Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Samples
2.2. Dietary Diversity and Dietary Pattern Assessment
2.2.1. Dietary Diversity Assessment
2.2.2. Dietary Pattern Assessment
2.3. Definition of Physical Function
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Association of Dietary Diversity and Physical Function
3.3. The Association of Dietary Pattern and Physical Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
CLHLS | Chinese Longitudinal Healthy Longevity Survey |
BADL | Basic activities of daily living |
IADL | Instrumental activities of daily living |
BMI | Body mass index |
CVD | Cardiovascular disease |
DDS | Dietary diversity score |
CDD | Change in dietary diversity |
OR | Odds ratio |
95%CI | 95% confidence intervals |
Appendix A
Food Group | DDS |
---|---|
Fresh fruit | “Every day/almost every day” = 1 “Often” = 1 “Sometimes” = 0 “Rarely or never” = 0 |
Fresh vegetable | |
Meat | “Almost every day” = 1 “At least once a week” = 1 “At least once a month” = 0 “Occasionally” = 0 “Rarely or never” = 0 |
Fish | |
Eggs | |
Bean products | |
Salt-preserved vegetable | |
Sugar | |
Garlic | |
Milk products | |
Nut products | |
Mushrooms or algae | |
Tea |
CDD | DDS in 2011 | DDS in 2018 |
---|---|---|
Consistently low dietary diversity (low-low), | <7 | <7 |
Dietary diversity get worse (high-low) | ≥7 | <7 |
Dietary diversity get better (low-high) | <7 | ≥7 |
Consistently high dietary diversity (high-high) | ≥7 | ≥7 |
Independent Variable | Questions | Score Assignment |
---|---|---|
BADL | 1. Bathing 2. Dressing 3. Toileting 4. Indoor transferring 5. Continence 6. Feeding | Without assistance = 1 One-part assistance = 0 More than one-part assistance = 0 |
IADL | 1. Able to go outside to visit neighbors? 2. Able to go shopping by yourself? 3. Able to make food by yourself? 4. Able to wash clothes? 5. Able to walk one kilometer? 6. Able to carry 5 kg weight? 7. Able to crouch and stand three times? 8. Able to take public transportation? | Yes = 1 A little difficult = 0 Unable to do so = 0 |
Kaiser-Meyer-Olkin Measure of Sampling Adequacy | 0.806 | |
---|---|---|
Bartlett’s Test of Sphericity | Approx. chi-Square | 3572.241 |
df | 78 | |
Sig. | <0.0001 |
Component | Rotation Sums of Squared Loadings | ||
---|---|---|---|
Total | % of Variance | Cumulative % | |
1 | 2.278 | 17.524 | 17.524 |
2 | 1.631 | 12.545 | 30.068 |
3 | 1.554 | 11.955 | 42.024 |
Food Groups | Component | ||
---|---|---|---|
Plant-Derived Food Pattern | Animal-Derived Food Pattern | Egg and Bean Pattern | |
Fresh fruit | 0.551 | 0.361 | −0.037 |
Vegetable | −0.033 | 0.507 | 0.165 |
Meat | 0.093 | 0.716 | −0.047 |
Fish | 0.229 | 0.692 | −0.014 |
Eggs | 0.659 | 0.019 | 0.084 |
Food made from beans | 0.535 | 0.090 | 0.255 |
Salt-preserved vegetable | −0.077 | 0.040 | 0.749 |
Sugar | 0.291 | −0.061 | 0.461 |
Garlic | 0.217 | 0.060 | 0.575 |
Milk products | 0.738 | −0.041 | 0.017 |
Nut products | 0.439 | 0.183 | 0.363 |
Mushroom or algae | 0.556 | 0.244 | 0.245 |
Tea | 0.089 | 0.373 | 0.395 |
References
- Acar Tek, N.; Karaçil-Ermumcu, M. Determinants of Health Related Quality of Life in Home Dwelling Elderly Population: Appetite and Nutritional Status. J. Nutr. Health Aging 2018, 22, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.R.; Bloom, D.E. Towards a comprehensive public health response to population ageing. Lancet 2015, 385, 658–661. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics. Bulletin of the Seventh National Census (No. 5)—Population Age Composition; China Statistics: Beijing, China, 2021; pp. 10–11.
- Aging Population: China’s Development Trend and Policy Options; China Development Research Foundation, China Development Press: Beijing, China, 2020.
