Association between Use of Nutrition Labels and Risk of Chronic Kidney Disease: The Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2019
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Assessment of Use of Nutrition Labels
2.3. Ascertainment of CKD
2.4. Assessment of Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Cockwell, P.; Fisher, L.-A. The global burden of chronic kidney disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef] [Green Version]
- Lancet. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Asghari, G.; Momenan, M.; Yuzbashian, E.; Mirmiran, P.; Azizi, F. Dietary pattern and incidence of chronic kidney disease among adults: A population-based study. Nutr. Metab. 2018, 15, 88. [Google Scholar] [CrossRef]
- Group, K.C.W. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Elsharif, M.E. Mortality rate of patients with end stage renal disease on regular hemodialysis: A single center study. Saudi J. Kidney Dis. Transplant. 2011, 22, 594. [Google Scholar]
- Kazancioğlu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2013, 3, 368–371. [Google Scholar] [CrossRef] [Green Version]
- Yuzbashian, E.; Asghari, G.; Mirmiran, P.; Amouzegar-Bahambari, P.; Azizi, F. Adherence to low-sodium Dietary Approaches to Stop Hypertension-style diet may decrease the risk of incident chronic kidney disease among high-risk patients: A secondary prevention in prospective cohort study. Nephrol. Dial. Transplant. 2018, 33, 1159–1168. [Google Scholar] [CrossRef]
- Dunkler, D.; Kohl, M.; Teo, K.K.; Heinze, G.; Dehghan, M.; Clase, C.M.; Gao, P.; Yusuf, S.; Mann, J.F.; Oberbauer, R. Dietary risk factors for incidence or progression of chronic kidney disease in individuals with type 2 diabetes in the European Union. Nephrol. Dial. Transplant. 2015, 30, iv76–iv85. [Google Scholar] [CrossRef]
- Division of Nutrition, Physical Activity, and Obesity (DNPAO), National Center for Chronic Disease Prevention and Health Promotion(CDC). Learn How the Nutrition Facts Label Can Help You Improve Your Health. Nutrition 2021. Available online: https://www.cdc.gov/nutrition/strategies-guidelines/nutrition-facts-label.html (accessed on 31 January 2021).
- Ministry of Food and Drug Safety. Labeling Standards of Foods, Etc.; Ministry of Food and Drug Safety: Cheongju-si, Korea, 2019.
- Earl, R.; Porter, D.V.; Wellman, N.S. Nutrition labeling: Issues and directions for the 1990s. J. Am. Diet. Assoc. 1990, 90, 1599–1601. [Google Scholar] [CrossRef]
- Perez, R.; Edge, M.S. Global nutrition labeling: Moving toward standardization? Nutr. Today 2014, 49, 77–82. [Google Scholar] [CrossRef]
- EUFIC Global Update on Nutrition Labelling. 2018. Available online: https://www.eufic.org/images/uploads/healthy-living/Executive-Summary-GUNL-2018-V2.pdf. (accessed on 31 January 2021).
