Vegetables with Enhanced Iron Bioavailability—German Consumers’ Perceptions of a New Approach to Improve Dietary Iron Supply
Abstract
:1. Introduction
- Does the acceptance of iron-biofortified vegetables depend on sociodemographic criteria as well as purchasing and consumption behavior?
- Are there differences in consumer acceptance of vegetables biofortified with iron compared to vegetables enriched with other nutrients?
- Do consumer groups that are attracted to iron-biofortified vegetables differ from those that consume functional foods and dietary supplements and, if so, in what respects?
- How do health claims and other labeled product attributes affect the likelihood of purchase?
- Are potential buyers willing to pay a premium price for vegetables biofortified with iron?
- What conclusion can be drawn from the general consumer behavior towards common vegetables for iron-biofortified vegetables?
2. Materials and Methods
2.1. Data Collection
2.2. Study Design
- -
- Group A: Vegetable (preferred vegetable) is particularly rich in iron.
- -
- Group B: Iron-rich (preferred vegetable) is also characterized by increased vitamin C content. Vitamin C promotes iron absorption in the body and thus supports an improved iron supply.
- -
- Group C: The iron-rich (preferred vegetable) is also characterized by an increased content of iodine. Iodine is another vital trace element that contributes to normal thyroid function, among other things.
- -
- Group D: Due to special cultivation, iron-rich (preferred vegetable) is less contaminated with undesirable substances such as cadmium and nitrate.
- -
- Group E: Iron-rich (preferred vegetable) is less fertilized with nitrogen and has fewer crop losses. This results in less environmental impact and food losses in the production of the vegetable.
2.3. Statistical Analysis
3. Results
3.1. Consumer Acceptance of Iron-Biofortified Vegetables Compared to Dietary Supplements and Functional Foods
3.2. Consumer Knowledge of Iron Deficiency Disorders and Sources of Iron in the Diet
3.3. Factors Relevant to the Market Introduction of Iron-Biofortified Vegetables in Germany
3.4. Food Preferences and Purchasing and Consumption Behavior of Germans
4. Discussion
4.1. Comparing Consumer Groups for Iodine-Biofortified Vegetables with Those for Functional Foods and Dietary Supplements
4.2. Consumers’ Level of Knowledge about Micronutrient Iron
4.3. Impact of Consumer Perceptions on Nutrient- and Health-Related Terms and Claims for a Market Launch of Iron-Biofortified Vegetables
4.4. Limitations of the Study and Future Research Potentials
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Steenson, S.; Buttriss, J.L. The challenges of defining a healthy and ‘sustainable’ diet. Nutr. Bull. 2020, 45, 206–222. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 432/2012 of 16 May 2012 Reduction of Disease Risk and to Children’s Development and Health: Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the. Official Journal of the European Union [Online], 16 May 2012. pp. 15–16. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0432&from=EN (accessed on 9 May 2023).
- Man, Y.; Xu, T.; Adhikari, B.; Zhou, C.; Wang, Y.; Wang, B. Iron supplementation and iron-fortified foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4504–4525. [Google Scholar] [CrossRef] [PubMed]
- Max Rubner-Institut. Nationale Verzehrsstudie II. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/NVS_ErgebnisberichtTeil2.pdf?__blob=publicationFile&v=2 (accessed on 16 August 2022).
