Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Dietary Patterns
2.3. Assessment of Hyperuricemia
2.4. Assessment of Covariates
2.5. Statistical Analyses
3. Results
3.1. General Characteristics
3.2. Association between DASH Diet and Hyperuricemia
3.3. Subgroup Analyses
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CIs | Confidence intervals |
CRP | C-reactive protein |
DASH | Dietary Approaches to Stop Hypertension |
FFQ | Food frequency questionnaire |
HR | Hazard ratio |
ICD-10 | International Classification of Diseases tenth revision |
IPAQ | International Physical Activity Questionnaire |
PA | Physical activity |
SD | Standard deviation |
SHFCS | Shanghai Food Consumption Survey |
SUA | Serum uric acid |
References
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.U.A.; Browne, L.D.; Li, X.; Adeeb, F.; Perez-Ruiz, F.; Fraser, A.D.; Stack, A.G. Temporal trends in hyperuricaemia in the Irish health system from 2006–2014: A cohort study. PLoS ONE 2018, 13, e0198197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathmanathan, K.; Robinson, P.C.; Hill, C.L.; Keen, H.I. The prevalence of gout and hyperuricaemia in Australia: An updated systematic review. Semin. Arthritis Rheum. 2021, 51, 121–128. [Google Scholar] [CrossRef]
- Al Shanableh, Y.; Hussein, Y.Y.; Saidwali, A.H.; Al-Mohannadi, M.; Aljalham, B.; Nurulhoque, H.; Robelah, F.; Al-Mansoori, A.; Zughaier, S.M. Prevalence of asymptomatic hyperuricemia and its association with prediabetes, dyslipidemia and subclinical inflammation markers among young healthy adults in Qatar. BMC Endocr. Disord. 2022, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Sun, C.; Wang, H.; Zhang, B. Level of serum uric acid and prevalence of hyperuricemia among Chinese adults aged 18–59 years old in 15 provinces, 2015. Chin. J. Epidemiol. 2021, 42, 840–845. [Google Scholar] [CrossRef]
- Wan, Z.; Song, L.; Hu, L.; Lei, X.; Huang, Y.; Lv, Y. Temporal trends in hyperuricaemia among adults in Wuhan city, China, from 2010 to 2019: A cross-sectional study. BMJ Open 2021, 11, e043917. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, C.; Zhang, H.; Shen, Z.; Chen, J.; Gu, Y.; Lv, S.; Zhang, D.; Wang, Y.; Ding, X.; et al. Association between urbanisation and the risk of hyperuricaemia among Chinese adults: A cross-sectional study from the China Health and Nutrition Survey (CHNS). BMJ Open 2021, 11, e044905. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wang, S.; Tong, H.; Yuan, J.; Zou, Z.; Liu, J.; Yang, D.; Xie, Z. Prevalence and Risk Factors Associated with Hyperuricemia in the Pearl River Delta, Guangdong Province, China. Risk Manag. Healthc. Policy 2021, 14, 655–663. [Google Scholar] [CrossRef]
- Otaki, Y.; Konta, T.; Ichikawa, K.; Fujimoto, S.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Narita, I.; Kondo, M.; et al. Possible burden of hyperuricaemia on mortality in a community-based population: A large-scale cohort study. Sci. Rep. 2021, 11, 8999. [Google Scholar] [CrossRef]
- Lv, Q.; Meng, X.F.; He, F.F.; Chen, S.; Su, H.; Xiong, J.; Gao, P.; Tian, X.J.; Liu, J.S.; Zhu, Z.H.; et al. High serum uric acid and increased risk of type 2 diabetes: A systemic review and meta-analysis of prospective cohort studies. PLoS ONE 2013, 8, e56864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grayson, P.C.; Kim, S.Y.; LaValley, M.; Choi, H.K. Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res. 2011, 63, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karis, E.; Crittenden, D.B.; Pillinger, M.H. Hyperuricemia, gout, and related comorbidities: Cause and effect on a two-way street. South. Med. J. 2014, 107, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Chang, Y.; Zhang, Y.; Kim, S.G.; Cho, J.; Son, H.J.; Shin, H.; Guallar, E. A Cohort Study of Hyperuricemia in Middle-aged South Korean Men. Am. J. Epidemiol. 