Lifestyle Changes during the SARS-CoV-2 Pandemic as Predictors of BMI Changes among Men and Women in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.2.1. Survey Questionnaire
2.2.2. Body Weight and BMI
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.M.; Tasnim, S.; Sultana, A.; Faizah, F.; Mazumder, H.; Zou, L.; McKyer, E.L.J.; Ahmed, H.U.; Ma, P. Epidemiology of Mental Health Problems in COVID-19: A Review. F1000Res 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Gujski, M.; Raciborski, F.; Jankowski, M.; Nowicka, P.M.; Rakocy, K.; Pinkas, J. Epidemiological Analysis of the First 1389 Cases of COVID-19 in Poland: A Preliminary Report. Med. Sci. Monit. 2020, 26, e924702. [Google Scholar] [CrossRef]
- Pinkas, J.; Jankowski, M.; Szumowski, Ł.; Lusawa, A.; Zgliczyński, W.S.; Raciborski, F.; Wierzba, W.; Gujski, M. Public Health Interventions to Mitigate Early Spread of SARS-CoV-2 in Poland. Med. Sci. Monit. 2020, 26, e924730. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Protection during an Epidemic COVID-19. Available online: https://www.pip.gov.pl/pl/wiadomosci/110129,bezpieczenstwo-i-ochrona-zdrowia-osob-pracujacych-w-czasie-epidemii-covid-19.html (accessed on 5 January 2023).
- Furman, M.; Kowalska-Bobko, I.; Sowada, C. Public authority response to the COVID-19 pandemic in selected European countries. Zdr. Publiczne I Zarządzanie 2020, 2020, 176–184. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allès, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; et al. Diet and Physical Activity during the Coronavirus Disease 2019 (COVID-19) Lockdown (March-May 2020): Results from the French NutriNet-Santé Cohort Study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Sudati, I.P.; Konzen, V.D.M.; de Campos, A.C.; Wibelinger, L.M.; Correa, C.; Miguel, F.M.; Silva, R.N.; Borghi-Silva, A. COVID-19 and the Impact on the Physical Activity Level of Elderly People: A Systematic Review. Exp. Gerontol. 2022, 159, 111675. [Google Scholar] [CrossRef]
- Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical Activity, Dietary Habits and Sleep Quality before and during COVID-19 Lockdown: A Longitudinal Study. Appetite 2021, 158, 105019. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating Habits and Lifestyle Changes during COVID-19 Lockdown: An Italian Survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Luciano, F.; Cenacchi, V.; Vegro, V.; Pavei, G. COVID-19 Lockdown: Physical Activity, Sedentary Behaviour and Sleep in Italian Medicine Students. Eur. J. Sport Sci. 2021, 21, 1459–1468. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, Eating Behavior and Physical Activity during COVID-19 Lockdown: A Study of UK Adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef]
- Schmidt, S.C.E.; Anedda, B.; Burchartz, A.; Eichsteller, A.; Kolb, S.; Nigg, C.; Niessner, C.; Oriwol, D.; Worth, A.; Woll, A. Physical Activity and Screen Time of Children and Adolescents before and during the COVID-19 Lockdown in Germany: A Natural Experiment. Sci. Rep. 2020, 10, 21780. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Bushnik, T.; Langlois, K. Exercise and Screen Time during the COVID-19 Pandemic. Health Rep. 2020, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Lan, A.; Ron, T.; Stukalin, Y.; Kronfeld-Schor, N.; Einat, H. Changes in Menstrual Cycle Length and in Sleep-Wake Behaviors during COVID-19 Related Lockdown in Israel. Health Care Women Int. 2023, 28, 1–11. [Google Scholar] [CrossRef]
- Conte, F.; Rescott, M.L.; De Rosa, O.; Cellini, N.; Coppola, A.; Cerasuolo, M.; Malloggi, S.; Giganti, F.; Ficca, G. Changes in Dream Features across the First and Second Waves of the COVID-19 Pandemic. J. Sleep Res. 2022, 31, e13425. [Google Scholar] [CrossRef] [PubMed]
- Marelli, S.; Castelnuovo, A.; Somma, A.; Castronovo, V.; Mombelli, S.; Bottoni, D.; Leitner, C.; Fossati, A.; Ferini-Strambi, L. Impact of COVID-19 Lockdown on Sleep Quality in University Students and Administration Staff. J. Neurol. 2021, 268, 8–15. [Google Scholar] [CrossRef]