- Qi, H. Study on Non-Communicable Diseases (NCDs) and Its Influence on Activities of Daily Living of the Elderly Rural China; Shandong University: Jinan, China, 2014. [Google Scholar]
- Cederholm, T.; Cruz-Jentoft, A.J.; Maggi, S. Sarcopenia and fragility fractures. Eur. J. Phys. Rehabil. Med. 2013, 49, 111–117. [Google Scholar] [PubMed]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cöster, M.E.; Karlsson, M.; Ohlsson, C.; Mellström, D.; Lorentzon, M.; Ribom, E.; Rosengren, B. Physical function tests predict incident falls: A prospective study of 2969 men in the Swedish Osteoporotic Fractures in Men study. Scand. J. Public Health 2020, 48, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, J.; Avaldi, V.M.; Rucci, P.; Pieri, G.; Fantini, M.P. Burden of multimorbidity in relation to age, gender and immigrant status: A cross-sectional study based on administrative data. BMJ Open 2016, 6, e012812. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.T.; Le, N.H.; Khanal, V.; Moorin, R. Multimorbidity and its social determinants among older people in southern provinces, Vietnam. Int. J. Equity Health 2015, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- van Oostrom, S.H.; Picavet, H.S.; van Gelder, B.M.; Lemmens, L.C.; Hoeymans, N.; van Dijk, C.E.; Verheij, R.A.; Schellevis, F.G.; Baan, C.A. Multimorbidity and comorbidity in the Dutch population - data from general practices. BMC Public Health 2012, 12, 715. [Google Scholar] [CrossRef] [Green Version]
- Fang, E.F.; Scheibye-Knudsen, M.; Jahn, H.J.; Li, J.; Ling, L.; Guo, H.; Zhu, X.; Preedy, V.; Lu, H.; Bohr, V.A.; et al. A research agenda for aging in China in the 21st century. Ageing Res. Rev. 2015, 24, 197–205. [Google Scholar] [CrossRef] [Green Version]
- World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015.
- Van den Bussche, H.; Koller, D.; Kolonko, T.; Hansen, H.; Wegscheider, K.; Glaeske, G.; von Leitner, E.C.; Schäfer, I.; Schön, G. Which chronic diseases and disease combinations are specific to multimorbidity in the elderly? Results of a claims data based cross-sectional study in Germany. BMC Public Health 2011, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Ylitalo, K.R.; Karvonen-Gutierrez, C.A.; Fitzgerald, N.; Zheng, H.; Sternfeld, B.; El Khoudary, S.R.; Harlow, S.D. Relationship of race-ethnicity, body mass index, and economic strain with longitudinal self-report of physical functioning: The Study of Women’s Health Across the Nation. Ann. Epidemiol. 2013, 23, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, T.M.; Gahbauer, E.A.; Allore, H.G.; Han, L. Transitions between frailty states among community-living older persons. Arch. Intern. Med. 2006, 166, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Ademowo, O.S.; Dias, H.K.I.; Pararasa, C.; Griffiths, H.R. Chapter 6—Nutritional Hormesis in a Modern Environment. In The Science of Hormesis in Health and Longevity; Rattan, S.I.S., Kyriazis, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 75–86. [Google Scholar] [CrossRef]
- Black, M.; Bowman, M. Nutrition and Healthy Aging. Clin. Geriatr. Med. 2020, 36, 655–669. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet 2018, 118, 74–100.e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhao, A. Dietary Diversity and Healthy Aging: A Prospective Study. Nutrients 2021, 13, 1787. [Google Scholar] [CrossRef] [PubMed]
- High, K.P. Micronutrient supplementation and immune function in the elderly. Clin. Infect. Dis. 1999, 28, 717–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [Green Version]
