Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Processing
2.2. Inclusion Criteria
2.3. Data Processing
2.4. Risk of Bias Assessment Methodologies
3. Results
3.1. Characteristics of Included Articles
3.2. Risk of Bias of the Included Studies
3.2.1. In Vitro Studies
3.2.2. In Vivo Studies
3.3. Bone Metabolism Modulation
3.3.1. Resveratrol
3.3.2. Curcumin
3.3.3. Quercetin
3.4. Osteopenia and Osteoporosis
3.4.1. Resveratrol
3.4.2. Curcumin
3.4.3. Quercetin
3.5. Neoplasms and Bone Tumours
3.5.1. Resveratrol
3.5.2. Curcumin
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Aziz et al., 2018 | Molecules | In vitro | DK1 was applied on U-2OS and MG-63. Cell cycle analysis, quantitative PCR, and proteome profiling were adapted | DK1 induces apoptosis in human OS through a mitochondrial-dependent signalling pathway; the U-2 OS cell line was more sensitive than other | [108] |
Aziz et al., 2021 | Pharmaceuticals | In vitro | DK1 was applied on U-2OS and MG-63, microarray gene expression analysis, quantitative PCR, and proteome profiler were elected | DK1 suppressed cell migration, invasion, tube formation, and microvessel formation | [109] |
Lu et al., 2020 | Molecules | In vitro | L48H37 was applied on U-2 OS and MG-63 in different concentrations. Wound-Healing, Cell Migration and Invasion, Protease, Western Blotting Analysis, and PCR were adapted | L48H37 represses the invasion and migration capabilities of U2OS and MG-63 cells by the suppression of uPA expression and the inhibition of JAK/STAT signalling | [110] |
Li et al., 2019 | Aging | In vitro | CU was applied on hADSCs. miRNA microarray analysis, Western blot analysis and quantitative RT-PCR analysis were done | CU reduces osteogenesis by stimulating miR-126a-3p and consequently decreasing the WNT/LRP6 pathway | [203] |
NEACȘU et al., 2021 | Romanian Journal of Materials | In vitro | A nanoparticle of hydroxyapatite-CU was applied on MG63 Molecular and cell analyses were made | This results in a cytotoxic effect on bone cancer cells, activating apoptosis, and increasing the level of AMPK, ARRB1 is associated with a G2/M cell cycle | [111] |
Dong et al., 2018 | Artificial Cells, Nanomedicine, and Biotechnology | In vitro | ALN-oHA-S-S-CUR micelle on the cell cultures of MDAMB-231, MCF-7 | Increased rate of CU release within tumour cells by a reduction-responsive mechanism and CD44 receiving ability | [112] |
Wang et al., 2017 | Sci. China Mater. | In vitro | CU-NPs were applied on 143B OS cells. Stability test, drug release study, cell analysis, and RTPCR were done | The mRNA and protein expressions of c-Myc and MMP7 are reduced by CU-NPs, which also prevent the metastatic OS 143B cells from proliferating and invading | [113] |
Yu et al., 2021 | Polymers | In vitro | Chemical hydrogel nanoparticles with CU on MG-63 and ME3T3-E1 cells | Effect of inhibiting the growth of OS cells and promoting the proliferation of pre-OB cells | [114] |
3.6. Periodontitis and Gum Diseases
3.6.1. Curcumin
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Diomede et al., 2021 | Int J Mol Sci | In vitro | Neural crest-derived human periodontal ligament stem cells phosphate buffered saline MSCBM-CD | CU-LIP helps control the production of ROS and the inflammatory cascade and influences epigenetic mechanisms in vitro | [115] |
Xiong et al., 2020 | Iran J Basic Med Sci | In vitro | Control group CU 0.001 µM + hPDLSC CU 0.01 µM + hPDLSC CU 0.1 µM + hPDLSC CU 1 µM + hPDLSC CU 10 µM + hPDLSC | Low concentration CU activates the PI3K/AKT/Nrf2 signalling pathway inducing osteogenic differentiation of hPDLSCs | [116] |
3.6.2. Quercetin
3.7. Titanium Surfaces Modified with Flavonoids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | protein kinase B |
ALN-oHA-S-S-CU | poly-alendronate-ialuronane-S-S-curcumin |
BMD | bone mineral density |
CGF | Concentrated Growth Factors |
CTX | C-Terminal Telopeptide |
CU | Curcumin |
CU-NPr | nanoparticles coated with curcumin |
CU-Lip | Curcumin-loaded liposomes |
DK1 | (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one |
DNMT1 | DNA Methyltransferase 1 |
e-hPDLSC | endothelial-differentiated hPDLSC |
ECM | extracellular matrix |
FDA | Food and Drug Administration |
GRAS | General Recognition and Safety |
GUSB | β-glucuronidase |