- Arvaniti, A.; Steiropoulos, P.; Panousis, C.; Kalamara, E.; Samakouri, M.; Constantinidis, T.; Nena, E. Sleep Quality and Associated Factors in the Context of COVID-19, among Prehospital Emergency Personnel, in North-Eastern Greece. Hippokratia 2021, 25, 126–133. [Google Scholar]
- Yang, G.; Li, C.; Zhu, X.; Yan, J.; Liu, J. Prevalence of and Risk Factors Associated with Sleep Disturbances among HPCD Exposed to COVID-19 in China. Sleep Med. 2021, 80, 16–22. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Wasilewska, E.; Małgorzewicz, S. Dietary Habits before and during the COVID-19 Epidemic in Selected European Countries. Nutrients 2021, 13, 1690. [Google Scholar] [CrossRef]
- Coulthard, H.; Sharps, M.; Cunliffe, L.; van den Tol, A. Eating in the Lockdown during the COVID 19 Pandemic; Self-Reported Changes in Eating Behaviour, and Associations with BMI, Eating Style, Coping and Health Anxiety. Appetite 2021, 161, 105082. [Google Scholar] [CrossRef]
- Antwi, J.; Appiah, B.; Oluwakuse, B.; Abu, B.A.Z. The Nutrition-COVID-19 Interplay: A Review. Curr. Nutr. Rep. 2021, 10, 364–374. [Google Scholar] [CrossRef]
- Morin, C.M.; Carrier, J.; Bastien, C.; Godbout, R. Canadian Sleep and Circadian Network Sleep and Circadian Rhythm in Response to the COVID-19 Pandemic. Can. J. Public Health 2020, 111, 654–657. [Google Scholar] [CrossRef]
- Ceulemans, M.; Foulon, V.; Ngo, E.; Panchaud, A.; Winterfeld, U.; Pomar, L.; Lambelet, V.; Cleary, B.; O’Shaughnessy, F.; Passier, A.; et al. Mental Health Status of Pregnant and Breastfeeding Women during the COVID-19 Pandemic-A Multinational Cross-Sectional Study. Acta Obstet. Gynecol. Scand. 2021, 100, 1219–1229. [Google Scholar] [CrossRef]
- Hill, D.; Conner, M.; Clancy, F.; Moss, R.; Wilding, S.; Bristow, M.; O’Connor, D.B. Stress and Eating Behaviours in Healthy Adults: A Systematic Review and Meta-Analysis. Health Psychol. Rev. 2022, 16, 280–304. [Google Scholar] [CrossRef] [PubMed]
- Snuggs, S.; McGregor, S. Food & Meal Decision Making in Lockdown: How and Who Has COVID-19 Affected? Food Qual. Prefer. 2021, 89, 104145. [Google Scholar] [CrossRef]
- Faulkner, J.; O’Brien, W.J.; McGrane, B.; Wadsworth, D.; Batten, J.; Askew, C.D.; Badenhorst, C.; Byrd, E.; Coulter, M.; Draper, N.; et al. Physical Activity, Mental Health and Well-Being of Adults during Initial COVID-19 Containment Strategies: A Multi-Country Cross-Sectional Analysis. J. Sci. Med. Sport 2021, 24, 320–326. [Google Scholar] [CrossRef]
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.D.C.; Hernández-Martínez, A. Physical Activity and Sedentary Lifestyle in University Students: Changes during Confinement Due to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef] [PubMed]
- Belardo, C.; Alessio, N.; Pagano, M.; De Dominicis, E.; Infantino, R.; Perrone, M.; Iannotta, M.; Galderisi, U.; Rinaldi, B.; Scuteri, D.; et al. PEA-OXA Ameliorates Allodynia, Neuropsychiatric and Adipose Tissue Remodeling Induced by Social Isolation. Neuropharmacology 2022, 208, 108978. [Google Scholar] [CrossRef]
- Cruz, F.C.; Duarte, J.O.; Leão, R.M.; Hummel, L.F.V.; Planeta, C.S.; Crestani, C.C. Adolescent Vulnerability to Cardiovascular Consequences of Chronic Social Stress: Immediate and Long-Term Effects of Social Isolation during Adolescence. Dev. Neurobiol. 2016, 76, 34–46. [Google Scholar] [CrossRef]
- Gunga, H.C.; Kirsch, K.A.; Röcker, L.; Maillet, A.; Gharib, C. Body Weight and Body Composition during Sixty Days of Isolation. Adv. Space Biol. Med. 1996, 5, 39–53. [Google Scholar] [CrossRef]
- Okada, L.M.; Miranda, R.R.; das Pena, G.G.; Levy, R.B.; Azeredo, C.M. Association between Exposure to Interpersonal Violence and Social Isolation, and the Adoption of Unhealthy Weight Control Practices. Appetite 2019, 142, 104384. [Google Scholar] [CrossRef] [PubMed]