- Michelon, E.; Blaum, C.; Semba, R.D.; Xue, Q.L.; Ricks, M.O.; Fried, L.P. Vitamin and carotenoid status in older women: Associations with the frailty syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 600–607. [Google Scholar] [CrossRef]
- Rizzoli, R. Management of the oldest old with osteoporosis. Eur. Geriatr. Med. 2010, 1, 15–21. [Google Scholar] [CrossRef]
- Lane, J.S.; Magno, C.P.; Lane, K.T.; Chan, T.; Hoyt, D.B.; Greenfield, S. Nutrition impacts the prevalence of peripheral arterial disease in the United States. J. Vasc. Surg. 2008, 48, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, K.M.; Fletcher, R.H. Vitamins for chronic disease prevention in adults: Scientific review. JAMA 2002, 287, 3116–3126. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-López, L.; Maseda, A.; de Labra, C.; Regueiro-Folgueira, L.; Rodríguez-Villamil, J.L.; Millán-Calenti, J.C. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr. 2017, 17, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Wu, W. Exploratory analysis of health-related quality of life among the empty-nest elderly in rural China: An empirical study in three economically developed cities in eastern China. Health Qual. Life Outcomes 2014, 12, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Jiao, J.; Zhu, C.; Zhu, M.; Wen, X.; Jin, J.; Wang, H.; Lv, D.; Zhao, S.; Wu, X.; et al. Associations Between Nutritional Status, Sociodemographic Characteristics, and Health-Related Variables and Health-Related Quality of Life Among Chinese Elderly Patients: A Multicenter Prospective Study. Front. Nutr. 2020, 7, 583161. [Google Scholar] [CrossRef]
- Kimura, Y.; Wada, T.; Ishine, M.; Ishimoto, Y.; Kasahara, Y.; Konno, A.; Nakatsuka, M.; Sakamoto, R.; Okumiya, K.; Fujisawa, M.; et al. Food diversity is closely associated with activities of daily living, depression, and quality of life in community-dwelling elderly people. J. Am. Geriatr. Soc. 2009, 57, 922–924. [Google Scholar] [CrossRef]
- Gopinath, B.; Russell, J.; Flood, V.M.; Burlutsky, G.; Mitchell, P. Adherence to dietary guidelines positively affects quality of life and functional status of older adults. J. Acad. Nutr. Diet. 2014, 114, 220–229. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Bandinelli, S.; Corsi, A.M.; Lauretani, F.; Paolisso, G.; Dominguez, L.J.; Semba, R.D.; Tanaka, T.; Abbatecola, A.M.; Talegawkar, S.A.; et al. Mediterranean diet and mobility decline in older persons. Exp. Gerontol. 2011, 46, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Haveman-Nies, A.; De Groot, L.C.; Van Staveren, W.A. Relation of dietary quality, physical activity, and smoking habits to 10-year changes in health status in older Europeans in the SENECA study. Am. J. Public Health 2003, 93, 318–323. [Google Scholar] [CrossRef]
- Robinson, S.M.; Westbury, L.D.; Cooper, R.; Kuh, D.; Ward, K.; Syddall, H.E.; Sayer, A.A.; Cooper, C. Adult Lifetime Diet Quality and Physical Performance in Older Age: Findings From a British Birth Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1532–1537. [Google Scholar] [CrossRef] [Green Version]
- Center for Healthy Aging and Development Studies. The Chinese Longitudinal Healthy Longevity Survey (CLHLS)-Longitudinal Data (1998–2018). Peking University Open Research Data Platform. 2020. Available online: https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/WBO7LK (accessed on 20 March 2022). [CrossRef]
- Pashmdarfard, M.; Azad, A. Assessment tools to evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in older adults: A systematic review. Med. J. Islam. Repub. Iran 2020, 34, 33. [Google Scholar] [CrossRef]
- Chinese Longitudinal Healthy Longevity Survey. Available online: http://chads.nsd.pku.edu.cn/yjxm/zglnjkyxysgztc/index.htm (accessed on 20 March 2022).
