The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Measurement of Hepatic Steatosis and Liver Enzymes
2.3. Variables of Interest
2.4. Mortality Follow-Up
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am. J. Gastroenterol. 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Koehler, E.M.; Sanna, D.; Hansen, B.E.; van Rooij, F.J.; Heeringa, J.; Hofman, A.; Tiemeier, H.; Stricker, B.H.; Schouten, J.N.; Janssen, H.L. Serum liver enzymes are associated with all-cause mortality in an elderly population. Liver Int. 2014, 34, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.; Zhong, L.; Peng, W.; Xu, M.; Feng, J.; Tian, Q.; He, Y.; Dowling, R.; Fu, W.; Jiang, H.; et al. Association of the serum transaminase with mortality among the US elderly population. J. Gastroenterol. Hepatol. 2022, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Unalp-Arida, A.; Ruhl, C.E. Noninvasive fatty liver markers predict liver disease mortality in the U.S. population. Hepatology 2016, 63, 1170–1183. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. The association of low serum alanine aminotransferase activity with mortality in the US population. Am. J. Epidemiol. 2013, 178, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; De Vincentis, A.; Bandinelli, S.; Ferrucci, L.; Picardi, A.; Antonelli Incalzi, R.; Vespasiani-Gentilucci, U. Combined evaluation of aminotransferases improves risk stratification for overall and cause-specific mortality in older patients. Aging Clin. Exp. Res. 2021, 33, 3321–3331. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 2009, 136, 477–485.e411. [Google Scholar] [CrossRef]
- De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin. Chim. Acta 1957, 2, 70–74. [Google Scholar] [CrossRef]
- Lim, J.S.; Yang, J.H.; Chun, B.Y.; Kam, S.; Jacobs, D.R., Jr.; Lee, D.H. Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic. Biol. Med. 2004, 37, 1018–1023. [Google Scholar] [CrossRef]
- Lee, D.H.; Jacobs, D.R., Jr. Association between serum gamma-glutamyltransferase and C-reactive protein. Atherosclerosis 2005, 178, 327–330. [Google Scholar] [CrossRef]
- Elinav, E.; Ackerman, Z.; Maaravi, Y.; Ben-Dov, I.Z.; Ein-Mor, E.; Stessman, J. Low alanine aminotransferase activity in older people is associated with greater long-term mortality. J. Am. Geriatr. Soc. 2006, 54, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Haring, R.; Wallaschofski, H.; Nauck, M.; Dörr, M.; Baumeister, S.E.; Völzke, H. Ultrasonographic hepatic steatosis increases prediction of mortality risk from elevated serum gamma-glutamyl transpeptidase levels. Hepatology 2009, 50, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. Jama 2015, 313, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.R.; Burns, J.M.; Pedersen, R.A.; Watt, K.D.; Heimbach, J.K.; Dierkhising, R.A. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011, 141, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; La Vecchia, C. Liver enzymes and all-cause mortality: Open issues. Liver Int. 2019, 39, 1389–1390. [Google Scholar] [CrossRef]
- Yuwaki, K.; Shimazu, T.; Yamagiwa, Y.; Inoue, M.; Goto, A.; Yamaji, T.; Iwasaki, M.; Sawada, N.; Tsugane, S. Association between serum liver enzymes and all-cause mortality: The Japan Public Health Center-based Prospective Study. Liver Int. 2019, 39, 1566–1576. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M.; Pagano, G. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011, 43, 617–649. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Otgonsuren, M.; Venkatesan, C.; Mishra, A. In patients with non-alcoholic fatty liver disease, metabolically abnormal individuals are at a higher risk for mortality while metabolically normal individuals are not. Metabolism 2013, 62, 352–360. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Tsang, S.W.; Hui, A.Y.; Chan, A.W.; Choi, P.C.; Chim, A.M.; Chu, S.; Chan, F.K.; Sung, J.J.; et al. Metabolic and histological features of non-alcoholic fatty liver disease patients with different serum alanine aminotransferase levels. Aliment. Pharmacol. Ther. 2009, 29, 387–396. [Google Scholar] [CrossRef]