- Robustelli, B.L.; Campbell, S.B.; Greene, P.A.; Sayre, G.G.; Sulayman, N.; Hoerster, K.D. Table for Two: Perceptions of Social Support from Participants in a Weight Management Intervention for Veterans with PTSD and Overweight or Obesity. Psychol. Serv. 2022, 19, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Mahamat-Saleh, Y.; Fiolet, T.; Rebeaud, M.E.; Mulot, M.; Guihur, A.; El Fatouhi, D.; Laouali, N.; Peiffer-Smadja, N.; Aune, D.; Severi, G. Diabetes, Hypertension, Body Mass Index, Smoking and COVID-19-Related Mortality: A Systematic Review and Meta-Analysis of Observational Studies. BMJ Open 2021, 11, e052777. [Google Scholar] [CrossRef]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Melita, H. COVID-19 Infection and Body Weight: A Deleterious Liaison in a J-Curve Relationship. Obes. Res. Clin. Pract. 2021, 15, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.R.; Geleris, J.; Anderson, D.R.; Zucker, J.; Nobel, Y.R.; Freedberg, D.; Small-Saunders, J.; Rajagopalan, K.N.; Greendyk, R.; Chae, S.-R.; et al. Body Mass Index and Risk for Intubation or Death in SARS-CoV-2 Infection. Ann. Intern. Med. 2020, 17, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Busetto, L.; Bettini, S.; Fabris, R.; Serra, R.; Dal Pra, C.; Maffei, P.; Rossato, M.; Fioretto, P.; Vettor, R. Obesity and COVID-19: An Italian Snapshot. Obesity 2020, 28, 1600–1605. [Google Scholar] [CrossRef]
- Hajifathalian, K.; Kumar, S.; Newberry, C.; Shah, S.; Fortune, B.; Krisko, T.; Ortiz-Pujols, S.; Zhou, X.K.; Dannenberg, A.J.; Kumar, R.; et al. Obesity Is Associated with Worse Outcomes in COVID-19: Analysis of Early Data from New York City. Obesity 2020, 28, 1606–1612. [Google Scholar] [CrossRef]
- Yates, T.; Razieh, C.; Zaccardi, F.; Davies, M.J.; Khunti, K. Obesity and Risk of COVID-19: Analysis of UK Biobank. Prim. Care Diabetes 2020, 14, 566–567. [Google Scholar] [CrossRef]
- Guglielmi, V.; Colangeli, L.; Scipione, V.; Ballacci, S.; Di Stefano, M.; Hauser, L.; Colella Bisogno, M.; D’Adamo, M.; Medda, E.; Sbraccia, P. Inflammation, Underweight, Malignancy and a Marked Catabolic State as Predictors for Worse Outcomes in COVID-19 Patients with Moderate-to-Severe Disease Admitted to Internal Medicine Unit. PLoS ONE 2022, 17, e0268432. [Google Scholar] [CrossRef]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and Diabetes as High-risk Factors for Severe Coronavirus Disease 2019 (COVID-19). Diabetes Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef]
- Singh, R.; Rathore, S.S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef]
- Malavazos, A.E.; Corsi Romanelli, M.M.; Bandera, F.; Iacobellis, G. Targeting the Adipose Tissue in COVID-19. Obesity 2020, 28, 1178–1179. [Google Scholar] [CrossRef]
- Nogueira-de-Almeida, C.A.; Del Ciampo, L.A.; Ferraz, I.S.; Del Ciampo, I.R.L.; Contini, A.A.; Ued, F.d.V. COVID-19 and Obesity in Childhood and Adolescence: A Clinical Review. J. Pediatr. 2020, 96, 546–558. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 Is Associated with Clinically Significant Weight Loss and Risk of Malnutrition, Independent of Hospitalisation: A Post-Hoc Analysis of a Prospective Cohort Study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef]
- Anderson, B.F.; Baker, H.M.; Norris, G.E.; Rumball, S.V.; Baker, E.N. Apolactoferrin Structure Demonstrates Ligand-Induced Conformational Change in Transferrins. Nature 1990, 344, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Akib, R.D.; Aminuddin, A.; Hamid, F.; Prihantono, P.; Bahar, B.; Hadju, V. Leptin Levels in Children with Malnutrition. Gac. Sanit. 2021, 35, S278–S280. [Google Scholar] [CrossRef]
- Ko, Y.-T.; Lin, Y.-L.; Kuo, C.-H.; Lai, Y.-H.; Wang, C.-H.; Hsu, B.-G. Low Serum Leptin Levels Are Associated with Malnutrition Status According to Malnutrition-Inflammation Score in Patients Undergoing Chronic Hemodialysis. Hemodial. Int. 2020, 24, 221–227. [Google Scholar] [CrossRef]
- França, T.G.D.; Ishikawa, L.L.W.; Zorzella-Pezavento, S.F.G.; Chiuso-Minicucci, F.; da Cunha, M.; Sartori, A. Impact of Malnutrition on Immunity and Infection. J. Venom. Anim. Toxins Incl. Trop. Dis. 2009, 15, 374–390. [Google Scholar] [CrossRef]
