Unemployed | 0.572 | 0.387 | – | 0.844 | 0.829 | 0.657 | – | 1.046 |
Sleep duration | ||||||||
<6 h | 0.816 | 0.540 | – | 1.234 | 0.967 | 0.707 | – | 1.323 |
≥6 h and <8 h | 1.000 | 1.000 | ||||||
≥8 h and <10 h | 0.861 | 0.614 | – | 1.208 | 1.286 | 0.991 | – | 1.667 |
≥10 h | 0.787 | 0.341 | – | 1.817 | 0.462 | 0.212 | – | 1.004 |
Diabetes | ||||||||
No | 1.000 | 1.000 | ||||||
Yes | 0.562 | 0.378 | – | 0.836 | 0.712 | 0.474 | – | 1.068 |
High blood pressure | ||||||||
No | 1.000 | 1.000 | ||||||
Yes | 0.713 | 0.483 | – | 1.052 | 1.028 | 0.743 | – | 1.422 |
Asthma | ||||||||
No | 1.000 | 1.000 | ||||||
Yes | 0.318 | 0.145 | – | 0.699 | 1.249 | 0.666 | – | 2.341 |
Kidney disease | ||||||||
No | 1.000 | 1.000 | ||||||
Yes | 1.073 | 0.381 | – | 3.019 | 1.012 | 0.529 | – | 1.936 |
Variables | Inactive | Insufficiently Active | Sufficiently Active | ||||||
---|---|---|---|---|---|---|---|---|---|
Above-Average PhA a | Above-Average PhA a | ||||||||
aOR b | aOR b | 95% CI | aOR b | 95% CI | |||||
Males (N = 1755) | |||||||||
Age | |||||||||
19–28 | 1.000 | 2.188 | 0.624 | – | 7.666 | 1.594 | 0.633 | – | 4.012 |
29–39 | 1.000 | 4.862 | 1.195 | – | 19.786 | 6.136 | 2.030 | – | 18.546 |
40–49 | 1.000 | 1.657 | 0.638 | – | 4.300 | 3.983 | 1.749 | – | 9.071 |
50–59 | 1.000 | 0.832 | 0.350 | – | 1.975 | 1.031 | 0.495 | – | 2.149 |
60–69 | 1.000 | 1.706 | 0.812 | – | 3.583 | 1.789 | 0.879 | – | 3.642 |
70+ | 1.000 | 2.923 | 0.849 | – | 10.070 | 1.084 | 0.330 | – | 3.564 |
Body mass index c | |||||||||
Underweight | 1.000 | N.A | N.A | – | N.A | N.A | N.A | – | N.A |
Normal weight | 1.000 | 1.431 | 0.732 | – | 2.795 | 3.583 | 2.106 | – | 6.096 |
Overweight | 1.000 | 2.622 | 1.076 | – | 6.388 | 2.471 | 1.124 | – | 5.433 |
Obese | 1.000 | 1.598 | 0.910 | – | 2.804 | 1.463 | 0.825 | – | 2.594 |
Sleep duration | |||||||||
<6 h | 1.000 | 2.589 | 0.640 | – | 10.480 | 7.393 | 2.550 | – | 21.434 |
≥6 h and <8 h | 1.000 | 1.597 | 1.007 | – | 2.530 | 1.878 | 1.233 | – | 2.859 |
≥8 h and <10 h | 1.000 | 1.248 | 0.492 | – | 3.165 | 1.899 | 1.063 | – | 3.393 |
≥10 h | 1.000 | N.A | N.A | – | N.A | 3.072 | 0.186 | – | 50.648 |
Diabetes | |||||||||
No | 1.000 | 1.648 | 1.087 | – | 2.497 | 2.124 | 1.449 | – | 3.113 |
Yes | 1.000 | 1.160 | 0.441 | – | 3.050 | 1.175 | 0.465 | – | 2.968 |
High blood pressure | |||||||||
No | 1.000 | 1.818 | 1.133 | – | 2.920 | 2.585 | 1.693 | – | 3.947 |
Yes | 1.000 | 1.216 | 0.600 | – | 2.467 | 0.933 | 0.517 | – | 1.682 |
Females (N = 2241) | |||||||||
Age | |||||||||
19–28 | 1.000 | 2.172 | 0.776 | – | 6.078 | 2.809 | 1.123 | – | 7.027 |
29–39 | 1.000 | 1.460 | 0.664 | – | 3.214 | 1.814 | 0.938 | – | 3.508 |
40–49 | 1.000 | 0.741 | 0.381 | – | 1.441 | 0.820 | 0.450 | – | 1.494 |
50–59 | 1.000 | 1.359 | 0.675 | – | 2.736 | 1.300 | 0.660 | – | 2.561 |
60–69 | 1.000 | 0.917 | 0.405 | – | 2.072 | 1.843 | 1.066 | – | 3.187 |
70+ | 1.000 | 0.546 | 0.128 | – | 2.323 | 0.627 | 0.144 | – | 2.719 |
Body mass index c | |||||||||
Underweight | 1.000 | 0.664 | 0.144 | – | 3.061 | 1.336 | 0.470 | – | 3.795 |
Normal weight | 1.000 | 1.361 | 0.892 | – | 2.077 | 1.396 | 0.947 | – | 2.059 |
Overweight | 1.000 | 0.778 | 0.382 | – | 1.585 | 1.793 | 0.960 | – | 3.346 |
Obese | 1.000 | 0.865 | 0.427 | – | 1.752 | 0.908 | 0.530 | – | 1.554 |
Sleep duration | |||||||||
<6 h | 1.000 | 0.543 | 0.180 | – | 1.640 | 1.639 | 0.775 | – | 3.466 |