- Mofrad, P.; Contos, M.J.; Haque, M.; Sargeant, C.; Fisher, R.A.; Luketic, V.A.; Sterling, R.K.; Shiffman, M.L.; Stravitz, R.T.; Sanyal, A.J. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 2003, 37, 1286–1292. [Google Scholar] [CrossRef]
- Maximos, M.; Bril, F.; Portillo Sanchez, P.; Lomonaco, R.; Orsak, B.; Biernacki, D.; Suman, A.; Weber, M.; Cusi, K. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 2015, 61, 153–160. [Google Scholar] [CrossRef]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Andreoletti, M.; Colli, A.; Vanni, E.; Bertelli, C.; Fatta, E.; Bignamini, D.; Marchesini, G.; et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: A role for insulin resistance and diabetes. Hepatology 2008, 48, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Statistics, N.C.f.H. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–1994. Series 1: Programs and Collection Procedures. Available online: https://www.cdc.gov/nchs/data/series/sr_01/sr01_032.pdf (accessed on 6 September 2022).
- Tacke, F.; Canbay, A.; Bantel, H.; Bojunga, J.; de Laffolie, J.; Demir, M.; Denzer, U.W.; Geier, A.; Hofmann, W.P.; Hudert, C.; et al. Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS)-April 2022-AWMF Registration No.: 021–025. Z Gastroenterol 2022, 60, e733–e801. [Google Scholar] [CrossRef]
- Statistics, N.C.f.H. National Health and Nutrition Examination Survey (NHANES) III: Hepatic Steatosis Ultrasound Images Assessment Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes3/Hepatic_Steatosis_Ultrasound_Procedures_Manual.pdf (accessed on 6 September 2022).
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/labman.pdf (accessed on 6 September 2022).
- Rohrmann, S.; Crespo, C.J.; Weber, J.R.; Smit, E.; Giovannucci, E.; Platz, E.A. Association of cigarette smoking, alcohol consumption and physical activity with lower urinary tract symptoms in older American men: Findings from the third National Health And Nutrition Examination Survey. BJU Int. 2005, 96, 77–82. [Google Scholar] [CrossRef]
- Phan, H.; Richard, A.; Lazo, M.; Nelson, W.G.; Denmeade, S.R.; Groopman, J.; Kanarek, N.; Platz, E.A.; Rohrmann, S. The association of sex steroid hormone concentrations with non-alcoholic fatty liver disease and liver enzymes in US men. Liver Int. 2021, 41, 300–310. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e261. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Tamura, M.K.; Chertow, G.M. Frailty and chronic kidney disease: The Third National Health and Nutrition Evaluation Survey. Am. J. Med. 2009, 122, 664–671.e662. [Google Scholar] [CrossRef] [PubMed]
- Eichholzer, M.; Barbir, A.; Basaria, S.; Dobs, A.S.; Feinleib, M.; Guallar, E.; Menke, A.; Nelson, W.G.; Rifai, N.; Platz, E.A.; et al. Serum sex steroid hormones and frailty in older American men of the Third National Health and Nutrition Examination Survey (NHANES III). Aging Male 2012, 15, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Statistics, N.C.F.H. The Linkage of National Center for Health Statistics Survey Data to the National Death Index–2019 Linked Mortality File (LMF): Linkage Methodology and Analytic Considerations. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-methods.htm (accessed on 7 September 2022).
- Statistics, N.C.F.H. Underlying and Multiple Cause of Death Code. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-restricted.htm (accessed on 7 September 2022).