- Anastasiou, K.; Miller, M.; Dickinson, K. The relationship between food label use and dietary intake in adults: A systematic review. Appetite 2019, 138, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Christoph, M.J.; An, R. Effect of nutrition labels on dietary quality among college students: A systematic review and meta-analysis. Nutr. Rev. 2018, 76, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Egnell, M.; Boutron, I.; Péneau, S.; Ducrot, P.; Touvier, M.; Galan, P.; Buscail, C.; Porcher, R.; Ravaud, P.; Hercberg, S.; et al. Front-of-Pack Labeling and the Nutritional Quality of Students’ Food Purchases: A 3-Arm Randomized Controlled Trial. Am. J. Public Health 2019, 109, 1122–1129. [Google Scholar] [CrossRef]
- Egnell, M.; Talati, Z.; Hercberg, S.; Pettigrew, S.; Julia, C. Objective Understanding of Front-of-Package Nutrition Labels: An International Comparative Experimental Study across 12 Countries. Nutrients 2018, 10, 1542. [Google Scholar] [CrossRef] [Green Version]
- Park, J.I.; Baek, H.; Jung, H.H. Prevalence of Chronic Kidney Disease in Korea: The Korean National Health and Nutritional Examination Survey 2011–2013. J. Korean Med. Sci. 2016, 31, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Abiri, B.; Valizadeh, M.; Nasreddine, L.; Hosseinpanah, F. Dietary determinants of healthy/unhealthy metabolic phenotype in individuals with normal weight or overweight/obesity: A systematic review. Crit. Rev. Food Sci. Nutr. 2022, 1–18. [Google Scholar] [CrossRef]
- Seifu, C.N.; Fahey, P.P.; Hailemariam, T.G.; Frost, S.A.; Atlantis, E. Dietary patterns associated with obesity outcomes in adults: An umbrella review of systematic reviews. Public Health Nutr. 2021, 24, 6390–6414. [Google Scholar] [CrossRef]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; Batterham, M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2016, 7, 76–89. [Google Scholar] [CrossRef]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, K.E.; Kelly, J.T.; Palmer, S.C.; Khalesi, S.; Strippoli, G.F.M.; Campbell, K.L. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2019, 14, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.H.; Lee, D.W.; Choi, D.W.; Park, E.C. Association between Food Label Unawareness and Loss of Renal Function in Diabetes: A Cross-Sectional Study in South Korea. Int. J. Environ. Res. Public Health 2020, 17, 1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Teo, B.W.; Xu, H.; Wang, D.; Li, J.; Sinha, A.K.; Shuter, B.; Sethi, S.; Lee, E.J. GFR estimating equations in a multiethnic Asian population. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2011, 58, 56–63. [Google Scholar] [CrossRef]
- Jeong, T.D.; Lee, W.; Chun, S.; Lee, S.K.; Ryu, J.S.; Min, W.K.; Park, J.S. Comparison of the MDRD study and CKD-EPI equations for the estimation of the glomerular filtration rate in the Korean general population: The fifth Korea National Health and Nutrition Examination Survey (KNHANES V-1), 2010. Kidney Blood Press. Res. 2013, 37, 443–450. [Google Scholar] [CrossRef]