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Pawlak, R.; Berger, J.; Hines, I. Iron Status of Vegetarian Adults: A Review of Literature. Am. J. Lifestyle Med. 2018, 12, 6. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- Nielsen, P. Eisenmangel bei Sportlern: Prävention. MMW Fortschr. Med. 2020, 162, 22–24. [Google Scholar] [CrossRef]
- Serafini, M.; Stanzione, A.; Foddai, S. Functional foods: Traditional use and European legislation. Int. J. Food Sci. Nutr. 2012, 63 (Suppl. S1), 7–9. [Google Scholar] [CrossRef]
- Viell, B. Funktionelle Lebensmittel und Nahrungsergänzungsmittel. Bundesgesundheitsblatt Gesundh. Gesundh. 2001, 44, 193–204. [Google Scholar] [CrossRef]
- Kofoed, C.L.F.; Christensen, J.; Dragsted, L.O.; Tjønneland, A.; Roswall, N. Determinants of dietary supplement use—Healthy individuals use dietary supplements. Br. J. Nutr. 2015, 113, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Best for Planning. Deutschsprachige Bevölkerung ab 14 Jahren; Verwender Functional Food—“Ja”. 2022. Available online: https://medimach-online.de/ (accessed on 8 May 2023).
- PricewaterhouseCoppers GmbH. Ernährungstrends—gesund, nachhaltig und fleischlos? Available online: https://www.pwc.de/de/handel-und-konsumguter/umfrage-ernaehrungstrends-pwc-pospulse.pdf (accessed on 16 August 2022).
- Battaglia Richi, E.; Baumer, B.; Conrad, B.; Darioli, R.; Schmid, A.; Keller, U. Health Risks Associated with Meat Consumption: A Review of Epidemiological Studies. Int. J. Vitam. Nutr. Res. 2015, 85, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.M.; Travis, R.C.; Brandbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 2014, 125, 179–192. [Google Scholar] [CrossRef]
- Bundesministerium für Umwelt, Naturschutz, Nukleare Sicherheit und Verbraucherschutz. Klimabilanz bei der Herstellung ausgewählter Lebensmittel. 2016. Available online: https://de.statista.com/statistik/daten/studie/39219/umfrage/co2-emission-bei-der-herstellung-ausgewaehlter-lebensmittel/ (accessed on 16 August 2022).
- Statista. Wie häufig achten Sie bei der Auswahl von Lebensmitteln auf folgende Eigenschaften? 2019. Available online: https://de.statista.com/statistik/daten/studie/244355/umfrage/kriterien-von-verbrauchern-beim-kauf-von-lebensmitteln/ (accessed on 16 August 2022).
- Abadia, J.; Vázque, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Àlvarez-Fernández, A.; López-Millán, A.F. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 2011, 29, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Ozores-Hampton, M. Effective strategies to correct iron deficiency in Florida vegetable crops. J. Am. Soc. Hortic. Sci. 2013, 23, 5. [Google Scholar] [CrossRef]
- Piccinelli, F.; Sega, D.; Melchior, A.; Ruggieri, S.; Sanadar, M.; Varanini, Z.; Zamboni, A. Regreening properties of the soil slow-mobile H2bpcd/Fe3+ complex: Steps forward to the development of a new enviormentally friendly Fe fertilizer. Front. Plant Sci. 2022, 13, 964088. [Google Scholar] [CrossRef]
- Inoue, K.; Kondo, S.; Adachi, A.; Yokota, H. Prodiction of iron enriched vegetables: Effect of feeding time on the rate of increase in foliar iron content and foliar injury. J. Hortic. Sci. Biotechnol. 2015, 75, 209–213. [Google Scholar] [CrossRef]
- Roosta, H.R.; Mohsenian, Y. Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Sci. Hortic. 2012, 146, 182–191. [Google Scholar] [CrossRef]
- Borowski, E. Uptake and transport of iron ions (Fe+2, Fe+3) supplied to roots or leaves in spinach (Spinacia oleracea L.) plants growing under different light conditions. Acta Agrobot. 2013, 66, 45–52. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral biofortification of vegetables as a tool to improve human diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef]
