Factors Associated with Dietary Habit Changes in Korean Stomach Cancer Survivors after Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Dietary Intake Pattern
2.3. Other Study Variables
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Distribution of Dietary Habit Change
3.3. Dietary Habit Changes Stratified by Age and Time Elapsed after Cancer Diagnosis
3.4. Factors Associated with Dietary Habit Changes in a Healthier Direction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.W.; Won, Y.J.; Hong, S.; Kong, H.J.; Im, J.S.; Seo, H.G. Prediction of Cancer Incidence and Mortality in Korea, 2021. Cancer Res. Treat. 2021, 53, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Won, Y.J.; Lee, J.J.; Jung, K.W.; Kim, H.J.; Kong, H.J.; Im, J.S.; Seo, H.G. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2019. Cancer Res. Treat. 2022, 54, 330–344. [Google Scholar] [CrossRef]
- Carrillo, G.M.; Santamaría, N.P. Life after a gastrectomy: Experience of patients with gastric cancer. Enferm. Clin. (Engl. Ed.) 2019, 29, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.Y.; Lee, H.J.; Lee, J. Unmet needs in the physical and daily living domain mediates the influence of symptom experience on the quality of life of gastric cancer patients. Support. Care Cancer 2020, 28, 1419–1431. [Google Scholar] [CrossRef]
- Jeong, S.M.; Shin, D.W.; Lee, J.E.; Jin, S.M.; Kim, S. Increased Risk of Osteoporosis in Gastric Cancer Survivors Compared to General Population Control: A Study with Representative Korean Population. Cancer Res. Treat. 2019, 51, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Seo, G.H.; Kang, H.Y.; Choe, E.K. Osteoporosis and fracture after gastrectomy for stomach cancer: A nationwide claims study. Medicine 2018, 97, e0532. [Google Scholar] [CrossRef]
- Jones, L.W.; Demark-Wahnefried, W. Diet, exercise, and complementary therapies after primary treatment for cancer. Lancet Oncol. 2006, 7, 1017–1026. [Google Scholar] [CrossRef]
- Cencioni, C.; Trestini, I.; Piro, G.; Bria, E.; Tortora, G.; Carbone, C.; Spallotta, F. Gastrointestinal Cancer Patient Nutritional Management: From Specific Needs to Novel Epigenetic Dietary Approaches. Nutrients 2022, 14, 1542. [Google Scholar] [CrossRef] [PubMed]
- Pekmezi, D.W.; Demark-Wahnefried, W. Updated evidence in support of diet and exercise interventions in cancer survivors. Acta Oncol. 2011, 50, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L.; Bandera, E.V.; Hamilton, K.K.; Grant, B.; McCullough, M.; et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012, 62, 243–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCCN. NCCN Guidelines for Patients, Stomach Cancer; NCCN: Fort Washington, PA, USA, 2021. [Google Scholar]
- Moazzen, S.; Cortés-Ibañez, F.O.; van Leeuwen, B.L.; Alizadeh, B.Z.; de Bock, G.H. Assessment of Diet Quality and Adherence to Dietary Guidelines in Gastrointestinal Cancer Survivors: A Cross-Sectional Study. Nutrients 2020, 12, 2232. [Google Scholar] [CrossRef]
- Mosinski, J.D.; Kirwan, J.P. Longer-Term Physiological and Metabolic Effects of Gastric Bypass Surgery. Curr. Diab. Rep. 2016, 16, 50. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, R.; Febres, G.; Cheng, B.; Krikhely, A.; Bessler, M.; Korner, J. Prospective study of gut hormone and metabolic changes after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. PLoS ONE 2020, 15, e0236133. [Google Scholar] [CrossRef] [PubMed]