- Zhang, J.; Zhao, A.; Wu, W.; Yang, C.; Ren, Z.; Wang, M.; Wang, P.; Zhang, Y. Dietary Diversity Is Associated With Memory Status in Chinese Adults: A Prospective Study. Front. Aging Neurosci. 2020, 12, 580760. [Google Scholar] [CrossRef] [PubMed]
- Ganpule-Rao, A.V.; Bhat, D.; Yajnik, C.S.; Rush, E. Dietary diversity scores, nutrient intakes and biomarkers vitamin B12, folate and Hb in rural youth from the Pune Maternal Nutrition Study. Br. J. Nutr. 2021, 126, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Nishi, M.; Murayama, H.; Amano, H.; Taniguchi, Y.; Nofuji, Y.; Narita, M.; Matsuo, E.; Seino, S.; Kawano, Y.; et al. Association of Dietary Variety with Body Composition and Physical Function in Community-dwelling Elderly Japanese. J. Nutr. Health Aging 2016, 20, 691–696. [Google Scholar] [CrossRef]
- Houston, D.K.; Stevens, J.; Cai, J.; Haines, P.S. Dairy, fruit, and vegetable intakes and functional limitations and disability in a biracial cohort: The Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 2005, 81, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.E.; MacDonald, E. Determinants of functional health of older persons. Gerontologist 1990, 30, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Schuette, L.K.; Song, W.O.; Hoerr, S.L. Quantitative use of the Food Guide Pyramid to evaluate dietary intake of college students. J. Am. Diet. Assoc. 1996, 96, 453–457. [Google Scholar] [CrossRef]
- Mirmiran, P.; Azadbakht, L.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score in adolescents—A good indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pac. J. Clin. Nutr. 2004, 13, 56–60. [Google Scholar] [PubMed]
- Chinese population osteoporosis prevention and treatment manual 2013 Edition. In Proceedings of the 11th International Symposium on Bone Mineral Research and the 13th International Symposium on Osteoporosis, Guangzhou, China, 5 April 2013; pp. 167–216.
- Xu, B.; Houston, D.K.; Locher, J.L.; Ellison, K.J.; Gropper, S.; Buys, D.R.; Zizza, C.A. Higher Healthy Eating Index-2005 scores are associated with better physical performance. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 93–99. [Google Scholar] [CrossRef]
- León-Muñoz, L.M.; García-Esquinas, E.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Major dietary patterns and risk of frailty in older adults: A prospective cohort study. BMC Med. 2015, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Akbaraly, T.; Sabia, S.; Hagger-Johnson, G.; Tabak, A.G.; Shipley, M.J.; Jokela, M.; Brunner, E.J.; Hamer, M.; Batty, G.D.; Singh-Manoux, A.; et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am. J. Med. 2013, 126, 411–419.e413. [Google Scholar] [CrossRef]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, R.; Stastny, S.; Casperson, S.; Jahns, L.; Roemmich, J.; Hackney, K.J. Daily Protein Intake and Distribution of Daily Protein Consumed Decreases Odds for Functional Disability in Older Americans. J. Aging Health 2020, 32, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int. J. Mol. Sci. 2020, 22, 255. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A. Nutritional influences on age-related skeletal muscle loss. Proc. Nutr. Soc. 2014, 73, 16–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | BADL Non-Limitation (n, %) | BADL Limitation (n, %) | χ2 | p |