- Giordano, M.; El Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Iron biofortifcation of red and green pigmented lettuce in closed soilless cultication impacts crop performance and modulated mineral and bioactive composition. Agronomy 2019, 9, 290. [Google Scholar] [CrossRef]
- Buturi, C.V.; Sabationa, L.; Mauro, R.M.; Navarro-León, E.; Blasco, B.; Leonadri, C.; Giuffrida, F. Iron biofortification of greenhouse soilless lettuce: An effective agronomic tool to improve the dietary minerl intake. Agronomy 2022, 12, 1793. [Google Scholar] [CrossRef]
- Buturi, C.V.; Coelho, S.R.M.; Cannata, C.; Basile, F.; Giuffrida, F.; Leonardi, C.; Mauro, R.P. Iron biofortifcation of greenhouse cherry tomatoes grown in a soilless system. Horticulturae 2022, 8, 858. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 3. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Alanís-Garza, P.; Mora-Nives, J.L.; Mora-Mora, J.P.; Jacobo-Velázquez, D.A. Kale An excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. J. Food 2013, 12, 298–303. [Google Scholar] [CrossRef]
- Kathi, S.; Laza, H.; Singh, S.; Thompson, L.; Li, W.; Simpson, C. Increasing vitamin C through agronomic biofortification of arugula micogreens. Sci. Rep. 2022, 12, 13093. [Google Scholar] [CrossRef]
- Qin, J.; Shi, A.; Mou, B.; Grudsk, M.A.; Weng, Y.; Ravelombola, W.; Bhattarai, G.; Dong, L.; Yang, W. Genetic diversity and association mapping of mineral element concentrations in spinach leaves. BMC Genom. 2017, 18, 941. [Google Scholar] [CrossRef]
- Locato, V.; Cimini, S.; Gara, L.D. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 2013, 4, 152. [Google Scholar] [CrossRef]
- Schuler, M.; Bauer, P. Strategies for iron biofortification of crop plants. In Food Quality; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Hoppler, M.; Egli, I.; Petry, N.; Gille, D.; Zeder, C.; Walczyk, T.; Blair, M.W.; Hurrell, R.F. Iron speciation in beans (Phaseolus vulgaris) biofortifed by common breeding. J. Food Sci. 2014, 79, 9. [Google Scholar] [CrossRef]
- Chatterjee, R.; Chordhury, R.S.; Dukpa, P.; Thirumdasu, R.K. Iron fortification in leafy vegetables present status and future possibilities. Innovare J. Agric. Sci. 2016, 4, 4. Available online: https://innovareacademics.in/journals/index.php/ijags/article/view/14713 (accessed on 9 May 2023).
- Huang, Y.; Yuan, L.; Yin, X. Biofortification to struggle against iron deficiency. In Phytoremediation and Biofortification; Springer: Dordrecht, The Netherlands, 2012; pp. 59–74. [Google Scholar]
- Shivay, Y.S.; Mandi, S. Advances in understanding iron cycling in soils, uptake/use by plants and ways of optimising iron-use efficiency in crop production. In Achieving Sustainable Crop Nutrition; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 307–336. [Google Scholar]
- Vasconcelos, M.W.; Gruissem, W.; Bhullar, N.K. Iron biofortification in the 21st century: Setting realsistc targets, overcoming obstacles, and new strategies for healthy nutrition. Curr. Opion. Biotechnol. 2017, 44, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, Y.; Slament-Loedin, I.H. Genetic biofortification to enirch rich and wheat grain iron: From genes to product. Frontiers 2019, 10, 833. [Google Scholar] [CrossRef]
- Mensink, G.; Truthman, J.; Heidemann, C.; Haftenberger, M.; Schienkiewitz, A.; Richter, A. Fruit and Vegetable Intake in Germany. Results of the German Health Interview and Examination Survey for Adults (DEGS1); Department of Epidemiology and Health Monitoring: Berlin/Heidelberg, Germany, 2013; Available online: https://edoc.rki.de/handle/176904/1514 (accessed on 9 May 2023).