- Fedele, D.; De Francesco, A.; Riso, S.; Collo, A. Obesity, Malnutrition, and Trace Element Deficiency in the Coronavirus Disease (COVID-19) Pandemic: An Overview. Nutrition 2021, 81, 111016. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. Endorsed by the ESPEN Council ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the First COVID-19 Lockdown on Body Weight: A Combined Systematic Review and a Meta-Analysis. Clin. Nutr. 2022, 41, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.B.R.; Gal-Dudding, C.; Martin, X.; Chamay-Weber, C. Evaluation of the Impact of the COVID-19 Lockdown on BMI in Children and Adolescents with or without Obesity. BMC Pediatr. 2022, 22, 509. [Google Scholar] [CrossRef]
- Almandoz, J.P.; Xie, L.; Schellinger, J.N.; Mathew, M.S.; Marroquin, E.M.; Murvelashvili, N.; Khatiwada, S.; Kukreja, S.; McAdams, C.; Messiah, S.E. Changes in Body Weight, Health Behaviors, and Mental Health in Adults with Obesity during the COVID-19 Pandemic. Obesity 2022, 30, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.F.; Burrin, C.; Chan, T.; Fusco, F. A Systematic Review of the Impact of the First Year of COVID-19 on Obesity Risk Factors: A Pandemic Fueling a Pandemic? Curr. Dev. Nutr. 2022, 6, nzac011. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, S.M.; Alghannam, A.F.; Taha, N.; Alqahtani, S.S.; Al-Mutairi, A.; Al-Saud, N.; Alghnam, S. The Impact of COVID-19 Pandemic on Weight and Body Mass Index in Saudi Arabia: A Longitudinal Study. Front. Public Health 2022, 9, 2383. [Google Scholar] [CrossRef]
- Güzel, Â.; Mutlu, N.L.; Molendijk, M. COVID-19-Related Changes in Eating Disorder Pathology, Emotional and Binge Eating and Need for Care: A Systematic Review with Frequentist and Bayesian Meta-Analyses. Eat. Weight Disord. 2023, 28, 19. [Google Scholar] [CrossRef]
- Rabasa, C.; Dickson, S.L. Impact of Stress on Metabolism and Energy Balance. Curr. Opin. Behav. Sci. 2016, 9, 71–77. [Google Scholar] [CrossRef]
- Kwasnicka, D.; Dombrowski, S.U.; White, M.; Sniehotta, F. Theoretical Explanations for Maintenance of Behaviour Change: A Systematic Review of Behaviour Theories. Health Psychol. Rev. 2016, 10, 277–296. [Google Scholar] [CrossRef]
- Wood, W.; Rünger, D. Psychology of Habit. Annu. Rev. Psychol. 2016, 67, 289–314. [Google Scholar] [CrossRef]
- PricewaterhouseCoopers Consumer Transformation—chAnging Behaviour and Purchasing Decisions | PwC Report. Available online: https://www.pwc.pl/pl/publikacje/transformacja-konsumenta-zmiana-zachowan-i-decyzji-zakupowych.html (accessed on 17 May 2023).
- Pérez, V.; Aybar, C.; Pavía, J.M. COVID-19 and Changes in Social Habits. Restaurant Terraces, a Booming Space in Cities. The Case of Madrid. Mathematics 2021, 9, 2133. [Google Scholar] [CrossRef]
- Özenoǧlu, A.; Çevik, E.; Çolak, H.; Altintaş, T.; Alakuş, K. Changes in Nutrition and Lifestyle Habits during the COVID-19 Pandemic in Turkey and the Effects of Healthy Eating Attitudes. Mediterr. J. Nutr. Metab. 2021, 14, 325–341. [Google Scholar] [CrossRef]
- Lombardo, M.; Guseva, E.; Perrone, M.A.; Müller, A.; Rizzo, G.; Storz, M.A. Changes in Eating Habits and Physical Activity after COVID-19 Pandemic Lockdowns in Italy. Nutrients 2021, 13, 4522. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.B.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef]
- Sample Size Calculator: Understanding Sample Sizes. Available online: https://www.surveymonkey.com/mp/sample-size-calculator/ (accessed on 20 March 2020).
- Population of Poland. Demography 2023: Natural Increase, Mean Age. Projections and Historical Data. Available online: https://www.populationof.net/pl/poland/ (accessed on 3 May 2023).
- KomPAN® Questionnaire and Data Processing Procedure available in English! Available online: https://knozc.pan.pl/pl/aktualnoci/111-kwestionariusz-kompan-wraz-z-procedura-opracowania-danych-dostepny-w-wersji-anglojezycznej (accessed on 19 March 2023).
- Body Mass Index (BMI). Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index (accessed on 19 March 2023).