---|---|---|---|---|
Gender | 39.8553 | <0.0001 * | ||
Male | 958 (85.31) | 165 (14.69) | ||
Female | 866 (74.72) | 293 (25.28) | ||
Age | 179.0328 | <0.0001 * | ||
≥60 and <80 | 1246 (88.81) | 157 (11.19) | ||
≥80 | 578 (65.76) | 301 (34.24) | ||
Residence | 7.7287 | 0.0054 * | ||
Urban | 891 (77.61) | 257 (22.39) | ||
Rural | 933 (82.28) | 201 (17.72) | ||
Living conditions | 19.7802 | <0.0001 * | ||
Alone | 372 (87.74) | 52 (12.26) | ||
Not alone | 1452 (78.15) | 406 (21.85) | ||
Education | 43.1407 | <0.0001 * | ||
0 year | 809 (74.22) | 281 (25.78) | ||
1–6 years | 715 (84.52) | 131 (15.48) | ||
≥7 years | 300 (86.71) | 46 (13.29) | ||
BMI | 13.8744 | 0.0010 * | ||
<18.5 | 266 (75.35) | 87 (24.65) | ||
≥18.5 and <25 | 1228 (75.86) | 266 (24.14) | ||
≥25 | 330 (82.20) | 105 (17.80) | ||
Alcohol consumption | 5.6969 | 0.0170 * | ||
No | 1055 (78.26) | 293 (21.74) | ||
Yes | 769 (82.33) | 165 (17.67) | ||
Smoking status | 12.6830 | 0.0004 * | ||
No | 1052 (77.47) | 306 (22.53) | ||
Yes | 772 (83.55) | 152 (16.45) | ||
Exercise | 41.1264 | <0.0001 * | ||
No | 1180 (76.23) | 368 (23.77) | ||
Yes | 644 (87.74) | 90 (12.26) | ||
Staple food | 35.9080 | <0.0001 * | ||
Rice | 1137 (84.04) | 216 (15.96) | ||
Corn (maize) | 49 (70.00) | 21 (30.00) | ||
Wheat (noodles and bread, etc.) | 375 (74.85) | 126 (25.15) | ||
Rice and wheat | 263 (73.46) | 95 (26.54) | ||
Main flavor | 17.8833 | 0.0031 * | ||
Insipidity | 1254 (79.12) | 331 (20.88) | ||
Salty | 359 (85.27) | 62 (14.73) | ||
Sweet | 93 (70.99) | 38 (29.01) | ||
Hot | 43 (89.58) | 5 (10.42) | ||
Crude | 3 (75.00) | 1 (25.00) | ||
Do not have all the above tastes | 72 (77.42) | 21 (22.58) | ||
Vitamins intake | 1.9730 | 0.1601 | ||
Not often | 1631 (80.34) | 399 (19.66) | ||
Often | 193 (76.59) | 59 (23.41) | ||
Self-rated health | 52.7000 | <0.0001 * | ||
Very bad | 19 (54.29) | 16 (45.71) | ||
Bad | 185 (66.79) | 92 (33.21) | ||
So-so | 703 (80.80) | 167 (19.20) | ||
Good | 697 (83.47) | 138 (16.53) | ||
Very good | 220 (83.02) | 45 (16.98) | ||
Hypertension | 4.8824 | 0.0271 * | ||
No | 1035 (78.35) | 789 (21.65) | ||
Yes | 286 (82.10) | 172 (17.90) | ||
Diabetes | 0.3229 | 0.5699 | ||
No | 1599 (80.11) | 397 (19.89) | ||
Yes | 225 (78.67) | 61 (21.33) | ||
Heart disease | 0.0753 | 0.7837 | ||
No | 1468 (80.48) | 366 (19.96) | ||
Yes | 356 (79.46) | 92 (20.54) | ||
Stroke or CVD | 19.5695 | <0.0001 * | ||
No | 1590 (81.45) | 362 (18.55) | ||
Yes | 234 (70.91) | 96 (29.09) | ||
Arthritis | 0.0157 | 0.9004 | ||
No | 1581 (19.89) | 398 (20.11) | ||
Yes | 243 (80.20) | 60 (19.80) | ||
Rheumatism or rheumatoid disease | 3.9248 | 0.0476 * | ||
No | 1664 (80.46) | 404 (19.54) | ||
Yes | 160 (74.77) | 54 (25.23) | ||
Dyslipidemia | 0.0106 | 0.9179 | ||
No | 1686 (79.91) | 424 (20.09) | ||
Yes | 138 (80.23) | 34 (19.77) |
Variable | IADL Non-Limitation (n, %) | IADL Limitation (n, %) | χ2 | p |
---|---|---|---|---|
Gender | 99.7973 | <0.0001 * | ||
Male | 530 (47.20) | 593 (52.80) | ||
Female | 313 (27.01) | 846 (72.99) | ||
Age | 320.0123 | <0.0001 * | ||