- Timpanaro, G.; Bellia, C.; Foti, V.T.; Scuderi, A. Consumer Behaviour of Purchasing Biofortified Food Products. Sustainability 2020, 12, 6297. [Google Scholar] [CrossRef]
- Kleine-Kalmer, R.; Profeta, A.; Daum, D.; Enneking, U. Pre-Launch Exploration of Consumer Willingness to Purchase Selenium- and Iodine-Biofortified Apples-A Discrete Choice Analysis of Possible Market Settings. Nutrients 2021, 13, 1625. [Google Scholar] [CrossRef]
- Welk, A.-K.; Kleine-Kalmer, R.; Daum, D.; Enneking, U. Consumer Acceptance and Market Potential of Iodine-Biofortified Fruit and Vegetables in Germany. Nutrients 2021, 13, 4198. [Google Scholar] [CrossRef]
- Birol, E.; Meenakshi, J.V.; Oparinde, A.; Perez, S.; Tomlins, K. Developing country consumers’ acceptance of biofortified foods: A synthesis. Food Sec. 2015, 7, 555–568. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Oparinde, A.; Andersson, M.S.; Asare-Marfo, D.; Diressie, M.T.; Gonzalez, C.; Lividini, K.; Moursi, M.; Zeller, M. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Ann. N. Y. Acad. Sci. 2017, 1390, 104–114. [Google Scholar] [CrossRef]
- De Steur, H.; Wesana, J.; Blancquaert, D.; van der Straeten, D.; Gellynck, X. Methods matter: A meta-regression on the determinants of willingness-to-pay studies on biofortified foods. Ann. N. Y. Acad. Sci. 2017, 1390, 34–46. [Google Scholar] [CrossRef]
- Pérez, S.; Buriticab, A.; Poarinde, A.; Birol, E.; Gonzalez, C.; Zeller, M. Identifiying sociodemografic characteristics defining consumers’acceptance for main organoleptic attributes of an iron-biofortified bean variety in Guatemala. Int. J. Food Syst. Dyn. 2017, 8, 3. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bevölkerungsstand: Amtliche Einwohnerzahl Deutschlands. 2021. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html (accessed on 22 August 2022).
- Siegrist, M.; Stampfli, N.; Kastenholz, H. Consumers’ willingness to buy functional foods. The influence of carrier, benefit and trust. Appetite 2008, 51, 526–529. [Google Scholar] [CrossRef]
- Stratton, L.M.; Vella, M.N.; Sheeshka, J.; Duncan, A.M. Food neophobia is related to factors associated with functional food consumption in older adults. Food Qual. Prefer. 2015, 41, 133–140. [Google Scholar] [CrossRef]
- Verbeke, W. Consumer acceptance of functional foods: Socio-demographic, cognitive and attitudinal determinants. Food Qual. Prefer. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food-Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef] [PubMed]
- Szakály, Z.; Szente, V.; Kövér, G.; Polereczki, Z.; Szigeti, O. The influence of lifestyle on health behavior and preference for functional foods. Appetite 2012, 58, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Horska, E.; Sparke, K. Marketing attitudes towards the functional food and implications for market segmentation. Agric. Econ. 2007, 53, 349–353. [Google Scholar] [CrossRef]
- Anderson, J.D.; Mitchell, J.L.; Maples, J.G. Invited Review: Lessons from the COVID-19 pandemic for food supply chains. Appl. Anim. Sci. 2021, 37, 738–747. [Google Scholar] [CrossRef]
- Dickinson, A.; MacKay, D. Health habits and other characteristics of dietary supplement users: A review. Nutr. J. 2014, 13, 14. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Baltazar-Martins, G.; de Souza, D.B.; Munoz-Guerra, J. Gender differences in prevalence and patterns of dietary supplement use in elite athletes. Res. Q. Excerc. Sport 2021, 92, 4. [Google Scholar] [CrossRef]
- Antwi, J.; Appiah, B.; Oluwakuse, B.; Abu, B.A.Z. The Nutrition-COVID-19 Interplay: A Review. Curr. Nutr. Rep. 2021, 10, 364–374. [Google Scholar] [CrossRef]
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; et al. Epidemiology of iron deficiency anaemia in four European countries: A population-based study in primary care. Eur. J. Haematol. 2016, 97, 583–593. [Google Scholar] [CrossRef]
- Eberl, E.; Li, A.S.; Zheng, Z.Y.J.; Cunningham, J.; Rangan, A. Temporal change in iron content of vegetables and legumes in Australia: A scoping review. Foods 2022, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, L.; Enneking, U.; Daum, D. German consumer´s attitude towards selenium-biofortified apples and acceptance of related nutrition and health claims. Nutrients 2018, 10, 190. [Google Scholar] [CrossRef]
- Daum, D. Selstar. Available online: https://selstar.de/ (accessed on 17 January 2023).