≥6 h and <8 h | 1.000 | 1.077 | 0.744 | – | 1.559 | 1.142 | 0.809 | – | 1.610 |
≥8 h and <10 h | 1.000 | 1.197 | 0.672 | – | 2.135 | 1.641 | 0.889 | – | 3.031 |
≥10 h | 1.000 | N.A | N.A | – | N.A | N.A | N.A | – | N.A |
Diabetes | |||||||||
No | 1.000 | 1.080 | 0.770 | – | 1.515 | 1.432 | 1.090 | – | 1.882 |
Yes | 1.000 | 1.442 | 0.297 | – | 6.996 | 0.619 | 0.272 | – | 1.412 |
High blood pressure | |||||||||
No | 1.000 | 1.099 | 0.757 | – | 1.595 | 1.330 | 0.981 | – | 1.805 |
Yes | 1.000 | 1.078 | 0.527 | – | 2.208 | 1.269 | 0.695 | – | 2.318 |
Variables | Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Above-Average PhA a | Above-Average PhA a | |||||||||
aOR b | 95% CI | aOR b | 95% CI | |||||||
Physical activity c | ||||||||||
Inactive | 1.000 | 1.000 | ||||||||
Insufficiently active | 1.538 | 1.052 | – | 2.251 | 1.070 | 0.775 | – | 1.479 | ||
Sufficiently active | 1.763 | 1.087 | – | 2.860 | 1.169 | 0.838 | – | 1.630 | ||
Highly active | 2.071 | 1.409 | – | 3.043 | 1.521 | 1.068 | 2.166 | |||
Insufficiently active with no muscle-strengthening activity | 1.061 | 0.654 | – | 1.722 | 0.956 | 0.669 | – | 1.366 | ||
Sufficiently active with no muscle-strengthening activity | 1.616 | 1.032 | – | 2.530 | 1.127 | 0.790 | – | 1.606 | ||
Insufficiently active with muscle-strengthening activity | 2.679 | 1.560 | – | 4.602 | 1.530 | 0.866 | – | 2.702 | ||
Sufficiently active with muscle-strengthening activity | 2.318 | 1.512 | – | 3.554 | 1.762 | 1.215 | – | 2.556 | ||
Insufficiently active and more occupational physical activity | 1.127 | 0.570 | – | 2.227 | 1.144 | 0.546 | – | 2.399 | ||
Sufficiently active and more occupational physical activity | 1.529 | 0.883 | – | 2.648 | 1.029 | 0.679 | – | 1.560 | ||
Insufficiently active and more leisure-time physical activity | 1.694 | 1.123 | – | 2.557 | 1.058 | 0.760 | – | 1.474 | ||
Sufficiently active and more leisure-time physical activity | 2.158 | 1.483 | – | 3.140 | 1.457 | 1.078 | – | 1.969 | ||
Insufficiently active | 1.537 | 1.051 | – | 2.247 | 1.082 | 0.784 | – | 1.494 | ||
Sufficiently active with insufficient vigorous-intensity activity d | 1.627 | 1.095 | – | 2.417 | 1.069 | 0.811 | – | 1.410 | ||
Sufficiently active with sufficient vigorous-intensity activity d | 2.785 | 1.647 | – | 4.709 | 2.505 | 1.441 | – | 4.356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yu, J.; Kim, J.; Park, E. Association between Physical Activity and Phase Angle Obtained via Bioelectrical Impedance Analysis in South Korean Adults Stratified by Sex. Nutrients 2024, 16, 2136. https://doi.org/10.3390/nu16132136
Yang J, Yu J, Kim J, Park E. Association between Physical Activity and Phase Angle Obtained via Bioelectrical Impedance Analysis in South Korean Adults Stratified by Sex. Nutrients. 2024; 16(13):2136. https://doi.org/10.3390/nu16132136
Chicago/Turabian StyleYang, Jiwon, Jiho Yu, Jinhyun Kim, and Euncheol Park. 2024. "Association between Physical Activity and Phase Angle Obtained via Bioelectrical Impedance Analysis in South Korean Adults Stratified by Sex" Nutrients 16, no. 13: 2136. https://doi.org/10.3390/nu16132136
APA StyleYang, J., Yu, J., Kim, J., & Park, E. (2024). Association between Physical Activity and Phase Angle Obtained via Bioelectrical Impedance Analysis in South Korean Adults Stratified by Sex. Nutrients, 16(13), 2136. https://doi.org/10.3390/nu16132136