≥60 and <80 | 719 (51.25) | 684 (48.75) | ||
≥80 | 124 (14.11) | 755 (85.89) | ||
Residence | 0.1256 | 0.7230 | ||
Urban | 420 (36.59) | 728 (63.41) | ||
Rural | 423 (37.30) | 711 (62.70) | ||
Living conditions | 0.8709 | 0.3507 | ||
Alone | 165 (38.92) | 259 (61.08) | ||
Not alone | 678 (36.49) | 1180 (63.51) | ||
Education | 160.7759 | <0.0001 * | ||
0 year | 268 (24.59) | 822 (75.41) | ||
1–6 years | 371 (43.85) | 475 (56.15) | ||
≥7 years | 204 (58.96) | 142 (41.04) | ||
BMI | 16.1147 | 0.0003 * | ||
<18.5 | 97 (27.48) | 256 (72.52) | ||
≥18.5 and <25 | 580 (38.16) | 914 (61.84) | ||
≥25 | 166 (38.82) | 269 (61.18) | ||
Alcohol consumption | 20.2127 | <0.0001 * | ||
No | 447 (33.16) | 901 (66.84) | ||
Yes | 396 (42.40) | 538 (57.60) | ||
Smoking status | 32.6432 | <0.0001 * | ||
No | 437 (32.18) | 921 (67.82) | ||
Yes | 406 (43.94) | 518 (56.06) | ||
Exercise | 94.7844 | <0.0001 * | ||
No | 467 (30.17) | 1081 (69.83) | ||
Yes | 376 (51.23) | 358 (48.77) | ||
Staple food | 0.8819 | 0.8298 | ||
Rice | 503 (37.18) | 850 (62.82) | ||
Corn (maize) | 23 (32.86) | 47 (67.14) | ||
Wheat (noodles and bread, etc.) | 189 (37.72) | 312 (62.28) | ||
Rice and wheat | 128 (35.75) | 230 (64.25) | ||
Main flavor | 7.0127 | 0.2197 | ||
Insipidity | 579 (36.53) | 1006 (63.47) | ||
Salty | 159 (37.77) | 262 (62.23) | ||
Sweet | 43 (32.82) | 88 (67.18) | ||
Hot | 23 (47.92) | 25 (52.08) | ||
Crude | 0 (0.00) | 4 (100.0) | ||
Do not have all the above tastes | 39 (41.94) | 54 (58.06) | ||
Vitamins intake | 0.9632 | 0.3264 | ||
Not often | 757 (37.29) | 1273 (62.71) | ||
Often | 86 (34.13) | 166 (65.87) | ||
Self-rated health | 106.8733 | <0.0001 * | ||
Very bad | 5 (14.29) | 30 (85.71) | ||
Bad | 53 (19.13) | 224 (80.87) | ||
So-so | 271 (31.15) | 599 (68.85) | ||
Good | 377 (45.15) | 458 (54.85) | ||
Very good | 137 (51.70) | 128 (48.30) | ||
Hypertension | 1.5137 | 0.2186 | ||
No | 502 (38.00) | 819 (62.00) | ||
Yes | 341 (35.48) | 620 (64.52) | ||
Diabetes | 3.1984 | 0.0737 | ||
No | 751 (37.63) | 1245 (62.37) | ||
Yes | 92 (32.17) | 194 (67.83) | ||
Heart disease | 2.5057 | 0.1134 | ||
No | 692 (37.73) | 1142 (62.27) | ||
Yes | 151 (33.71) | 297 (66.29) | ||
Stroke or CVD | 12.7071 | 0.0004 * | ||
No | 750 (38.42) | 1202 (61.58) | ||
Yes | 93 (28.18) | 237 (71.82) | ||
Arthritis | 11.8498 | 0.0006 * | ||
No | 758 (38.30) | 1221 (61.70) | ||
Yes | 85 (28.05) | 218 (71.95) | ||
Rheumatism or rheumatoid disease | 6.4382 | 0.0112 * | ||
No | 781 (37.77) | 1287 (62.23) | ||
Yes | 62 (28.97) | 152 (71.03) | ||
Dyslipidemia | 1.5342 | 0.2155 | ||
No | 787 (37.30) | 1323 (62.70) | ||
Yes | 56 (32.56) | 116 (67.44) |
Model | Physical Function | DDS (<7:≥7) | p | |
---|---|---|---|---|
OR | (95 CI%) | |||
BADL | ||||
1 | 1.030 | 0.836, 1.271 | 0.7786 | |
2 | 0.946 | 0.752, 1.189 | 0.6327 | |
3 | 0.985 | 0.781, 1.243 | 0.9012 | |
4 | 1.087 | 0.857, 1.380 | 0.4913 | |
5 | 0.991 | 0.775, 1.268 | 0.9445 | |
IADL | ||||
1 | 1.283 | 1.080, 1.525 | 0.0047 * | |
2 | 1.065 | 0.875, 1.296 | 0.5314 | |
3 | 1.059 | 0.866, 1.294 | 0.5775 | |
4 | 1.017 | 0.826, 1.252 | 0.8743 |
Model | Physical Function | CDD | |||
---|---|---|---|---|---|