2011, 175, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Zgaga, L.; Theodoratou, E.; Kyle, J.; Farrington, S.M.; Agakov, F.; Tenesa, A.; Walker, M.; McNeill, G.; Wright, A.F.; Rudan, I.; et al. The association of dietary intake of purine-rich vegetables, sugar-sweetened beverages and dairy with plasma urate, in a cross-sectional study. PLoS ONE 2012, 7, e38123. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.T.D.; Diniz, M.; Coelho, C.G.; Vidigal, P.G.; Telles, R.W.; Barreto, S.M. Intake of selected foods and beverages and serum uric acid levels in adults: ELSA-Brasil (2008–2010). Public Health Nutr. 2020, 23, 506–514. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, S.; Ye, M.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Zhang, S.; Wang, Y.; et al. Association between consumption of ultra-processed foods and hyperuricemia: TCLSIH prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1993–2003. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508s–513s. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.K.; Fung, T.T.; Lu, N.; Keller, S.F.; Curhan, G.C.; Choi, H.K. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: Prospective cohort study. BMJ 2017, 357, j1794. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Cui, L.F.; Sun, Y.Y.; Yang, W.H.; Wang, J.R.; Wu, S.L.; Gao, X. Adherence to the Dietary Approaches to Stop Hypertension Diet and Hyperuricemia: A Cross-Sectional Study. Arthritis Care Res. 2021, 73, 603–611. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. Arthritis Rheumatol. 2016, 68, 3002–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabung, F.K.; Liu, L.; Wang, W.; Fung, T.T.; Wu, K.; Smith-Warner, S.A.; Cao, Y.; Hu, F.B.; Ogino, S.; Fuchs, C.S.; et al. Association of Dietary Inflammatory Potential with Colorectal Cancer Risk in Men and Women. JAMA Oncol. 2018, 4, 366–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F. Study on the Dietary Risk Factors of Cardiometabolic Diseases in Shanghai Suburban Residents. Master’s Thesis, Fudan University, Shanghai, China, 2019. [Google Scholar]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. (Eds.) China Food Composition Table, 2nd ed.; Beijing Medical University Press: Beijing, China, 2009. [Google Scholar]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Society of Endocrinology. Guidelines for the diagnosis and treatment of hyperuricemia and gout in China (2019). Chin. J. Endocrinol. Metabol. 2020, 36, 1–13. (In Chinese) [Google Scholar]
- Mengyu, F.; Jun, L.; Pingping, H. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Chin. J. Epidemiol. 2014, 35, 961–964. (In Chinese) [Google Scholar]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C.; Zhang, G.; Ji, X.; Liu, Y.; Sun, X.; Yuan, Z.; Jiang, Z.; Xue, F. Incidence and Simple Prediction Model of Hyperuricemia for Urban Han Chinese Adults: A Prospective Cohort Study. Int. J. Env. Res. Public Health 2017, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Lu, X.; Chen, C.; Du, H.; Zhang, R. Risk factors for the development of hyperuricemia: A STROBE-compliant cross-sectional and longitudinal study. Medicine 2019, 98, e17597. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Z.; Zhu, B.; Zhang, H.; Zhang, X.; Ding, X. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: A systematic review and meta-analysis. Glob. Health Action 2021, 14, 1874652. [Google Scholar] [CrossRef]