- Tollosa, D.N.; Tavener, M.; Hure, A.; James, E.L. Adherence to multiple health behaviours in cancer survivors: A systematic review and meta-analysis. J. Cancer Surviv. 2019, 13, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.W.; Son, Y.G.; Lee, M.K. Motivators and barriers to adoption of a healthy diet by survivors of stomach cancer: A cross-sectional study. Eur. J. Oncol. Nurs. 2020, 44, 101703. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.; Lee, J.; Kim, J.; Park, B. Food Intake Behavior in Cancer Survivors in Comparison With Healthy General Population; From the Health Examination Center-based Cohort. J. Cancer Prev. 2019, 24, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Continuous Update Project Expert Report 2018. Recommendations and Public Health and Policy Implications; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Park, S.; Ahn, J.; Kim, N.S.; Lee, B.K. High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: The KNHANES 2007–2014. Int. J. Food Sci. Nutr. 2017, 68, 479–487. [Google Scholar] [CrossRef]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, K.; Lee, J.; Kim, J. Grain Subtype and the Combination of Grains Consumed Are Associated with the Risk of Metabolic Syndrome: Analysis of a Community-Based Prospective Cohort. J. Nutr. 2020, 150, 118–127. [Google Scholar] [CrossRef]
- Pan, W.H.; Yeh, W.T. How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: An extension of Asian-Pacific recommendations. Asia Pac. J. Clin. Nutr. 2008, 17, 370–374. [Google Scholar]
- Beekman, E.; Verhagen, A. Clinimetrics: Hospital Anxiety and Depression Scale. J. Physiother. 2018, 64, 198. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Goo, A.; Ko, H.; Kim, J.H.; Lim, S.U.; Lee, H.K.; Simard, S.; Song, Y.M. Validation Study for the Korean Version of Fear of Cancer Recurrence Inventory. J. Korean Med. Sci. 2017, 32, 1792–1799. [Google Scholar] [CrossRef]
- Simard, S.; Savard, J. Screening and comorbidity of clinical levels of fear of cancer recurrence. J. Cancer Surviv. 2015, 9, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Lee, J.; Kim, J. Imbalanced Nutrient Intake in Cancer Survivors from the Examination from the Nationwide Health Examination Center-Based Cohort. Nutrients 2018, 10, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Wong, H.Y.; Vardy, J.L. Do cancer survivors change their diet after cancer diagnosis? Support. Care Cancer 2021, 29, 6921–6927. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Continuous Updated Project Diet, Nutrition Physical Activity and Stomach Cancer; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Fang, X.; Wei, J.; He, X.; An, P.; Wang, H.; Jiang, L.; Shao, D.; Liang, H.; Li, Y.; Wang, F.; et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Cancer 2015, 51, 2820–2832. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Radin, J.N.; Loh, J.T.; Zhang, F.; Washington, M.K.; Peek, R.M., Jr.; Algood, H.M.; Cover, T.L. High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect. Immun. 2013, 81, 2258–2267. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.V.L.; Menezes, M.C.; Oliveira, C.D.L.; Mingoti, S.A.; Jaime, P.C.; Caiaffa, W.T.; Lopes, A.C.S. Does access to healthy food vary according to socioeconomic status and to food store type? an ecologic study. BMC Public. Health 2019, 19, 775. [Google Scholar] [CrossRef]
- Walker, M.S.; Vidrine, D.J.; Gritz, E.R.; Larsen, R.J.; Yan, Y.; Govindan, R.; Fisher, E.B. Smoking relapse during the first year after treatment for early-stage non-small-cell lung cancer. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 2370–2377. [Google Scholar] [CrossRef] [Green Version]
- World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and Prevention of Cancer: A Global Perspective; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2007. [Google Scholar]
- Doyle, C.; Kushi, L.H.; Byers, T.; Courneya, K.S.; Demark-Wahnefried, W.; Grant, B.; McTiernan, A.; Rock, C.L.; Thompson, C.; Gansler, T.; et al. Nutrition and physical activity during and after cancer treatment: An American Cancer Society guide for informed choices. CA Cancer J. Clin. 2006, 56, 323–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, A. Effect of Food on Causation and Prevention of Gastric Cancer. J. Cancer Prev. Curr. Res. 2017, 8, 00289. [Google Scholar] [CrossRef] [Green Version]
- Fruits and Vegetables, IARC Handbooks of Cancer Prevention Volume 8; International Agency for Research on Cancer, World Health Organization: Lyon, France, 2003; p. 384. ISBN 978-92-832-3008-6.