- Bhutani, S.; vanDellen, M.R.; Cooper, J.A. Longitudinal Weight Gain and Related Risk Behaviors during the COVID-19 Pandemic in Adults in the US. Nutrients 2021, 13, 671. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, M.; Ji, Y.; Shi, Y.; Zhou, J.; Li, Q.; Qin, R.; Zhuang, X. “Stay-at-Home” Lifestyle Effect on Weight Gain during the COVID-19 Outbreak Confinement in China. Int. J. Environ. Res. Public Health 2021, 18, 1813. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021, 30, 20–31. [Google Scholar] [CrossRef]
- Freire, R. Scientific Evidence of Diets for Weight Loss: Different Macronutrient Composition, Intermittent Fasting, and Popular Diets. Nutrition 2020, 69, 110549. [Google Scholar] [CrossRef]
- Górnicka, M.; Drywień, M.E.; Zielinska, M.A.; Hamułka, J. Dietary and Lifestyle Changes During COVID-19 and the Subsequent Lockdowns among Polish Adults: A Cross-Sectional Online Survey PLifeCOVID-19 Study. Nutrients 2020, 12, 2324. [Google Scholar] [CrossRef]
- Chew, H.S.J.; Lopez, V. Global Impact of COVID-19 on Weight and Weight-Related Behaviors in the Adult Population: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 1876. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef]
- Neshteruk, C.D.; Zizzi, A.; Suarez, L.; Erickson, E.; Kraus, W.E.; Li, J.S.; Skinner, A.C.; Story, M.; Zucker, N.; Armstrong, S.C. Weight-Related Behaviors of Children with Obesity during the COVID-19 Pandemic. Child Obes. 2021, 17, 371–378. [Google Scholar] [CrossRef] [PubMed]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating Behaviour Changes during the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef]
- Cirillo, M.; Rizzello, F.; Badolato, L.; De Angelis, D.; Evangelisti, P.; Coccia, M.E.; Fatini, C. The Effects of COVID-19 Lockdown on Lifestyle and Emotional State in Women Undergoing Assisted Reproductive Technology: Results of an Italian Survey. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102079. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Martini, D.; Scaglioni, S.; Sculati, M.; Donini, L.M.; Leonardi, F.; Agostoni, C.; Castelnuovo, G.; Ferrara, N.; Ghiselli, A.; et al. Snacking in Nutrition and Health. Int. J. Food Sci. Nutr. 2019, 70, 909–923. [Google Scholar] [CrossRef]
- Skoczek-Rubińska, A.; Bajerska, J. The Consumption of Energy Dense Snacks and Some Contextual Factors of Snacking May Contribute to Higher Energy Intake and Body Weight in Adults. Nutr. Res. 2021, 96, 20–36. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar Consumption, Metabolic Disease and Obesity: The State of the Controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Sayon-Orea, C.; Ruiz-Canela, M.; Martinez-Gonzalez, M.A. Impact of Sugars and Sugar Taxation on Body Weight Control: A Comprehensive Literature Review. Obesity 2016, 24, 1410–1426. [Google Scholar] [CrossRef]
- Freeman, C.R.; Zehra, A.; Ramirez, V.; Wiers, C.E.; Volkow, N.D.; Wang, G.-J. Impact of Sugar on the Body, Brain, and Behavior. Front. Biosci. (Landmark Ed.) 2018, 23, 2255–2266. [Google Scholar] [CrossRef]
- Sánchez, E.; Lecube, A.; Bellido, D.; Monereo, S.; Malagón, M.M.; Tinahones, F.J. Obesity, on behalf of the S.S. for the S. of Leading Factors for Weight Gain during COVID-19 Lockdown in a Spanish Population: A Cross-Sectional Study. Nutrients 2021, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef] [PubMed]
- Chodkiewicz, J.; Talarowska, M.; Miniszewska, J.; Nawrocka, N.; Bilinski, P. Alcohol Consumption Reported during the COVID-19 Pandemic: The Initial Stage. Int. J. Environ. Res. Public Health 2020, 17, 4677. [Google Scholar] [CrossRef] [PubMed]