- Inker, L.A.; Levey, A.S.; Pandya, K.; Stoycheff, N.; Okparavero, A.; Greene, T. Early change in proteinuria as a surrogate end point for kidney disease progression: An individual patient meta-analysis. Am. J. Kidney Dis. 2014, 64, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Nadkarni, G.N.; Grams, M.E.; Sang, Y.; Ballew, S.H.; Coresh, J.; Matsushita, K.; Surapaneni, A.; Brunskill, N.; Chadban, S.J.; et al. Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis: An Individual Participant-Based Meta-analysis. Ann. Intern. Med. 2020, 173, 426–435. [Google Scholar] [CrossRef]
- De Boer, I.H.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- Serrano, A.; Huang, J.; Ghossein, C.; Nishi, L.; Gangavathi, A.; Madhan, V.; Ramadugu, P.; Ahya, S.N.; Paparello, J.; Khosla, N.; et al. Stabilization of glomerular filtration rate in advanced chronic kidney disease: A two-year follow-up of a cohort of chronic kidney disease patients stages 4 and 5. Adv. Chronic Kidney Dis. 2007, 14, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Sinha, A.D.; Cramer, A.E.; Balmes-Fenwick, M.; Dickinson, J.H.; Ouyang, F.; Tu, W. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. N. Engl. J. Med. 2021, 385, 2507–2519. [Google Scholar] [CrossRef]
- Wong, J.; Zhang, Y.; Swift, O.; Finkelman, M.; Patidar, A.; Ramanarayanan, S.; Vilar, E.; Farrington, K. Beta-glucans in advanced CKD: Role in endotoxaemia and inflammation. BMC Nephrol. 2020, 21, 118. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.Y.; Yang, Y.J.; Kim, B.S.; Kang, J.H. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. J. Korean Acad. Fam. Med. 2007, 28, 532–541. [Google Scholar]
- Korean National Academy of Agricultural Science. Food Composition Table, 7th ed.; Rural Development Administration, Republic of Korea: Suwon, Korea, 2006. (In Korean) [Google Scholar]
- Flack, J.M.; Adekola, B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.H.; Lee, W.Y.; Kim, S.S.; Kang, J.H.; Kang, J.H.; Kim, K.K.; Kim, B.Y.; Kim, Y.H.; Kim, W.J.; Kim, E.M.; et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2019, 28, 40–45. [Google Scholar] [CrossRef]
- Graham, S.E.; Nielsen, J.B.; Zawistowski, M.; Zhou, W.; Fritsche, L.G.; Gabrielsen, M.E.; Skogholt, A.H.; Surakka, I.; Hornsby, W.E.; Fermin, D.; et al. Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis. Nat. Commun. 2019, 10, 1847. [Google Scholar] [CrossRef] [Green Version]
- Satoh, M.; Hirose, T.; Nakayama, S.; Murakami, T.; Takabatake, K.; Asayama, K.; Imai, Y.; Ohkubo, T.; Mori, T.; Metoki, H. Blood Pressure and Chronic Kidney Disease Stratified by Gender and the Use of Antihypertensive Drugs. J. Am. Heart Assoc. 2020, 9, e015592. [Google Scholar] [CrossRef]
- Wu, J.; Jia, J.; Li, Z.; Pan, H.; Wang, A.; Guo, X.; Wu, S.; Zhao, X. Association of estimated glomerular filtration rate and proteinuria with all-cause mortality in community-based population in China: A Result from Kailuan Study. Sci. Rep. 2018, 8, 2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swartling, O.; Rydell, H.; Stendahl, M.; Segelmark, M.; Trolle Lagerros, Y.; Evans, M. CKD Progression and Mortality Among Men and Women: A Nationwide Study in Sweden. Am. J. Kidney Dis. 2021, 78, 190–199.e191. [Google Scholar] [CrossRef] [PubMed]
- Weldegiorgis, M.; Woodward, M. The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 506. [Google Scholar] [CrossRef]