- Wang, Q.; Chen, Y.; Wang, X.; Gong, G.; Li, G.; Li, C. Consumption of fruit, but not vegetables, may reduce risk of gastric cancer: Results from a meta-analysis of cohort studies. Eur. J. Cancer 2014, 50, 1498–1509. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, S.; Su, Y. Dietary Flavonols Intake and Risk of Esophageal and Gastric Cancer: A Meta-Analysis of Epidemiological Studies. Nutrients 2016, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagundes, M.A.; Silva, A.R.C.; Fernandes, G.A.; Curado, M.P. Dietary Polyphenol Intake and Gastric Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5878. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Sun, Y.; Bo, Y.; Zhu, Y.; Duan, D.; Cui, H.; Lu, Q. The association between dietary isoflavones intake and gastric cancer risk: A meta-analysis of epidemiological studies. BMC Public. Health 2018, 18, 510. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, X.; Yuan, W.; Chen, Z. Intake of Anthocyanins and Gastric Cancer Risk: A Comprehensive Meta-Analysis on Cohort and Case-Control Studies. J. Nutr. Sci. Vitaminol. 2019, 65, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Shan, Z.; Ren, H.; Chen, W. Dairy consumption and gastric cancer risk: A meta-analysis of epidemiological studies. Nutr. Cancer 2015, 67, 555–568. [Google Scholar] [CrossRef]
- Zheng, G.; Sundquist, K.; Sundquist, J.; Chen, T.; Försti, A.; Hemminki, A.; Hemminki, K. Second Primary Cancers After Gastric Cancer, and Gastric Cancer as Second Primary Cancer. Clin. Epidemiol. 2021, 13, 515–525. [Google Scholar] [CrossRef]
- Nicklett, E.J.; Kadell, A.R. Fruit and vegetable intake among older adults: A scoping review. Maturitas 2013, 75, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazono, M.; Aoyama, T.; Komori, K.; Watanabe, H.; Kano, K.; Nagasawa, S.; Segami, K.; Tamagawa, H.; Yukawa, N.; Rino, Y.; et al. The Comparison of the Dietary Intake Loss Between Elderly and Non-Elderly Patients After Gastrectomy for Gastric Cancer. J. Gastrointest. Cancer 2023, 54, 35–43. [Google Scholar] [CrossRef]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutr. J. 2019, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front. Public. Health 2020, 8, 231. [Google Scholar] [CrossRef]
- Zajacova, A.; Lawrence, E.M. The Relationship Between Education and Health: Reducing Disparities Through a Contextual Approach. Annu. Rev. Public. Health 2018, 39, 273–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Tovar, J.; Bozhychko, M.; Del-Campo, J.M.; Boix, E.; Zubiaga, L.; Muñoz, J.L.; Llavero, C. Changes in Frequency Intake of Foods in Patients Undergoing Sleeve Gastrectomy and Following a Strict Dietary Control. Obes. Surg. 2018, 28, 1659–1664. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Byers, T.; Thompson, K.; Eldridge, B.; Doyle, C.; Williams, A.M. Nutrition during and after cancer treatment: A guide for informed choices by cancer survivors. CA Cancer J. Clin. 2001, 51, 153–187, quiz 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Séguin Leclair, C.; Lebel, S.; Westmaas, J.L. Can Physical Activity and Healthy Diet Help Long-Term Cancer Survivors Manage Their Fear of Recurrence? Front. Psychol. 2021, 12, 647432. [Google Scholar] [CrossRef]