- Stiftung Warentest. Vitamin-D-Pilze. Halten diese Champignons, was sie versprechen? Available online: https://www.test.de/Vitamin-D-Pilze-Halten-diese-Champignons-was-sie-versprechen-5419461-0/ (accessed on 17 January 2023).
- European Parliament and Council. REGULATION (EU) 2018/848 of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Official Journal of the European Union [Online], 14 June 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0848 (accessed on 9 May 2023).
- Statista. Kaufen Sie auch sogenannte „Functional Foods“, also Lebensmittel, die mit Vitaminen oder Mineralstoffen angereichert sind? 2019. Available online: https://de.statista.com/statistik/daten/studie/13252/umfrage/bekanntheit-und-verwendung-von-functional-food---lebensmitteln/ (accessed on 6 April 2023).
- European Parliament and Council. REGULATION (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Food. Available online: https://eur-lex.europa.eu/legal-content/DE/ALL/?uri=CELEX%3A32006R1924 (accessed on 9 May 2023).
- European Commission. REGULATIONS COMMISSION REGULATION (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Referring to the Reduction of Disease Risk and to Children’s Development and Health. Available online: https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX%3A32012R0432 (accessed on 9 May 2023).
- Foti, V.T.; Scuderi, A.; Bellia, C.; Timpanaro, G. Biofortification of tomatoes in Italy: Status and level of knowledge. Agrc. Econ. Czech 2021, 67, 227–235. [Google Scholar] [CrossRef]
- Banerji, A.; Birol, E.; Karandikar, B.; Rampal, J. Information, branding, certification, and consumer willingness to pay for high-iron pearl millet: Evidence from experimental auctions in Maharashtra, India. Food Policy 2016, 62, 133–141. [Google Scholar] [CrossRef]
Characteristics | Test Sample (%) | Population Level Germany 2021 (%) [14,50] | |
---|---|---|---|
Consumption of fresh fruit and vegetables | Consume at least rarely | 100 | 85 |
Gender | Male | 50 | 51 |
Female | 50 | 49 | |
Age | 18–24 | 9 | 7 |
25–34 | 15 | 13 | |
35–44 | 15 | 13 | |
45–54 | 17 | 13 | |
55–64 | 18 | 15 | |
>65 | 26 | 22 | |
Region in Germany | North | 18 | 18 |
West | 35 | 35 | |
South | 29 | 29 | |
East | 18 | 18 | |
Responsible for purchasing | Mainly myself | 64 | 63 |
Myself and another person | 36 | 35 |
Iron-Biofortified Vegetable R2 = 0.077 | Functional Food R2 = 0.118 | Dietary Supplement R2 = 0.144 | |
---|---|---|---|
Dietary Style | |||
No special | −0.081 * (−2.498) | −0.015 (0.013) | −0.717 ** (31.285) |
Shopping location | |||
Farmer’s market, organic produce shop, farm store | 0.045 (1.440) | −0.503 ** (6.941) | 0.165 (0.699) |
Sociodemographic variable | |||
Age | 0.062 (1.896) | −0.025 ** (39.322) | 0.006 (2.246) |