- Minutolo, R.; Gabbai, F.B.; Chiodini, P.; Provenzano, M.; Borrelli, S.; Garofalo, C.; Bellizzi, V.; Russo, D.; Conte, G.; De Nicola, L. Sex Differences in the Progression of CKD Among Older Patients: Pooled Analysis of 4 Cohort Studies. Am. J. Kidney Dis. 2020, 75, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, J.A.; Kim, J.S.; Jo, M.J.; Cho, E.J.; Ahn, S.Y.; Ko, G.J.; Kwon, Y.J.; Kim, J.E. Impact of water consumption on renal function in the general population: A cross-sectional analysis of KNHANES data (2008–2017). Clin. Exp. Nephrol. 2021, 25, 376–384. [Google Scholar] [CrossRef]
- Olivo, R.E.; Davenport, C.A.; Diamantidis, C.J.; Bhavsar, N.A.; Tyson, C.C.; Hall, R.; Bidulescu, A.; Young, B.; Mwasongwe, S.E.; Pendergast, J.; et al. Obesity and synergistic risk factors for chronic kidney disease in African American adults: The Jackson Heart Study. Nephrol. Dial. Transplant. 2018, 33, 992–1001. [Google Scholar] [CrossRef]
- Han, K.T.; Kim, S.J.; Kim, D.J.; Kim, S.J. Does the active use of nutrition labeling reduce the risk of diabetes mellitus? Results of insulin resistance using Korean National Health and Nutrition Examination Survey. Prim. Care Diabetes 2018, 12, 445–452. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, B.K.; Matsushita, K.; Woodward, M.; Blankestijn, P.J.; Cirillo, M.; Ohkubo, T.; Rossing, P.; Sarnak, M.J.; Stengel, B.; Yamagishi, K.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: A meta-analysis. Lancet 2012, 380, 1649–1661. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, T.; Crews, D.C.; Tuot, D.S.; Pavkov, M.E.; Burrows, N.R.; Stack, A.G.; Saran, R.; Bragg-Gresham, J.; Powe, N.R. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 2019, 95, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhao, Q.; Jiang, Y.; Wang, N.; Liu, X.; Qiu, Y.; Zhu, J.; Tong, X.; Cui, S.; Zaid, M.; et al. Association of the Reproductive Period with Decreased Estimated Glomerular Filtration Rate in Menopausal Women: A Study from the Shanghai Suburban Adult Cohort and Biobank (2016–2020). Int. J. Environ. Res. Public Health 2021, 18, 10451. [Google Scholar] [CrossRef] [PubMed]
- Drichoutis, A.C.; Lazaridis, P.; Nayga, R.M., Jr. Consumers’ use of nutritional labels: A review of research studies and issues. Acad. Mark. Sci. Rev. 2006, 2006, 1. [Google Scholar]
- Kim, S.-Y.; Nayga, R.M.; Capps, O. Food label use, self-selectivity, and diet quality. J. Consum. Aff. 2001, 35, 346–363. [Google Scholar] [CrossRef]
- Kim, M.G.; Oh, S.W.; Han, N.R.; Song, D.J.; Um, J.Y.; Bae, S.H.; Kwon, H.; Lee, C.M.; Joh, H.K.; Hong, S.W. Association between Nutrition Label Reading and Nutrient Intake in Korean Adults: Korea National Health and Nutritional Examination Survey, 2007-2009 (KNHANES IV). Korean J. Fam. Med. 2014, 35, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Ollberding, N.J.; Wolf, R.L.; Contento, I. Food label use and its relation to dietary intake among US adults. J. Am. Diet. Assoc. 2010, 110, 1233–1237. [Google Scholar] [CrossRef]