- Xia, Y.; Xiang, Q.; Gu, Y.; Jia, S.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Bao, X.; Yu, B.; et al. A dietary pattern rich in animal organ, seafood and processed meat products is associated with newly diagnosed hyperuricaemia in Chinese adults: A propensity score-matched case-control study. Br. J. Nutr. 2018, 119, 1177–1184. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.X.; Zhao, Z.Y.; Xia, Y.; Wu, Q.J.; Zhao, Y.H. Higher Levels of High-Sensitivity C-Reactive Protein Is Positively Associated with the Incidence of Hyperuricemia in Chinese Population: A Report from the China Health and Retirement Longitudinal Study. Mediat. Inflamm. 2020, 2020, 3854982. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Ding, X.; Wang, Y.L.; Zeng, C.; Wei, J.; Li, H.; Xiong, Y.L.; Gao, S.G.; Li, Y.S.; Lei, G.H. Association between high-sensitivity C-reactive protein and hyperuricemia. Rheumatol. Int. 2016, 36, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Kakkoura, M.G.; Du, H.; Guo, Y.; Yu, C.; Yang, L.; Pei, P.; Chen, Y.; Sansome, S.; Chan, W.C.; Yang, X.; et al. Dairy consumption and risks of total and site-specific cancers in Chinese adults: An 11-year prospective study of 0.5 million people. BMC Med. 2022, 20, 134. [Google Scholar] [CrossRef]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Major, T.J.; Topless, R.K.; Dalbeth, N.; Merriman, T.R. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts. BMJ 2018, 363, k3951. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: A narrative review of evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Zhang, X.; Li, S. Study on effect of DASH diet on serum uric acid. Chongqing Med. 2019, 48, 3658–3661. (In Chinese) [Google Scholar]
- Yazdi, F.; Morreale, P.; Reisin, E. First Course DASH, Second Course Mediterranean: Comparing Renal Outcomes for Two “Heart-Healthy” Diets. Curr. Hypertens. Rep. 2020, 22, 54. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Fernández-Fernández, C.; Carneiro-Freire, N.; Castro-Quintela, E.; Pedre-Piñeiro, A.; Seco-Filgueira, M. Insulin resistance underlies the elevated cardiovascular risk associated with kidney disease and glomerular hyperfiltration. Rev. Cardiovasc. Med. 2020, 21, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.A.; Nakagawa, T.; Kanbay, M.; Kuwabara, M.; Kumar, A.; Garcia Arroyo, F.E.; Roncal-Jimenez, C.; Sasai, F.; Kang, D.H.; Jensen, T.; et al. Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Semin. Nephrol. 2020, 40, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Choi, H.K. Dietary and Lifestyle-Centered Approach in Gout Care and Prevention. Curr. Rheumatol. Rep. 2021, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- Razavi Zade, M.; Telkabadi, M.H.; Bahmani, F.; Salehi, B.; Farshbaf, S.; Asemi, Z. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 2016, 36, 563–571. [Google Scholar] [CrossRef]
- Shirani, F.; Salehi-Abargouei, A.; Azadbakht, L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition 2013, 29, 939–947. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelic, D.; Kahleova, H.; Salas-Salvado, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Attard, S.M.; Herring, A.H.; Wang, H.; Du, S.; Gordon-Larsen, P. Socioeconomic gradients in the Westernization of diet in China over 20 years. SSM Popul. Health 2021, 16, 100943. [Google Scholar] [CrossRef]
Variables | Q1 Group | Q2 Group | Q3 Group | Q4 Group | Q5 Group | p Value |
---|---|---|---|---|---|---|
Socio-demographic factors | ||||||
Age (years) | 58.98 ± 9.89 | 57.78 ± 10.48 | 56.48 ± 10.94 | 55.25 ± 11.54 | 55.34 ± 11.85 | <0.001 1 |