- Ramp, D.; Mols, F.; Ezendam, N.; Beijer, S.; Bours, M.; Winkels, R.; de Vries, J.; Seidell, J.C.; Kampman, E.; Hoedjes, M. Psychological distress and lower health-related quality of life are associated with need for dietary support among colorectal cancer survivors with overweight or obesity. Support. Care Cancer 2021, 29, 7659–7668. [Google Scholar] [CrossRef] [PubMed]
Sociodemographic Characteristics | |
---|---|
Age | 59.2 ± 9.9 |
<55 years | 190 (30.4) |
55–59 years | 129 (20.7) |
60–64 years | 140 (22.4) |
≥65 years | 165 (26.4) |
Male | 362 (58.0) |
Live with spouse/partner | 530 (84.9) |
Monthly household income | |
KRW < 2 million | 89 (14.3) |
KRW 2–3 million | 134 (21.5) |
KRW ≥ 4 million | 217 (34.8) |
Unknown | 184 (29.5) |
Education achievement | |
≤Middle school | 70 (11.2) |
High school | 211 (33.8) |
≥College | 189 (30.3) |
Unknown | 154 (24.7) |
Smoking status | |
Never smoked | 352 (56.4) |
Ex-smoker | 230 (36.9) |
Current smoker | 30 (4.8) |
Unknown | 12 (1.9) |
Alcohol consumption | |
Not currently drinking | 442 (70.8) |
Currently drinking | 182 (29.2) |
Clinical characteristics | |
Age at cancer diagnosis | 52.5 ± 10.2 |
<45 years | 138 (22.1) |
45–54 years | 231 (37.0) |
≥55 years | 255 (40.9) |
Time elapsed after diagnosis | 6.7 ± 3.0 |
<1 years | 14 (2.2) |
1–4 years | 152 (24.4) |
5–9 years | 395 (63.3) |
≥10 years | 63 (10.1) |
Stage of cancer | |
Stage 0 | 7 (1.1) |
Stage 1 | 423 (67.8) |
Stage 2 | 102 (16.3) |
Stage 3 | 60 (9.6) |
Stage 4 | 9 (1.4) |
Unknown | 23 (3.7) |
Type of surgery received | |
Total gastrectomy | 142 (22.8) |
Subtotal gastrectomy | 470 (75.3) |
Biloth-1 subtotal gastrectomy | 328 (52.8) |
Biloth-2 subtotal gastrectomy | 75 (12.0) |
Pylorus-preserving surgery | 63 (10.1) |
Not specifically stated | 4 (0.6) |
Wedge resection | 6 (1.0) |
Endoscopic submucosal dissection | 3 (0.5) |
Unknown | 3 (0.5) |
Type of cancer treatment received | |
Chemotherapy | 179 (28.7) |
Radiotherapy | 76 (12.2) |
Preoperative body mass index | 23.8 ± 3.1 |
<18.5 kg/m2 | 13 (2.1) |
18.5–22.9 kg/m2 | 252 (40.4) |
23–24.9 kg/m2 | 140 (22.4) |
≥25 kg/m2 | 198 (31.7) |
Unknown | 21 (3.4) |
Psychological characteristics | |
High fear of cancer recurrence (FCRI ≥ 13) | 206 (33.0) |
Depression (HADS-D ≥ 8) | 270 (43.3) |
Anxiety (HADS-A ≥ 8) | 91 (14.6) |
Variable | Decreased Red Meat | Increased Poultry | Decreased Processed Meat | Increased Fish | Increased Vegetables | Increased Fruit | Increased Legumes | Increased Dairy Products | Decreased Grains | Decreased Salt | Decreased Burned Food |
---|---|---|---|---|---|---|---|---|---|---|---|
Sociodemographic characteristics | |||||||||||
Age at the time of cancer diagnosis | |||||||||||