- Kollannoor-Samuel, G.; Shebl, F.M.; Hawley, N.L.; Pérez-Escamilla, R. Nutrition facts panel use is associated with higher diet quality and lower glycated hemoglobin concentrations in US adults with undiagnosed prediabetes. Am. J. Clin. Nutr. 2016, 104, 1639–1646. [Google Scholar] [CrossRef]
- Fitzgerald, N.; Damio, G.; Segura-Pérez, S.; Pérez-Escamilla, R. Nutrition knowledge, food label use, and food intake patterns among Latinas with and without type 2 diabetes. J. Am. Diet. Assoc. 2008, 108, 960–967. [Google Scholar] [CrossRef]
- Kollannoor-Samuel, G.; Shebl, F.M.; Hawley, N.L.; Pérez-Escamilla, R. Nutrition label use is associated with lower longer-term diabetes risk in US adults. Am. J. Clin. Nutr. 2017, 105, 1079–1085. [Google Scholar] [CrossRef]
- Jin, H.S.; Choi, E.B.; Kim, M.; Oh, S.S.; Jang, S.I. Association between Use of Nutritional Labeling and the Metabolic Syndrome and Its Components. Int. J. Environ. Res. Public Health 2019, 16, 4486. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kweon, K.H.; Kim, M.J.; Park, E.C.; Jang, S.Y.; Kim, W.; Han, K.T. Is nutritional labeling associated with individual health? The effects of labeling-based awareness on dyslipidemia risk in a South Korean population. Nutr. J. 2016, 15, 81. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.W.; Oh, S.W.; Lee, C.; Kwon, H.; Hyeon, J.H.; Gwak, J.S. Association between nutrition label use and chronic disease in Korean adults: The Fourth Korea National Health and Nutrition Examination Survey 2008–2009. J. Korean Med. Sci. 2014, 29, 1457–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kye, S.Y.; Han, K.T.; Jeong, S.H.; Choi, J.Y. Nutrition Labeling Usage Influences Blood Markers in Body-Size Self-Conscious Individuals: The Korean National Health and Nutrition Examination Survey (KNHANES) 2013–2018. Int. J. Environ. Res. Public Health 2020, 17, 5769. [Google Scholar] [CrossRef]
- Kim, S.D. Relationship between awareness and use of nutrition labels and obesity. Biomed. Res. 2018, 29, 2238–2242. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.T.; Shim, J.Y.; Lee, Y.J.; Linton, J.A.; Park, B.J.; Lee, H.R. Reading nutrition labels is associated with a lower risk of metabolic syndrome in Korean adults: The 2007-2008 Korean NHANES. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 876–882. [Google Scholar] [CrossRef] [PubMed]
- He, L.Q.; Wu, X.H.; Huang, Y.Q.; Zhang, X.Y.; Shu, L. Dietary patterns and chronic kidney disease risk: A systematic review and updated meta-analysis of observational studies. Nutr. J. 2021, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.; Kim, Y.; Lee, Y.; Kang, M.W.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; Lee, J.P.; et al. Causal effects of relative fat, protein, and carbohydrate intake on chronic kidney disease: A Mendelian randomization study. Am. J. Clin. Nutr. 2021, 113, 1023–1031. [Google Scholar] [CrossRef]
- Oostenbach, L.H.; Slits, E.; Robinson, E.; Sacks, G. Systematic review of the impact of nutrition claims related to fat, sugar and energy content on food choices and energy intake. BMC Public Health 2019, 19, 1296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, Y.; Wang, G.; Moran, A.E.; Pagán, J.A. Nutrition Label Use and Sodium Intake in the U.S. Am. J. Prev. Med. 2017, 53, S220–S227. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.A.; Coresh, J.; Anderson, C.A.M.; Appel, L.J.; Grams, M.E.; Crews, D.C.; Mills, K.T.; He, J.; Scialla, J.; Rahman, M.; et al. Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2021, 77, 235–244. [Google Scholar] [CrossRef]