- Le Couteur, D.G.; Blyth, F.M.; Creasey, H.M.; Handelsman, D.J.; Naganathan, V.; Sambrook, P.N.; Seibel, M.J.; Waite, L.M.; Cumming, R.G. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 712–717. [Google Scholar] [CrossRef]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low Blood ALT Activity and High FRAIL Questionnaire Scores Correlate with Increased Mortality and with Each Other. A Prospective Study in the Internal Medicine Department. J. Clin. Med. 2018, 7, 386. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Kikuchi, A.; Akase, T.; Ninomiya, D.; Tokumoto, Y.; Kumagi, T. Association between alanine aminotransferase and all-cause mortality rate: Findings from a study on Japanese community-dwelling individuals. J. Clin. Lab. Anal. 2022, 36, e24445. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Maeda, D.; Kagiyama, N.; Jujo, K.; Saito, K.; Kamiya, K.; Saito, H.; Ogasahara, Y.; Maekawa, E.; Konishi, M.; Kitai, T.; et al. Aspartate aminotransferase to alanine aminotransferase ratio is associated with frailty and mortality in older patients with heart failure. Sci. Rep. 2021, 11, 11957. [Google Scholar] [CrossRef]
- Udell, J.A.; Wang, C.S.; Tinmouth, J.; FitzGerald, J.M.; Ayas, N.T.; Simel, D.L.; Schulzer, M.; Mak, E.; Yoshida, E.M. Does this patient with liver disease have cirrhosis? Jama 2012, 307, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Zoppini, G.; Cacciatori, V.; Negri, C.; Stoico, V.; Lippi, G.; Targher, G.; Bonora, E. The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine 2016, 95, e4821. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625.e1612. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 101133. [Google Scholar] [CrossRef]
AST, ALT, DRR Cohort | GGT Cohort | |||
---|---|---|---|---|
without Hepatic Steatosis | with Hepatic Steatosis | without Hepatic Steatosis | with Hepatic Steatosis | |
n = 8742 | n = 2643 | n = 6804 | n = 2075 | |
Age (years) | 39 (29–52) | 46 (35–60) | 39 (29–52) | 46 (35–58) |
Females | 53 | 45.8 | 52.6 | 45.4 |
Race/Ethnicity | ||||
Non-Hispanic white | 76.3 | 76.2 | 75.6 | 74.6 |
Non-Hispanic black | 10.8 | 8.3 | 11.2 | 9 |
Mexican American | 5 | 7.5 | 4.6 | 7.3 |
Other | 7.9 | 7.9 | 8.6 | 9 |
Education | ||||
<12 years | 21 | 28.8 | 20.8 | 27.6 |
12 years | 34.2 | 36.8 | 33.4 | 37.3 |
>12 years | 44.7 | 34.4 | 45.9 | 35.1 |
No alcohol consumption | 42 | 49.1 | 41.9 | 49.4 |
Smoking | ||||
Never | 47.1 | 42.9 | 48 | 42.8 |
Former | 23.1 | 34 | 22.6 | 34 |
Current | 29.9 | 23.1 | 29.4 | 23.3 |
LTPA | ||||