<45 years | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
45–54 years | 1.37 (0.85, 2.19) | 0.77 (0.38, 1.54) | 0.68 (0.41, 1.11) | 1.77 (1.05, 2.98) | 0.68 (0.41, 1.11) | 0.87 (0.53, 1.44) | 0.69 (0.41, 1.13) | 1.44 (0.78, 2.66) | 0.78 (0.38, 1.59) | 1.16 (0.68, 1.98) | 0.96 (0.57, 1.62) |
≥55 years | 1.56 (0.92, 2.63) | 0.43 (0.19, 1.01) | 0.41 (0.24, 0.71) | 0.82 (0.45, 1.50) | 0.43 (0.24, 0.74) | 0.46 (0.26, 0.80) | 0.47 (0.27, 0.82) | 1.23 (0.61, 2.48) | 0.90 (0.42, 1.95) | 0.94 (0.53, 1.67) | 0.54 (0.31, 0.96) |
Continuous increase by 1 year | 1.01 (0.99, 1.04) | 0.96 (0.93, 0.99) | 0.97 (0.95, 0.99) | 0.99 (0.96, 1.01) | 0.97 (0.94, 0.99) | 0.96 (0.94, 0.98) | 0.96 (0.94, 0.98) | 0.99 (0.97, 1.02) | 0.99 (0.96, 1.02) | 0.99 (0.97, 1.01) | 0.97 (0.95, 0.99) |
Female (vs. male) | 1.01 (0.61, 1.66) | 0.94 (0.41, 2.12) | 1.01 (0.59, 1.73) | 1.22 (0.66, 2.26) | 0.86 (0.50, 1.49) | 0.76 (0.44, 1.30) | 1.15 (0.67, 1.97) | 0.91 (0.46, 1.82) | 1.14 (0.53, 2.45) | 1.35 (0.79, 2.29) | 0.54 (0.31, 0.93) |
Live with spouse (vs. without spouse) | 1.05 (0.61, 1.80) | 0.77 (0.34, 1.70) | 1.51 (0.83, 2.74) | 1.03 (0.53, 1.98) | 1.16 (0.65, 2.09) | 1.07 (0.60, 1.92) | 1.01 (0.56, 1.83) | 0.61 (0.31, 1.19) | 0.44 (0.21, 0.91) | 1.02 (0.55, 1.86) | 0.90 (0.50, 1.63) |
Educational achievement | |||||||||||
≤Middle school | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
High school | 1.08 (0.59, 1.99) | 0.91 (0.34, 2.42) | 1.07 (0.58, 1.99) | 1.28 (0.63, 2.59) | 1.99 (1.07, 3.73) | 1.55 (0.84, 2.86) | 1.55 (0.83, 2.88) | 1.57 (0.68, 3.64) | 0.34 (0.16, 0.73) | 1.25 (0.65, 2.39) | 1.92 (1.03, 3.56) |
≥College | 1.01 (0.53, 1.94) | 1.33 (0.48, 3.74) | 2.49 (1.28, 4.84) | 2.15 (1.02, 4.53) | 2.64 (1.35, 5.18) | 2.16 (1.11, 4.20) | 1.07 (0.58, 1.99) | 1.56 (0.64, 3.79) | 0.30 (0.13, 0.70) | 1.29 (0.64, 2.62) | 1.90 (0.97, 3.71) |
Monthly Household Income | |||||||||||
KRW < 2 million | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
KRW 2–3 million | 1.34 (0.74, 2.44) | 1.56 (0.59, 4.12) | 1.79 (0.95, 3.36) | 1.70 (0.85, 3.38) | 2.17 (1.16, 4.04) | 2.18 (1.17, 4.07) | 1.55 (0.83, 2.88) | 1.71 (0.79, 3.70) | 1.44 (0.61, 3.42) | 2.07 (1.09, 3.96) | 1.39 (0.74, 2.62) |
KRW ≥ 4 million | 1.35 (0.75, 2.45) | 0.89 (0.33, 2.42) | 1.76 (0.95, 3.29) | 1.12 (0.57, 2.23) | 1.20 (0.65, 2.20) | 1.11 (0.54, 2.29) | 1.07 (0.58, 1.99) | 1.20 (0.55, 2.61) | 1.79 (0.76, 4.22) | 2.03 (1.08, 3.81) | 1.28 (0.68, 2.40) |
Smoking status | |||||||||||
Never smoked | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ex-smoker | 1.28 (0.78, 2.11) | 0.94 (0.40, 2.20) | 1.05 (0.62, 1.80) | 1.79 (0.99, 3.25) | 1.49 (0.87, 2.55) | 1.28 (0.75, 2.19) | 1.33 (0.78, 2.27) | 0.94 (0.47, 1.87) | 1.05 (0.49, 2.25) | 1.19 (0.70, 2.02) | 1.26 (0.73, 2.18) |
Current smoker | 0.88 (0.37, 2.06) | 1.02 (0.20, 5.22) | 0.83 (0.33, 2.12) | 1.24 (0.45, 3.41) | 0.79 (0.14, 4.41) | 0.58 (0.23, 1.47) | 1.05 (0.42, 2.61) | 1.15 (0.36, 3.65) | 0.68 (0.17, 2.75) | 0.57 (0.24, 1.38) | 0.73 (0.28, 1.90) |