- Cai, Q.; Dekker, L.H.; Vinke, P.C.; Corpeleijn, E.; Bakker, S.J.L.; de Borst, M.H.; Navis, G.J. Diet quality and incident chronic kidney disease in the general population: The Lifelines Cohort Study. Clin. Nutr. 2021, 40, 5099–5105. [Google Scholar] [CrossRef]
- Choi, Y.; Steffen, L.M.; Chu, H.; Duprez, D.A.; Gallaher, D.D.; Shikany, J.M.; Schreiner, P.J.; Shroff, G.R.; Jacobs, D.R. A Plant-Centered Diet and Markers of Early Chronic Kidney Disease during Young to Middle Adulthood: Findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Cohort. J. Nutr. 2021, 151, 2721–2730. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J. KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Weinstein, J.R.; Anderson, S. The aging kidney: Physiological changes. Adv. Chronic Kidney Dis. 2010, 17, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Quinn, R.R.; Lam, N.N.; Al-Wahsh, H.; Sood, M.M.; Tangri, N.; Tonelli, M.; Ravani, P. Progression and Regression of Chronic Kidney Disease by Age Among Adults in a Population-Based Cohort in Alberta, Canada. JAMA Netw. Open 2021, 4, e2112828. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; O’Hare, A.M. Interaction of aging and chronic kidney disease. Semin. Nephrol. 2009, 29, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.C.; Chen, Y.C.; Lo, C.W.; Wang, W.S.; Lo, S.S.; Tang, G.J.; Thien, P.F. Incidence and renal survival of ESRD in the young Taiwanese population. Clin. J. Am. Soc. Nephrol. 2014, 9, 302–309. [Google Scholar] [CrossRef] [Green Version]
- An, R. Diabetes diagnosis and nutrition facts label use among US adults, 2005–2010. Public Health Nutr. 2016, 19, 2149–2156. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.L.; Jin, H.; Lim, J.Y.; Lee, S.Y. Relationship Between Low Handgrip Strength and Chronic Kidney Disease: KNHANES 2014-2017. J. Ren. Nutr. 2021, 31, 57–63. [Google Scholar] [CrossRef]
- Group, K.C.W. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Song, J.; Brown, M.K.; Tan, M.; MacGregor, G.A.; Webster, J.; Campbell, N.R.C.; Trieu, K.; Ni Mhurchu, C.; Cobb, L.K.; He, F.J. Impact of color-coded and warning nutrition labelling schemes: A systematic review and network meta-analysis. PLoS Med. 2021, 18, e1003765. [Google Scholar] [CrossRef]
Characteristics | Total | Use of Nutrition Labels | ||
---|---|---|---|---|
Unaware | Aware Only | Aware and Use | ||
(N = 32,080) | (N = 8835) | (N = 16,716) | (N = 6529) | |
Demographic factors | ||||
Age, years | 43.2 ± 0.1 | 57.3 ± 0.3 | 41.4 ± 0.2 | 35.3 ± 0.2 |
Sex | ||||
Men | 22,824 (77.2%) | 7092 (87.5%) | 12,352 (80.1%) | 3380 (61.4%) |
Women | 9256 (22.8%) | 1743 (12.5%) | 4364 (19.9%) | 3149 (38.6%) |
Household income | ||||
Low | 5799 (13.2%) | 3180 (27.4%) | 2030 (9.7%) | 589 (9.2%) |
Middle-Low | 7923 (24.2%) | 2418 (27.4%) | 4059 (23.7%) | 1446 (22.5%) |
Middle-High | 8889 (30.1%) | 1801 (24.6%) | 5112 (32.1%) | 1976 (30.3%) |