Consistently Low Dietary Diversity | Dietary Diversity Gets Worse | Dietary Diversity Gets Better | Consistently High Dietary Diversity | ||
BADL | |||||
1 | 1 | 0.981 (0.747, 1.288) | 0.781 (0.576, 1.060) | 0.841 (0.636, 1.112) | |
2 | 1 | 0.990 (0.739, 1.328) | 0.749 (0.542, 1.034) | 0.958 (0.704, 1.303) | |
3 | 1 | 0.937 (0.696, 1.262) | 0.790 (0.570, 1.096) | 0.966 (0.706, 1.322) | |
4 | 1 | 0.856 (0.630, 1.162) | 0.717 (0.512, 1.002) | 0.812 (0.588, 1.122) | |
5 | 1 | 0.919 (0.671, 1.258) | 0.757 (0.535, 1.072) | 0.942 (0.672, 1.320) | |
IADL | |||||
1 | 1 | 0.899 (0.709, 1.140) | 0.602 (0.472, 0.768) * | 0.512 (0.408, 0.642) * | |
2 | 1 | 0.990 (0.762, 1.287) | 0.592 (0.451, 0.778) * | 0.651 (0.502, 0.844) * | |
3 | 1 | 0.971 (0.744, 1.266) | 0.632 (0.479, 0.833) * | 0.694 (0.532, 0.906) * | |
6 | 1 | 1.000 (0.760, 1.316) | 0.713 (0.533, 0.954) * | 0.783 (0.593, 0.994) * |
Model | Physical Function/Dietary Pattern | Dietary Pattern Score | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
BADL | |||||
1 | fruit-egg-milk pattern | 1 | 0.820 (0.616, 1.091) | 0.799 (0.600, 1.064) | 0.715 (0.533, 0.959) * |
vegetable-meat-fish pattern | 1 | 0.621 (0.469, 0.823) * | 0.602 (0.455, 0.797) * | 0.454 (0.337, 0.610) * | |
condiment and tea pattern | 1 | 0.779 (0.586, 1.035) | 0.772 (0.580, 1.028) | 0.655 (0.489, 0.879) * | |
2 | fruit-egg-milk pattern | 1 | 0.698 (0.504, 0.967) * | 0.616 (0.440, 0.863) * | 0.504 (0.349, 0.720) * |
vegetable-meat-fish pattern | 1 | 0.693 (0.502, 0.956) * | 0.665 (0.479, 0.923) * | 0.573 (0.405, 0.812) * | |
condiment and tea pattern | 1 | 0.746 (0.539, 1.031) | 0.877 (0.632, 1.219) | 0.796 (0.568, 1.117) | |
IADL | |||||
1 | fruit-egg-milk pattern | 1 | 0.765 (0.596, 0.983) * | 0.772 (0.601, 0.992) * | 0.594 (0.463, 0.760) * |
vegetable-meat-fish pattern | 1 | 0.714 (0.553, 0.923) * | 0.531 (0.413, 0.683) * | 0.463 (0.360, 0.595) * | |
condiment and tea pattern | 1 | 0.883 (0.686, 1.138) | 0.575 (0.449, 0.736) * | 0.612 (0.478, 0.784) * | |
3 | fruit-egg-milk pattern | 1 | 0.769 (0.576, 0.966) * | 0.884 (0.662, 1.182) | 0.812 (0.606, 0.998) * |
vegetable-meat-fish pattern | 1 | 0.705 (0.525, 0.948) * | 0.491 (0.365, 0.659) * | 0.554 (0.412, 0.744) * | |
condiment and tea pattern | 1 | 0.938 (0.700, 1.257) | 0.629 (0.471, 0.839) * | 0.767 (0.575, 0.993) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aihemaitijiang, S.; Zhang, L.; Ye, C.; Halimulati, M.; Huang, X.; Wang, R.; Zhang, Z. Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018. Nutrients 2022, 14, 1730. https://doi.org/10.3390/nu14091730
Aihemaitijiang S, Zhang L, Ye C, Halimulati M, Huang X, Wang R, Zhang Z. Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018. Nutrients. 2022; 14(9):1730. https://doi.org/10.3390/nu14091730
Chicago/Turabian StyleAihemaitijiang, Sumiya, Li Zhang, Chen Ye, Mairepaiti Halimulati, Xiaojie Huang, Ruoyu Wang, and Zhaofeng Zhang. 2022. "Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018" Nutrients 14, no. 9: 1730. https://doi.org/10.3390/nu14091730
APA StyleAihemaitijiang, S., Zhang, L., Ye, C., Halimulati, M., Huang, X., Wang, R., & Zhang, Z. (2022). Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018. Nutrients, 14(9), 1730. https://doi.org/10.3390/nu14091730