Female Gender | 0.078 * (2.430) | −0.330 ** (6.913) | 0.384 ** (8.924) |
Rural Area | −0.078 * (−2.548) | −0.084 (1.229) | −0.109 (1.937) |
Sustainability awareness | |||
Environmentally friendly cultivation | 0.105 ** (3.332) | 0.199 (1.642) | 0.185 (1.317) |
Regional origin | 0.079 * (2.488) | 0.338 ** (7.043) | −0.110 (0.709) |
Plastic-free packaging | 0.068 * (2.155) | 0.055 (0.199) | −0.154 (1.446) |
Purchase criteria | |||
Good taste | 0.062 * (1.962) | 0.111 (0.745) | 0.041 (0.094) |
Sources of iron supply | |||
Functional Food | 0.134 ** (4.171) | −/− | 0.239 ** (78.493) |
Dietary Supplements | 0.068 * (2.101) | 0.161 ** (55.115) | −/− |
Rich in Iron | Rich in Iron and Vitamin C | Rich in Iron and Iodine | Rich in Iron and Few Undesirable Substances | Rich in Iron and Low Environmental Impact | |
---|---|---|---|---|---|
Dietary style | |||||
Flexitarian | 26.8% | 43.2% | 42.9% | 31.9% | 46.1% |
Vegan | 22.2% | 33.3% | 50.0% | 42.9% | 50.0% |
Vegetarian | 33.4% | 28.6% | 21.4% | 46.1% | 53.4% |
Low allergen diet | 33.0% | 50.0% | 16.7% | 66.7% | 37.5% |
No special diet | 26.9% | 34.3% | 25.0% | 34.1% | 24.3% |
Gender | |||||
Female | 24.7% | 41.6% | 38.0% | 32.6% | 37.2% |
Male | 30.1% | 34.0% | 22.0% | 36.2% | 32.6% |
Rural area | |||||
City center | 34.9% | 33.9% | 19.7% | 45.0% | 29.6% |
City outskirts | 26.1% | 38.1% | 36.1% | 32.9% | 40.9% |
Rural | 22.1% | 40.5% | 34.9% | 26.5% | 31.5% |
Sustainability awareness | |||||
Environmentally friendly cultivation | 25.0% | 54.8% | 45.9% | 36.9% | 35.6% |
Regional origin | 25.0% | 41.2% | 35.1% | 38.0% | 35.1% |
Plastic-free packaging | 26.2% | 36.3% | 30.9% | 33.0% | 39.8% |
Purchase criteria | |||||
Good taste | 27.0% | 35.3% | 25.7% | 29.7% | 30.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welk, A.-K.; Mehlhose, C.; Daum, D.; Enneking, U. Vegetables with Enhanced Iron Bioavailability—German Consumers’ Perceptions of a New Approach to Improve Dietary Iron Supply. Nutrients 2023, 15, 2291. https://doi.org/10.3390/nu15102291
Welk A-K, Mehlhose C, Daum D, Enneking U. Vegetables with Enhanced Iron Bioavailability—German Consumers’ Perceptions of a New Approach to Improve Dietary Iron Supply. Nutrients. 2023; 15(10):2291. https://doi.org/10.3390/nu15102291
Chicago/Turabian StyleWelk, Ann-Kristin, Clara Mehlhose, Diemo Daum, and Ulrich Enneking. 2023. "Vegetables with Enhanced Iron Bioavailability—German Consumers’ Perceptions of a New Approach to Improve Dietary Iron Supply" Nutrients 15, no. 10: 2291. https://doi.org/10.3390/nu15102291
APA StyleWelk, A. -K., Mehlhose, C., Daum, D., & Enneking, U. (2023). Vegetables with Enhanced Iron Bioavailability—German Consumers’ Perceptions of a New Approach to Improve Dietary Iron Supply. Nutrients, 15(10), 2291. https://doi.org/10.3390/nu15102291