High | 9469 (32.6%) | 1436 (20.7%) | 5515 (34.6%) | 2518 (38.0%) |
Region | ||||
Urban | 25,005 (83.9%) | 5778 (73.9%) | 13,557 (85.4%) | 5670 (89.0%) |
Rural | 7075 (16.1%) | 3057 (26.1%) | 3159 (14.6%) | 859 (11.0%) |
Educational level | ||||
Less than elementary school | 6224 (11.3%) | 4173 (34.8%) | 1870 (6.7%) | 181 (1.9%) |
Middle school | 3353 (8.2%) | 1392 (15.6%) | 1626 (7.5%) | 335 (3.4%) |
High school | 11,212 (39.6%) | 2062 (30.3%) | 6513 (41.9%) | 2637 (42.1%) |
College or higher | 11,291 (40.9%) | 1208 (19.3%) | 6707 (43.9%) | 3376 (52.6%) |
Marital status | ||||
Single | 7173 (32.2%) | 600 (12.6%) | 3955 (32.1%) | 2618 (49.4%) |
Married | 22,293 (62.3%) | 6873 (75.7%) | 11,753 (63.5%) | 3667 (47.8%) |
Divorced/Widow/Widower | 2614 (5.5%) | 1362 (11.7%) | 1008 (4.4%) | 244 (2.8%) |
Dietary intake | ||||
Total energy intake, kcal/d | 2191.2 ± 6.7 | 2112.9 ± 13.4 | 2249.1 ± 8.7 | 2119.8 ± 13.2 |
Healthy behavior factors | ||||
Smoking | ||||
No current smoker | 21,505 (63.9%) | 5879 (62.0%) | 10,614 (60.3%) | 5012 (74.2%) |
Current smoker | 10,575 (36.1%) | 2956 (38.0%) | 6102 (39.7%) | 1517 (25.8%) |
Drinking | ||||
Non-binge drinker | 27,446 (83.3%) | 7703 (83.4%) | 13,950 (81.6%) | 5793 (87.3%) |
Binge drinker | 4634 (16.7%) | 1132 (16.6%) | 2766 (18.4%) | 736 (12.7%) |
Physical activity | ||||
Inactive | 21,067 (62.1%) | 6363 (69.4%) | 10,892 (62.9%) | 3812 (54.1%) |
Active | 11,013 (37.9%) | 2472 (30.6%) | 5824 (37.1%) | 2717 (45.9%) |
Chronic disease factors | ||||
Obesity | ||||
BMI < 25.0 kg/m2 | 21,174 (65.3%) | 5859 (65.4%) | 10,879 (64.5%) | 4436 (67.1%) |
BMI ≥ 25.0 kg/m2 | 10,906 (34.7%) | 2976 (34.6%) | 5839 (35.5%) | 2093 (32.9%) |
Hypertension | ||||
No hypertension | 15,306 (51.5%) | 2893 (36.0%) | 8252 (51.9%) | 4161 (64.1%) |
Hypertension | 16,774 (48.5%) | 5942 (64.0%) | 8464 (48.1%) | 2368 (35.9%) |
Diabetes | ||||
No diabetes | 28,336 (91.0%) | 7310 (83.4%) | 15,113 (92.4%) | 6116 (94.6%) |
Diabetes | 3744 (9.0%) | 1525 (16.6%) | 1603 (7.6%) | 413 (5.4%) |
Hypercholesterolemia | ||||
No hypercholesterolemia | 27,584 (87.4%) | 7310 (83.4%) | 14,442 (87.6%) | 5832 (90.4%) |
Hypercholesterolemia | 4496 (12.6%) | 1525 (16.6%) | 2274 (12.4%) | 697 (9.6%) |
Hyperglycemia | ||||
No hyperglycemia | 29,587 (93.6%) | 7762 (88.7%) | 15,588 (94.4%) | 6237 (96.0%) |
Hyperglycemia | 2493 (6.4%) | 1073 (11.3%) | 1128 (5.6%) | 292 (4.0%) |
Use of Nutrition Labels | ||||
---|---|---|---|---|
Unaware Group * | Aware only Group ** | Aware and Use Group *** | P for Trend **** | |
Cases/Non-cases | 755/8080 | 551/16,165 | 131/6398 | |
Age-adjusted | 1.00 (ref) | 0.81 (0.70–0.93) | 0.78 (0.62–0.99) | 0.009 |
Multivariable-adjusted | 1.00 (ref) | 0.80 (0.70–0.93) | 0.75 (0.59–0.95) | 0.03 |
Use of Nutrition Labels | ||||
---|---|---|---|---|
Unaware Group * | Aware only Group ** | Aware and Use Group *** | P for Trend **** | |
CKD cases with moderate risk of progression † | ||||
Cases/Non-cases | 530/8080 | 392/16,165 | 93/6398 | |
Age-adjusted | 1.00 (ref) | 0.81 (0.68–0.96) | 0.81 (0.62–1.07) | 0.05 |
Multivariable-adjusted | 1.00 (ref) | 0.82 (0.69–0.97) | 0.79 (0.59–1.05) | 0.04 |
CKD cases with high risk of progression †† | ||||