- Gesteiro, E.; García-Carro, A.; Aparicio-Ugarriza, R.; González-Gross, M. Eating out of Home: Influence on Nutrition, Health, and Policies: A Scoping Review. Nutrients 2022, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Schoeller, D.A.; Walsh, M.C.; McWilliams, C. Frequency of Eating Out at Both Fast-Food and Sit-Down Restaurants Was Associated With High Body Mass Index in Non-Large Metropolitan Communities in Midwest. Am. J. Health Promot. 2018, 32, 75–83. [Google Scholar] [CrossRef]
- Abed Alah, M.; Abdeen, S.; Kehyayan, V.; Bougmiza, I. The Impact of Changes in Work Arrangements During COVID-19 Pandemic on the Lifestyle of Qatar’s Working Population. J. Occup. Environ. Med. 2022, 64, e53. [Google Scholar] [CrossRef]
- Bacaro, V.; Ballesio, A.; Cerolini, S.; Vacca, M.; Poggiogalle, E.; Donini, L.M.; Lucidi, F.; Lombardo, C. Sleep Duration and Obesity in Adulthood: An Updated Systematic Review and Meta-Analysis. Obes. Res. Clin. Pract. 2020, 14, 301–309. [Google Scholar] [CrossRef]
- Ogilvie, R.P.; Patel, S.R. The Epidemiology of Sleep and Obesity. Sleep Health 2017, 3, 383–388. [Google Scholar] [CrossRef]
- Antza, C.; Kostopoulos, G.; Mostafa, S.; Nirantharakumar, K.; Tahrani, A. The Links between Sleep Duration, Obesity and Type 2 Diabetes Mellitus. J. Endocrinol. 2021, 252, 125–141. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; O’Keeffe, M.; Roberts, A.L.; RoyChoudhury, A.; Laferrère, B. Short Sleep Duration, Glucose Dysregulation and Hormonal Regulation of Appetite in Men and Women. Sleep 2012, 35, 1503–1510. [Google Scholar] [CrossRef]
- Steinberg, D.M.; Christy, J.; Batch, B.C.; Askew, S.; Moore, R.H.; Parker, P.; Bennett, G.G. Preventing Weight Gain Improves Sleep Quality Among Black Women: Results from a RCT. Ann. Behav. Med. 2017, 51, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.C.; Horgan, G.; Mikkelsen, M.-L.K.; Palmeira, A.L.; Scott, S.; Duarte, C.; Santos, I.; Encantado, J.; Driscoll, R.O.; Turicchi, J.; et al. Association between Objectively Measured Sleep Duration, Adiposity and Weight Loss History. Int. J. Obes. 2020, 44, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Gangwisch, J.E.; Malaspina, D.; Boden-Albala, B.; Heymsfield, S.B. Inadequate Sleep as a Risk Factor for Obesity: Analyses of the NHANES I. Sleep 2005, 28, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.R.; Motta-Santos, D.; Dos Santos Soares, D.; de Lima, J.B.; Cardozo, G.G.; Guimarães, L.S.P.; Negrão, C.E.; Dos Santos, M.R. Association of Physical Activity Levels and the Prevalence of COVID-19-Associated Hospitalization. J. Sci. Med. Sport 2021, 24, 913–918. [Google Scholar] [CrossRef]
- Chen, X.; Hong, X.; Gao, W.; Luo, S.; Cai, J.; Liu, G.; Huang, Y. Causal Relationship between Physical Activity, Leisure Sedentary Behaviors and COVID-19 Risk: A Mendelian Randomization Study. J. Transl. Med. 2022, 20, 216. [Google Scholar] [CrossRef]
- Swift, D.L.; McGee, J.E.; Earnest, C.P.; Carlisle, E.; Nygard, M.; Johannsen, N.M. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog. Cardiovasc. Dis. 2018, 61, 206–213. [Google Scholar] [CrossRef]
- Oppert, J.-M.; Bellicha, A.; Ciangura, C. Physical Activity in Management of Persons with Obesity. Eur. J. Intern. Med. 2021, 93, 8–12. [Google Scholar] [CrossRef]
- Block, J.P.; He, Y.; Zaslavsky, A.M.; Ding, L.; Ayanian, J.Z. Psychosocial Stress and Change in Weight Among US Adults. Am. J. Epidemiol. 2009, 170, 181–192. [Google Scholar] [CrossRef]
- Wu, M.-J.; Zhao, K.; Fils-Aime, F. Response Rates of Online Surveys in Published Research: A Meta-Analysis. Comput. Hum. Behav. Rep. 2022, 7, 100206. [Google Scholar] [CrossRef]
- Mitchell, T. What Low Response Rates Mean for Telephone Surveys. Pew Res. Center Methods 2017, 15, 1–39. [Google Scholar]
Variables | Changes in BMI during Pandemic | |||||||
---|---|---|---|---|---|---|---|---|
Women | Men | |||||||
Decrease n = 43 (23.6%) | No Change n = 52 (28.6%) | Increase n = 87 (47.8%) | p | Decrease n = 20 (18.5%) | No Change n = 42 (38.9%) | Increase n = 46 (42.6%) | p | |