No LTPA | 12.3 | 16.6 | 12.6 | 16.8 |
Irregular LTPA | 39.2 | 42.2 | 38.8 | 41 |
Regular LTPA | 48.5 | 41.2 | 48.6 | 42.1 |
BMI (kg/m2) | 24.9 (22.3–28.1) | 29.6 (26.3–33.8) | 25 (22.3–28.1) | 29.6 (26.2–33.9) |
Diabetes | 4.4 | 15.5 | 4.3 | 15.3 |
Hypertension | 18.8 | 35.6 | 18.6 | 34.7 |
Frailty | 1.4 | 2.1 | 1.3 | 1.9 |
Serum HDL < 35 mg/dL | 9.4 | 23.9 | 9.4 | 24.9 |
Serum cholesterol | ||||
<200 mg/dL | 52.5 | 39 | 53.1 | 39.8 |
200–239 mg/dL | 30.5 | 35.2 | 30.4 | 34.8 |
≥240 mg/dL | 16.9 | 25.9 | 16.6 | 25.4 |
Serum triglycerides | ||||
<250 mg/dL | 93.2 | 74.9 | 93.3 | 75.8 |
250–500 mg/dL | 6 | 21 | 5.9 | 20.1 |
>500 mg/dL | 0.8 | 4.2 | 0.8 | 4.1 |
AST (U/L) | 18 (16–22) | 21 (18–27) | 18 (16–22) | 21 (18–27) |
ALT (U/L) | 13 (10–19) | 20 (14–29) | 13 (10–19) | 20 (14–29) |
GGT (U/L) | 18 (13–27) | 29 (20–43) | 18 (13–27) | 29 (20–43) |
DRR | 1.4 (1.1–1.7) | 1.1 (0.9–1.4) | 1.4 (1.1–1.7) | 1.1 (0.8–1.4) |
Serum albumin (g/dL) | 4.2 (4–4.4) | 4.2 (4–4.4) | 4.2 (4–4.4) | 4.2 (3.9–4.4) |
Total bilirubin (mg/dL) | 0.5 (0.4–0.7) | 0.5 (0.4–0.7) | 0.5 (0.4–0.7) | 0.6 (0.4–0.7) |
Platelets (G/L) | 264 (226–307.5) | 265.5 (224.5–315) | 262 (223–305) | 261 (221.5–311) |
CRP >0.3 mg/dL | 21.8 | 36.8 | 23.9 | 39.6 |
eGFR < 60 mL/min/1.73 m2 | 8.6 | 13.1 | 8.8 | 12.5 |
without Hepatic Steatosis | with Hepatic Steatosis | |||||||
---|---|---|---|---|---|---|---|---|
Mortality Outcome and Liver Enzyme Decile or DRR Tertile a | No. of Deaths b | Unadjusted Cumulative Mortality c | Age-Adjusted HR d | 95% CI | No. of Deaths b | Unadjusted Cumulative Mortality c | Age-Adjusted HR d | 95% CI |
AST | ||||||||
All-cause | ||||||||
Deciles 1–3 | 925 | 30.4 | 1.54 | 1.37–1.73 | 290 | 42.8 | 1.21 | 1.01–1.46 |
Deciles 4–9 (ref.) | 1675 | 30.2 | 1.00 | - | 695 | 44.7 | 1.00 | - |
Decile 10 | 208 | 35.6 | 1.2 | 0.94–1.54 | 207 | 45.9 | 1.3 | 1.02–1.66 |
Heart disease | ||||||||
Deciles 1–3 | 247 | 7.4 | 1.44 | 1.15–1.81 | 85 | 13.7 | 1.19 | 0.87–1.63 |
Deciles 4–9 (ref.) | 480 | 10.5 | 1.00 | - | 207 | 14.4 | 1.00 | - |
Decile 10 | 58 | 10.7 | 1.15 | 0.79–1.68 | 40 | 12 | 0.87 | 0.55–1.4 |
Cancer | ||||||||
Deciles 1–3 | 275 | 12.2 | 2.2 | 1.7–2.85 | 55 | 11.9 | 1.15 | 0.82–1.6 |
Deciles 4–9 (ref.) | 375 | 7.4 | 1.00 | - | 166 | 12.2 | 1.00 | - |
Decile 10 | 43 | 14 | 1.54 | 0.93–2.56 | 39 | 13 | 1.12 | 0.63–1.98 |
ALT | ||||||||
All-cause | ||||||||
Deciles 1–3 | 1000 | 34.7 | 1.33 | 1.19–1.49 | 227 | 53 | 1.42 | 1.17–1.73 |
Deciles 4–9 (ref.) | 1680 | 29 | 1.00 | - | 775 | 46.4 | 1.00 | - |