Cases/Non-cases | 156/8080 | 117/16,165 | 26/6398 | |
Age-adjusted | 1.00 (ref) | 0.79 (0.61–1.03) | 0.64 (0.39–1.06) | 0.03 |
Multivariable-adjusted | 1.00 (ref) | 0.75 (0.57–0.99) | 0.58 (0.35–0.96) | 0.01 |
CKD cases with very high risk of progression ††† | ||||
Cases/Non-cases | 69/8080 | 42/16,165 | 12/6398 | |
Age-adjusted | 1.00 (ref) | 0.84 (0.52–1.38) | 0.92 (0.42–2.01) | 0.68 |
Multivariable-adjusted | 1.00 (ref) | 0.81 (0.52–1.27) | 0.91 (0.43–1.93) | 0.61 |
Stratification Factors | Cases /Non-Cases | Use of Nutrition Labels | P for Trend **** | P for Interaction ***** | ||
---|---|---|---|---|---|---|
Unaware Group * | Aware only Group ** | Aware and Use Group *** | ||||
Sex | ||||||
Men | 1173/21,651 | 1.00 (ref) | 0.85 (0.73–1.00) | 0.87 (0.66–1.13) | 0.12 | 0.60 |
Women | 264/8992 | 1.00 (ref) | 0.57 (0.38–0.86) | 0.35 (0.20–0.63) | <0.001 | |
Age | ||||||
<49 years | 242/15,644 | 1.00 (ref) | 2.06 (1.08–3.92) | 1.66 (0.82–3.34) | 0.79 | <0.001 |
≥49 years | 1195/14,999 | 1.00 (ref) | 0.80 (0.67–0.94) | 0.65 (0.46–0.92) | 0.002 | |
Obesity | ||||||
BMI < 25.0 kg/m2 | 839/20,338 | 1.00 (ref) | 0.70 (0.57–0.85) | 0.67 (0.48–0.93) | 0.003 | 0.50 |
BMI ≥ 25.0 kg/m2 | 601/10,305 | 1.00 (ref) | 0.98 (0.79–1.22) | 0.88 (0.61–1.27) | 0.50 | |
Hypertension ****** | ||||||
Normal | 238/13,255 | 1.00 (ref) | 0.61 (0.41–0.90) | 0.65 (0.39–1.07) | 0.17 | 0.26 |
Elevated | 63/1750 | 1.00 (ref) | 0.74 (0.40–1.35) | 0.22 (0.041–1.15) | 0.03 | |
Hypertension stage 1 | 400/8304 | 1.00 (ref) | 0.97 (0.74–1.28) | 0.77 (0.49–1.23) | 0.29 | |
≥Hypertension stage 2 | 445/5353 | 1.00 (ref) | 0.97 (0.76–1.25) | 0.85 (0.54–1.34) | 0.49 | |
Diabetes | ||||||
No diabetes | 884/27,452 | 1.00 (ref) | 0.76 (0.64–0.92) | 0.68 (0.51–0.91) | 0.003 | 0.37 |
Diabetes | 553/3191 | 1.00 (ref) | 0.93 (0.73–1.18) | 0.90 (0.58–1.39) | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Dorgan, J.F.; Kim, H.; Kwon, O.; Kim, Y.; Kim, Y.; Ko, K.S.; Park, Y.J.; Park, H.; Jung, S. Association between Use of Nutrition Labels and Risk of Chronic Kidney Disease: The Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2019. Nutrients 2022, 14, 1731. https://doi.org/10.3390/nu14091731
Kim J, Dorgan JF, Kim H, Kwon O, Kim Y, Kim Y, Ko KS, Park YJ, Park H, Jung S. Association between Use of Nutrition Labels and Risk of Chronic Kidney Disease: The Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2019. Nutrients. 2022; 14(9):1731. https://doi.org/10.3390/nu14091731
Chicago/Turabian StyleKim, Jonghee, Joanne F. Dorgan, Hyesook Kim, Oran Kwon, Yangha Kim, Yuri Kim, Kwang Suk Ko, Yoon Jung Park, Hyesook Park, and Seungyoun Jung. 2022. "Association between Use of Nutrition Labels and Risk of Chronic Kidney Disease: The Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2019" Nutrients 14, no. 9: 1731. https://doi.org/10.3390/nu14091731
APA StyleKim, J., Dorgan, J. F., Kim, H., Kwon, O., Kim, Y., Kim, Y., Ko, K. S., Park, Y. J., Park, H., & Jung, S. (2022). Association between Use of Nutrition Labels and Risk of Chronic Kidney Disease: The Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2019. Nutrients, 14(9), 1731. https://doi.org/10.3390/nu14091731