Age (years) | x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | ||
34.5 ± 10.0 | 45.0 ± 12.4 | 40.7 ± 14.0 | 0.0004 * | 42.3 ± 14.3 | 44.0 ± 12.1 | 40.0 ± 11.1 | 0.2563 * | |
Anthropometric parameters | ||||||||
x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | |||
Body weight before (kg) | 71.5 ± 14.1 | 63.5 ± 10.1 | 64.8 ± 11.7 | 0.0072 * | 83.1 ± 9.22 | 83.8 ± 14.8 | 89.3 ± 17.9 | 0.3496 * |
Body weight during (kg) | 68.9 ± 13.7 | 63.5 ± 10.1 | 67.3 ± 12.1 | 0.0853 * | 80.2 ± 8.46 | 83.8 ± 14.8 | 92.0 ± 18.7 | 0.0153 * |
BMI before (kg/m2) | 25.5 ± 4.73 | 23.6 ± 3.58 | 23.6 ± 3.88 | 0.0571 * | 26.2 ± 3.61 | 26.1 ± 4.25 | 27.0 ± 84.69 | 0.6822 * |
BMI during (kg/m2) | 24.6 ± 4.67 | 23.6 ± 3.58 | 24.5 ± 3.97 | 0.3420 * | 25.3 ± 3.45 | 26.0 ± 64.25 | 27.8 ± 94.90 | 0.0557 * |
Body height (cm) | 167 ± 4.92 | 164 ± 5.48 | 165 ± 5.86 | 0.0252 * | 178 ± 7.20 | 179 ± 7.27 | 181 ± 7.62 | 0.1994 * |
Sociodemographic parameters | ||||||||
%—percentage of respondents | p | %—percentage of respondents | p | |||||
Education (%) | ||||||||
Occupational | 2.3 | 2.0 | 2.3 | 0.420 ** | 5.0 | 4.8 | 4.4 | 0.961 ** |
Secondary | 18.6 | 14.3 | 24.1 | 20.0 | 21.4 | 17.8 | ||
Higher | 79.1 | 83.7 | 73.6 | 75.0 | 73.8 | 77.8 | ||
Place of residence (%) | ||||||||
Village | 18.6 | 20.0 | 31.0 | 0.210 ** | 25.0 | 21.4 | 13.3 | 0.227 ** |
City < 20 thousand residents | 7.0 | 14.0 | 10.3 | 15.0 | 11.9 | 2.2 | ||
City of 20–100 thousand residents | 9.3 | 20.0 | 16.1 | 15.0 | 19.0 | 13.3 | ||
City > 100 thousand residents | 65.1 | 46.0 | 42.5 | 45.0 | 47.6 | 71.1 | ||
Type of work before isolation (%) | ||||||||
Retired/pensioner | 2.3 | 14.0 | 9.2 | 0.074 ** | 15.0 | 11.9 | 6.7 | 0.499 ** |
Parental leave/ unemployed | 2.3 | 6.0 | 5.7 | 0.00 | 0.00 | 0.00 | ||
Casual work | 14.0 | 2.0 | 6.9 | 10.0 | 4.8 | 4.4 | ||
Permanent employment | 72.1 | 76.0 | 64.4 | 65.0 | 81.0 | 86.7 | ||
Student | 9.3 | 2.0 | 13.8 | 10.0 | 2.4 | 2.2 | ||
Use of diet during isolation (%) | ||||||||
No | 46.5 | 67.3 | 78.2 | 0.002 ** | 50.0 | 81.0 | 78.3 | 0.038 ** |
Yes, for health reasons | 7.0 | 11.5 | 5.7 | 10.0 | 4.8 | 10.9 | ||
Yes, by personal choice | 46.5 | 21.2 | 16.1 | 40.0 | 14.3 | 10.9 |
Variables | Change in Structure and Quantity of Product Consumption during Lockdown (%) | |||||||
---|---|---|---|---|---|---|---|---|
Women | Men | |||||||
Decrease n = 43 | No Change n = 52 | Increase n = 87 | Chi2 Test p | Decrease n = 20 | No Change n = 42 | Increase n = 46 | Chi2 Test p | |
%—Percentage of Respondents | %—Percentage of Respondents | |||||||
Same food products and in the same quantity | 18.6 | 42.3 | 28.7 | <0.0001 | 35.0 | 59.5 | 13.0 | <0.0001 |
Same products in greater quantities | 7.0 | 9.6 | 32.2 | 5.0 | 9.5 | 28.3 | ||
Same products in a smaller quantity | 18.6 | 9.6 | 2.3 | 15.0 | 4.8 | 17.4 | ||
Change in product mix with no change in quantity | 16.3 | 15.4 | 17.2 | 0.0 | 11.9 | 19.6 | ||
Change in product mix and reduction in quantity | 30.2 | 9.6 | 3.4 | 25.0 | 2.4 | 2.2 | ||
Change in product mix and increase in quantity | 9.3 | 13.5 | 16.1 | 20.0 | 11.9 | 19.6 |
Variables | Changes in Dietary Factors during Lockdown | |||||||
---|---|---|---|---|---|---|---|---|
Women | Men | |||||||
Decrease n = 43 | No Change n = 52 | Increase n = 87 | Kruskal–Wallis Test p | Decrease n = 20 | No Change n = 42 | Increase n = 46 | Kruskal–Wallis Test p | |
x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | x ± SD | |||
Number of meals/day | 4.02 ± 0.91 | 3.92 ± 0.90 | 4.07 ± 0.83 | 0.6636 | 3.80 ± 0.83 | 3.79 ± 0.84 | 4.02 ± 1.02 | 0.2806 |
Frequency of snacking | 3.91 ± 1.39 | 3.90 ± 1.68 | 4.79 ± 1.35 | 0.0003 | 3.80 ± 1.74 | 4.52 ± 1.38 | 4.52 ± 1.41 | 0.2216 |
Fast food (g/day) | 5.30 ± 7.17 | 7.88 ± 16.5 | 12.6 ± 27.0 | 0.3021 | 13.0 ± 22.8 | 11.0 ± 17.5 | 22.2 ± 53.2 | 0.5811 |