Alcohol consumption | |||||||||||
Not currently drinking | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Currently drinking | 1.13 (0.75, 1.70) | 0.28 (0.12, 0.67) | 1.14 (0.74, 1.75) | 1.00 (0.63, 1.60) | 0.96 (0.62, 1.48) | 0.94 (0.61, 1.45) | 0.71 (0.46, 1.10) | 0.61 (0.34, 1.09) | 1.69 (0.92, 3.11) | 1.11 (0.71, 1.73) | 1.54 (0.98, 2.42) |
Clinical characteristics | |||||||||||
Time elapsed after diagnosis | |||||||||||
<5 years | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
5–9 years | 1.24 (0.39, 3.98) | 0.52 (0.10, 2.85) | 0.93 (0.26, 3.42) | 0.26 (0.07, 0.95) | 2.06 (0.50, 8.56) | 1.10 (0.30, 4.08) | 0.87 (0.25, 3.07) | 0.42 (0.11, 1.60) | 0.30 (0.08, 1.14) | 1.41 (0.38, 5.25) | 2.30 (0.57, 9.29) |
≥10 years | 1.16 (0.37, 3.62) | 0.45 (0.09, 2.34) | 0.82 (0.23, 2.94) | 0.24 (0.07, 0.84) | 1.99 (0.49, 8.09) | 0.85 (0.23, 3.07) | 0.74 (0.22, 2.56) | 0.32 (0.09, 1.19) | 0.20 (0.05, 0.76) | 0.59 (0.17, 2.09) | 2.34 (0.59, 9.25) |
Continuous increase by 1 year | 1.01 (0.96, 1.08) | 0.93 (0.83, 1.04) | 0.98 (0.92, 1.05) | 0.95 (0.89, 1.02) | 1.03 (0.96, 1.10) | 0.96 (0.90, 1.02) | 1.03 (0.96, 1.10) | 0.96 (0.88, 1.04) | 0.85 (0.75, 0.95) | 0.94 (0.88, 1.00) | 0.99 (0.92, 1.05) |
Cancer stage | |||||||||||
0–1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
2 | 1.23 (0.64, 2.34) | 0.49 (0.16, 1.45) | 1.60 (0.81, 3.16) | 0.65 (0.30, 1.43) | 1.25 (0.62, 2.55) | 1.26 (0.63, 2.53) | 1.29 (0.65, 2.58) | 1.23 (0.50, 3.04) | 2.80 (1.05, 7.47) | 1.64 (0.82, 3.27) | 1.15 (0.56, 2.35) |
3–4 | 0.67 (0.32, 1.38) | 0.51 (0.16, 1.69) | 0.86 (0.39, 1.86) | 0.78 (0.33, 1.83) | 0.75 (0.33, 1.69) | 0.96 (0.43, 2.14) | 1.56 (0.71, 3.42) | 1.13 (0.42, 3.08) | 2.92 (0.95, 8.99) | 2.07 (0.91, 4.70) | 1.01 (0.44, 2.33) |
Surgery type * | |||||||||||
Total gastrectomy | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Biloth-1 subtotal gastrectomy | 0.87 (0.55, 1.36) | 0.76 (0.38, 1.55) | 1.17 (0.72, 1.88) | 0.67 (0.40, 1.10) | 1.69 (1.04, 2.74) | 1.17 (0.73, 1.89) | 1.46 (0.91, 2.36) | 0.90 (0.50, 1.62) | 0.71 (0.37, 1.36) | 1.02 (0.63, 1.65) | 0.97 (0.59, 1.58) |
Biloth-2 subtotal gastrectomy | 0.87 (0.47, 1.62) | 0.80 (0.29, 2.20) | 0.73 (0.38, 1.42) | 0.84 (0.42, 1.70) | 1.55 (0.80, 3.01) | 1.26 (0.65, 2.43) | 1.34 (0.69, 2.58) | 0.69 (0.28, 1.68) | 0.34 (0.11, 1.02) | 1.37 (0.68, 2.73) | 0.76 (0.39, 1.48) |
Pylorus-preserving surgery | 0.68 (0.35, 1.32) | 0.85 (0.28, 2.56) | 0.64 (0.31, 1.33) | 0.75 (0.34, 1.63) | 1.23 (0.59, 2.56) | 1.01 (0.49, 2.08) | 0.98 (0.48, 2.02) | 0.83 (0.34, 2.05) | 1.06 (0.41, 2.73) | 1.13 (0.54, 2.37) | 1.11 (0.53, 2.31) |
Chemotherapy recipient (vs. non-chemotherapy recipient) | 1.17 (0.62, 2.19) | 3.06 (1.13, 8.29) | 0.89 (0.45, 1.73) | 1.38 (0.66, 2.91) | 1.45 (0.72, 2.93) | 1.49 (0.74, 2.99) | 0.87 (0.44, 1.72) | 0.65 (0.27, 1.57) | 0.44 (0.16, 1.21) | 0.63 (0.32, 1.22) | 0.88 (0.43, 1.77) |