Decile 10 | 128 | 23.4 | 1.24 | 0.85–1.81 | 190 | 34 | 1.18 | 0.93–1.5 |
Heart disease | ||||||||
Deciles 1–3 | 283 | 9.6 | 1.26 | 1.01–1.57 | 73 | 21 | 1.63 | 1.16–2.29 |
Deciles 4–9 (ref.) | 475 | 9.6 | 1.00 | - | 219 | 14.5 | 1.00 | - |
Decile 10 | 27 | 4.8 | 0.94 | 0.48–1.85 | 40 | 8.3 | 1.03 | 0.64–1.68 |
Cancer | ||||||||
Deciles 1–3 | 274 | 12.4 | 1.64 | 1.32–2.03 | 48 | 15.3 | 1.39 | 0.84–2.29 |
Deciles 4–9 (ref.) | 386 | 8.2 | 1.00 | - | 171 | 13.3 | 1.00 | - |
Decile 10 | 33 | 7.6 | 1.39 | 0.8–2.43 | 41 | 7.5 | 0.83 | 0.43–1.59 |
GGT | ||||||||
All-cause | ||||||||
Deciles 1–8 (ref.) | 1649 | 25.6 | 1.00 | - | 578 | 37.5 | 1.00 | - |
Deciles 9–10 | 427 | 39.1 | 1.47 | 1.21–1.79 | 306 | 45.6 | 1.42 | 1.17–1.72 |
Heart disease | ||||||||
Deciles 1–8 (ref.) | 441 | 6.9 | 1.00 | - | 166 | 12 | 1.00 | - |
Deciles 9–10 | 123 | 11.3 | 1.46 | 0.91–2.36 | 81 | 12 | 1.17 | 0.78–1.76 |
Cancer | ||||||||
Deciles 1–8 (ref.) | 420 | 7.9 | 1.00 | - | 136 | 9.6 | 1.00 | - |
Deciles 9–10 | 95 | 11.6 | 1.35 | 0.94–1.93 | 63 | 13 | 1.35 | 0.86–2.14 |
DRR | ||||||||
All-cause | ||||||||
Tertile 1 (ref.) | 699 | 25.5 | 1.00 | - | 520 | 38.2 | 1.00 | - |
Tertile 2 | 1019 | 30.3 | 0.95 | 0.81–1.11 | 390 | 53.6 | 1.12 | 0.94–1.33 |
Tertile 3 | 1090 | 35.3 | 1.07 | 0.94–1.21 | 282 | 56.4 | 1.11 | 0.92–1.34 |
Heart disease | ||||||||
Tertile 1 (ref.) | 185 | 8.1 | 1.00 | - | 144 | 9.9 | 1.00 | - |
Tertile 2 | 279 | 8.5 | 0.96 | 0.69–1.33 | 107 | 20 | 1.07 | 0.79–1.44 |
Tertile 3 | 321 | 11.2 | 1.19 | 0.88–1.61 | 81 | 21.3 | 1.15 | 0.8–1.64 |
Cancer | ||||||||
Tertile 1 (ref.) | 176 | 7.1 | 1.00 | - | 119 | 10.1 | 1.00 | - |
Tertile 2 | 252 | 10.3 | 0.99 | 0.74–1.34 | 84 | 15.2 | 1.29 | 0.87–1.9 |
Tertile 3 | 265 | 10.7 | 1.06 | 0.84–1.34 | 57 | 16.6 | 1.15 | 0.69–1.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grob, S.R.; Suter, F.; Katzke, V.; Rohrmann, S. The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients 2023, 15, 3063. https://doi.org/10.3390/nu15133063
Grob SR, Suter F, Katzke V, Rohrmann S. The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients. 2023; 15(13):3063. https://doi.org/10.3390/nu15133063
Chicago/Turabian StyleGrob, Saskia Rita, Flurina Suter, Verena Katzke, and Sabine Rohrmann. 2023. "The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III" Nutrients 15, no. 13: 3063. https://doi.org/10.3390/nu15133063
APA StyleGrob, S. R., Suter, F., Katzke, V., & Rohrmann, S. (2023). The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients, 15(13), 3063. https://doi.org/10.3390/nu15133063