Men (%) | 3702 (51.19) | 3099 (42.62) | 3280 (37.77) | 3895 (31.73) | 2571 (24.75) | <0.001 1 |
Married (%) | 6622 (91.57) | 6727 (92.51) | 8089 (93.14) | 11,440 (93.2) | 9655 (92.93) | <0.001 1 |
Middle school and higher (%) | 963 (13.32) | 1200 (16.50) | 1780 (20.50) | 3318 (27.03) | 3918 (37.71) | <0.001 1 |
Family history (%) | 350 (4.84) | 314 (4.32) | 377 (4.34) | 652 (5.31) | 546 (5.26) | <0.001 1 |
Total energy intake (kcal/d) | 2069.12 ± 714.59 | 2032.51 ± 685.11 | 2058.23 ± 672.55 | 2082.50 ± 648.65 | 2131.96 ± 597.05 | <0.001 1 |
Lifestyle factors | ||||||
Smoking (%) | 2200 (30.42) | 1703 (23.42) | 1562 (17.99) | 1603 (13.06) | 916 (8.82) | <0.001 1 |
Alcohol drinking (%) | 1249 (17.27) | 949 (13.05) | 871 (10.03) | 857 (6.98) | 557 (5.36) | <0.001 1 |
Low-level PA (%) | 1319 (18.24) | 1172 (16.12) | 1292 (14.88) | 1515 (12.34) | 1002 (9.64) | <0.001 1 |
Prevalence of cardiometabolic diseases | ||||||
Overweight (%) | 2823 (39.03) | 2845 (39.12) | 3344 (38.5) | 4549 (37.06) | 3689 (35.51) | <0.001 1 |
Obesity (%) | 925 (12.79) | 848 (11.66) | 1027 (11.82) | 1371 (11.17) | 992 (9.55) | <0.001 1 |
Hypertension (%) | 4324 (59.79) | 4286 (58.94) | 4817 (55.46) | 6502 (52.97) | 5344 (51.44) | <0.001 1 |
Diabetes (%) | 1326 (18.34) | 1370 (18.84) | 1512 (17.41) | 2081 (16.95) | 1748 (16.83) | 0.001 1 |
Hyperlipemia (%) | 4307 (59.55) | 4331 (59.56) | 5123 (58.99) | 7142 (58.18) | 6186 (59.54) | 0.171 |
Variables | Q1 Group | Q2 Group | Q3 Group | Q4 Group | Q5 Group |
---|---|---|---|---|---|
Total No. | 7232 | 7272 | 8685 | 12,275 | 10,389 |
Score ranges | 11–19 | 20–21 | 22–23 | 24–26 | 27–36 |
Cases/person-years | 430/32,565.41 | 402/32,365.33 | 389/37,995.57 | 532/52,318.77 | 326/41,305.29 |
Models | Q1 Group | Q2 Group | Q3 Group | Q4 Group | Q5 Group |
---|---|---|---|---|---|
Model 1 | |||||
Cases/person-years | 415/32,560.42 | 391/32,360.82 | 377/37,991.68 | 507/52,313.05 | 310/41,299.58 |
HR (95% CIs) | 1.00 | 1.02 (0.89–1.17) | 0.91 (0.79–1.05) | 0.97 (0.85–1.11) | 0.83 (0.72–0.97) 1 |
Model 2 | |||||
Cases/person-years | 398/32,537.76 | 371/32,339.10 | 358/37,974.35 | 480/52,285.36 | 292/41,284.18 |
HR (95% CIs) | 1.00 | 1.01 (0.88–1.17) | 0.90 (0.78–1.04) | 0.97 (0.84–1.11) | 0.83 (0.71–0.97) 1 |
Models | Q1 Group | Q2 Group | Q3 Group | Q4 Group | Q5 Group |
---|---|---|---|---|---|
Model 3 | 1.00 | 1.03 (0.90–1.18) | 0.97 (0.85–1.11) | 1.00 (0.88–1.14) | 0.89 (0.77–1.03) |
Model 4 | 1.00 | 1.04 (0.90–1.19) | 0.98 (0.86–1.13) | 1.01 (0.88–1.15) | 0.89 (0.76–1.03) |
Model 5 | 1.00 | 1.03 (0.89–1.18) | 0.98 (0.85–1.13) | 1.00 (0.87–1.14) | 0.89 (0.76–1.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, K.; Cui, S.; Tang, M.; Wu, Y.; Xiang, Y.; Yu, Y.; Tong, X.; Jiang, Y.; Zhao, Q.; Zhao, G. Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents. Nutrients 2022, 14, 4853. https://doi.org/10.3390/nu14224853
Yi K, Cui S, Tang M, Wu Y, Xiang Y, Yu Y, Tong X, Jiang Y, Zhao Q, Zhao G. Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents. Nutrients. 2022; 14(22):4853. https://doi.org/10.3390/nu14224853
Chicago/Turabian StyleYi, Kangqi, Shuheng Cui, Minhua Tang, Yiling Wu, Yu Xiang, Yuting Yu, Xin Tong, Yonggen Jiang, Qi Zhao, and Genming Zhao. 2022. "Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents" Nutrients 14, no. 22: 4853. https://doi.org/10.3390/nu14224853
APA StyleYi, K., Cui, S., Tang, M., Wu, Y., Xiang, Y., Yu, Y., Tong, X., Jiang, Y., Zhao, Q., & Zhao, G. (2022). Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents. Nutrients, 14(22), 4853. https://doi.org/10.3390/nu14224853