Radiotherapy recipient (vs. non-radiotherapy recipient) | 1.03 (0.55, 1.94) | 0.27 (0.09, 0.80) | 0.88 (0.45, 1.70) | 0.59 (0.28, 1.23) | 0.68 (0.35, 1.33) | 0.53 (0.27, 1.05) | 0.59 (0.30, 1.15) | 0.79 (0.32, 1.92) | 0.86 (0.33, 2.23) | 1.51 (0.74, 3.12) | 1.37 (0.68, 2.77) |
Preoperative body mass index | |||||||||||
<23 kg/m2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
23–24.9 kg/m2 | 1.78 (1.13, 2.80) | 0.75 (0.34, 1.63) | 1.05 (0.64, 1.72) | 0.91 (0.53, 1.57) | 1.43 (0.87, 2.36) | 1.16 (0.71, 1.90) | 0.70 (0.43, 1.15) | 0.69 (0.37, 1.29) | 0.94 (0.45, 1.94) | 0.86 (0.53, 1.40) | 0.73 (0.44, 1.20) |
≥25 kg/m2 | 2.54 (1.66, 3.89) | 0.71 (0.34, 1.47) | 1.69 (1.08, 2.65) | 1.14 (0.70, 1.87) | 1.35 (0.85, 2.13) | 1.18 (0.75, 1.86) | 0.76 (0.49, 1.19) | 0.61 (0.34, 1.09) | 1.72 (0.94, 3.17) | 1.07 (0.68, 1.69) | 1.06 (0.66, 1.70) |
Continuous increase by 1 kg/m2 | 1.08 (1.01, 1.14) | 0.94 (0.85, 1.04) | 1.04 (0.98, 1.11) | 1.05 (0.97, 1.12) | 1.03 (0.97, 1.10) | 1.04 (0.98, 1.11) | 0.96 (0.90, 1.03) | 0.97 (0.90, 1.05) | 1.15 (1.05, 1.26) | 1.00 (0.94, 1.07) | 1.03 (0.96, 1.10) |
Psychological characteristics | |||||||||||
High fear of cancer recurrence, FCRI ≥ 13 (vs. FCRI < 13) | 1.07 (0.71, 1.61) | 1.05 (0.55, 2.01) | 1.16 (0.76, 1.76) | 1.58 (1.01, 2.46) | 1.37 (0.90, 2.09) | 1.76 (1.15, 2.70) | 1.49 (0.98, 2.27) | 1.16 (0.96, 2.71) | 0.65 (0.35, 1.22) | 1.30 (0.82, 2.04) | 1.66 (1.06, 2.58) |
Depression, HADS-D ≥ 8 (vs. HADS-D < 8) | 1.55 (1.07, 2.24) | 0.96 (0.53, 1.76) | 1.74 (1.19, 2.56) | 0.92 (0.60, 1.41) | 1.17 (0.79, 1.72) | 1.24 (0.84, 1.82) | 0.95 (0.65, 1.40) | 0.84 (0.51, 1.38) | 1.31 (0.76, 2.26) | 1.08 (0.72, 1.62) | 1.70 (1.14, 2.54) |
Anxiety, HADS-A ≥ 8 (vs. HADS-A < 8) | 1.03 (0.60, 1.76) | 1.12 (0.50, 2.50) | 1.11 (0.64, 1.95) | 1.71 (0.98, 3.01) | 1.43 (0.81, 2.53) | 0.94 (0.53, 1.65) | 0.97 (0.56, 1.70) | 0.87 (0.44, 1.72) | 2.67 (1.32, 5.42) | 1.36 (0.72, 2.54) | 1.01 (0.56, 1.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, J.; Shin, D.W.; Shin, J.; Cho, B.; Song, Y.-M. Factors Associated with Dietary Habit Changes in Korean Stomach Cancer Survivors after Cancer Treatment. Nutrients 2023, 15, 3268. https://doi.org/10.3390/nu15143268
Park J, Kim J, Shin DW, Shin J, Cho B, Song Y-M. Factors Associated with Dietary Habit Changes in Korean Stomach Cancer Survivors after Cancer Treatment. Nutrients. 2023; 15(14):3268. https://doi.org/10.3390/nu15143268
Chicago/Turabian StylePark, Junhee, Jiyoung Kim, Dong Wook Shin, Jinyoung Shin, Belong Cho, and Yun-Mi Song. 2023. "Factors Associated with Dietary Habit Changes in Korean Stomach Cancer Survivors after Cancer Treatment" Nutrients 15, no. 14: 3268. https://doi.org/10.3390/nu15143268
APA StylePark, J., Kim, J., Shin, D. W., Shin, J., Cho, B., & Song, Y. -M. (2023). Factors Associated with Dietary Habit Changes in Korean Stomach Cancer Survivors after Cancer Treatment. Nutrients, 15(14), 3268. https://doi.org/10.3390/nu15143268