Fried foods (g/day) | 31.1 ± 50.5 | 26.9 ± 28.3 | 37.1 ± 37.3 | 0.0898 | 36.4 ± 32.6 | 48.0 ± 61.6 | 55.6 ± 63.2 | 0.5309 |
Sweets (g/day) | 41.7 ± 68.6 | 26.1 ± 31.4 | 70.9 ± 95.9 | 0.0021 | 32.0 ± 65.7 | 26.2 ± 29.9 | 53.0 ± 89.3 | 0.2555 |
Alcohol (g/day) | 28.2 ± 45.0 | 28.2 ± 47.8 | 28.8 ± 44.7 | 0.3918 | 21.4 ± 32.4 | 61.9 ± 130 | 106 ± 146 | 0.0017 |
Sweetened beverages (g/day) | 21.2 ± 64.5 | 26.9 ± 68.4 | 34.7 ± 99.0 | 0.6726 | 60.2 ± 106 | 62.6 ± 172 | 100 ± 182 | 0.3554 |
Vegetables (g/day) | 282 ± 247 | 230 ± 238 | 214 ± 208 | 0.2310 | 102 ± 99.2 | 110 ± 125 | 156 ± 184 | 0.3912 |
Fruit (g/day) | 141 ± 134 | 178 ± 223 | 183 ± 186 | 0.4533 | 102 ± 94.4 | 95.3 ± 85.3 | 122 ± 151 | 0.9504 |
Variables | Changes in Sleep Duration during the Pandemic | |||||||
---|---|---|---|---|---|---|---|---|
Women | Men | |||||||
Decrease n = 43 | No Change n = 52 | Increase n = 87 | Chi2 Test p | Decrease n = 20 | No Change n = 42 | Increase n = 46 | Chi2 Test p | |
%—Percentage of Respondents | %—Percentage of Respondents | |||||||
Sleep time | Weekdays (%) | |||||||
decreased | 14.0 | 9.6 | 4.6 | 0.0378 | 5.0 | 0 | 4.3 | 0.0278 |
no change | 58.1 | 61.5 | 46.0 | 55.0 | 83.3 | 52.2 | ||
increased | 27.9 | 28.8 | 49.4 | 40.0 | 16.7 | 43.5 | ||
Sleep time | Weekends (%) | |||||||
decreased | 20.9 | 5.8 | 2.3 | 0.0017 | 5.0 | 0 | 8.7 | 0.1866 |
no change | 60.5 | 82.7 | 74.7 | 70.0 | 83.3 | 63.0 | ||
increased | 18.6 | 11.5 | 23.0 | 25.0 | 16.7 | 28.3 |
Variables | Changes in Time Spent Watching TV or in Front of the Computer | |||||||
---|---|---|---|---|---|---|---|---|
Women | Men | |||||||
Decrease n = 43 | No Change n = 52 | Increase Socio- demographic Parameters n = 87 | Kruskal–Wallis Test p | Decrease n = 20 | No Change n = 42 | Increase n = 46 | Kruskal–Wallis Test p | |
%—Percentage of Respondents | %—Percentage of Respondents | |||||||
Before the SARS-CoV-2 pandemic (%) | ||||||||
<2 h | 16.3 | 19.2 | 19.5 | 0.3149 | 25.0 | 14.3 | 10.9 | 0.8445 |
2 to 4 h | 18.6 | 25.0 | 21.8 | 15.0 | 23.8 | 19.6 | ||
4 to 6 h | 14.0 | 17.3 | 23.0 | 10.0 | 16.7 | 17.4 | ||
6 to 8 h | 20.9 | 17.3 | 17.2 | 5.0 | 16.7 | 19.6 | ||
8 to 10 h | 18.6 | 19.2 | 12.6 | 15.0 | 14.3 | 23.9 | ||
>10 h | 11.6 | 1.9 | 5.7 | 30.0 | 14.3 | 8.7 | ||
During the SARS-CoV-2 pandemic (%) | ||||||||
<2 h | 16.3 | 9.6 | 9.2 | 0.1377 | 20.0 | 11.9 | 6.5 | 0.4950 |
2 to 4 h | 14.0 | 21.2 | 13.8 | 5.0 | 11.9 | 10.9 | ||
4 to 6 h | 25.6 | 21.2 | 12.6 | 25.0 | 11.9 | 15.2 | ||
6 to 8 h | 11.6 | 23.1 | 21.8 | 5.0 | 28.6 | 13.0 | ||
8 to 10 h | 9.3 | 17.3 | 26.4 | 10.0 | 16.7 | 28.3 | ||
>10 h | 23.3 | 7.7 | 16.1 | 35.0 | 19.0 | 26.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolesławska, I.; Jagielski, P.; Błaszczyk-Bębenek, E.; Jagielska, A.; Przysławski, J. Lifestyle Changes during the SARS-CoV-2 Pandemic as Predictors of BMI Changes among Men and Women in Poland. Nutrients 2023, 15, 2427. https://doi.org/10.3390/nu15112427
Bolesławska I, Jagielski P, Błaszczyk-Bębenek E, Jagielska A, Przysławski J. Lifestyle Changes during the SARS-CoV-2 Pandemic as Predictors of BMI Changes among Men and Women in Poland. Nutrients. 2023; 15(11):2427. https://doi.org/10.3390/nu15112427
Chicago/Turabian StyleBolesławska, Izabela, Paweł Jagielski, Ewa Błaszczyk-Bębenek, Anna Jagielska, and Juliusz Przysławski. 2023. "Lifestyle Changes during the SARS-CoV-2 Pandemic as Predictors of BMI Changes among Men and Women in Poland" Nutrients 15, no. 11: 2427. https://doi.org/10.3390/nu15112427
APA StyleBolesławska, I., Jagielski, P., Błaszczyk-Bębenek, E., Jagielska, A., & Przysławski, J. (2023). Lifestyle Changes during the SARS-CoV-2 Pandemic as Predictors of BMI Changes among Men and Women in Poland. Nutrients, 15(11), 2427. https://doi.org/10.3390/nu15112427