hADSCs | human adipose-derived mesenchymal stem cells |
hBM-MSCs | mesenchymal stem cells derived from human bone marrow |
hPDLSC | Human Periodontal Ligament Stem Cell |
hUC-MSC | Human Umbilical Cord- derived Stem cell |
L48H37 | 1-ethyl-3,5-bis((E)-3,4,5-trimethoxybenzylidene)piperidin-4-one |
LPS-G | Lipopolysaccaride obtained from Porphyromonas gingivalis |
MSC | Mesenchymal Stem Cell |
NFkB | Nuclear factor kappa light chain enhancer of activated B cells |
NLRP3 | NLR Family Pyrin Domain Containing 3 |
NS-J | combination of CU, ginger, vitamin D, L. rhamnosus, and Boswellia extract |
OB | osteoblasts |
OP | osteoporosis |
OPG | osteoprotegerin |
OS | Osteosarcoma |
PAO1 | Pseudomonas Aeruginosa |
PFs | phenolic compounds |
PI3K | Phosphatidylinossitol-3-kinase |
PLA | Poly DL-lactic acid |
PM | postemenopausal |
PVL | Panton-Valentine Leukocidin toxin |
Q | Quercetin |
RANKL | RANK Ligand |
RCT | randomised control trial |
ROS | Reactive Oxygen Species |
RSV | Resveratrol |
SIRT1 | Activates Sirtuin 1 |
TLR4 | Tool-like receptor 4 |
TNF | Tumour Necrosis Factor |
[25(OH)D] | 25 vitamin D hydroxylase |
References
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free Radicals and Polyphenols: The Redox Chemistry of Neurodegenerative Diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, H.; Ioannou, I.; Paris, C.; Charbonnel, C.; Ghoul, M. The Photostability of Flavanones, Flavonols and Flavones and Evolution of Their Antioxidant Activity. J. Photochem. Photobiol. A Chem. 2017, 336, 131–139. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Cazzolla, A.P.; Di Cosola, M.; Greco Lucchina, A.; Santacroce, L.; Charitos, I.A.; Topi, S.; Malcangi, G.; Hazballa, D.; Scarano, A.; et al. The Integumentary System and Its Microbiota between Health and Disease. J. Biol. Regul. Homeost. Agents 2021, 35, 303–321. [Google Scholar] [CrossRef]
- Ballini, A.; Gnoni, A.; Vito, D.D.; Dipalma, G.; Cantore, S.; Isacco, C.G.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; et al. Effect of Probiotics on the Occurrence of Nutrition Absorption Capacities in Healthy Children: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8645–8657. [Google Scholar]
- Pacifici, L.; Santacroce, L.; Dipalma, G.; Haxhirexha, K.; Topi, S.; Cantore, S.; Altini, V.; Pacifici, A.; Vito, D.D.; Pettini, F.; et al. Gender Medicine: The Impact of Probiotics on Male Patients. Clin. Trial 2021, 172, 8–15. [Google Scholar]
- Campanella, V.; Syed, J.; Santacroce, L.; Saini, R.; Ballini, A.; Inchingolo, F. Oral Probiotics Influence Oral and Respiratory Tract Infections in Pediatric Population: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Randomized Control. Trial 2018, 22, 8034–8041. [Google Scholar]
- Gargiulo Isacco, C.; Ballini, A.; De Vito, D.; Michele Inchingolo, A.; Cantore, S.; Paduanelli, G.; Cao Diem Nguyen, K.; Danilo Inchingolo, A.; Dipalma, G.; Inchingolo, F. Probiotics in Health and Immunity: A First Step toward Understanding the Importance of Microbiota System in Translational Medicine. In Prebiotics and Probiotics—Potential Benefits in Nutrition and Health; Franco-Robles, E., Ramírez-Emiliano, J., Eds.; IntechOpen: Bari, Italy, 2020; ISBN 978-1-78985-921-8. [Google Scholar]
- Ballini, A.; Signorini, L.; Inchingolo, A.D.; Saini, R.; Gnoni, A.; Scacco, S.; Cantore, S.; Dipalma, G.; Inchingolo, F.; Santacroce, L. Probiotics May Improve Serum Folate Availability in Pregnant Women: A Pilot Study. Open Access Maced. J. Med. Sci. 2020, 8, 1124–1130. [Google Scholar] [CrossRef]
- Signorini, L.; Ballini, A.; Arrigoni, R.; Leonardis, F.D.; Saini, R.; Cantore, S.; De Vito, D.; Coscia, M.F.; Dipalma, G.; Santacroce, L.; et al. Evaluation of a Nutraceutical Product with Probiotics, Vitamin D, Plus Banaba Leaf Extracts (Lagerstroemia speciosa) in Glycemic Control. Available online: https://www.eurekaselect.com/187708/article (accessed on 28 November 2020).
- Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology 2020, 9, 131. [Google Scholar] [CrossRef]
- Contaldo, M.; Fusco, A.; Stiuso, P.; Lama, S.; Gravina, A.G.; Itro, A.; Federico, A.; Itro, A.; Dipalma, G.; Inchingolo, F.; et al. Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study. Microorganisms 2021, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Isacco, C.G.; Ballini, A.; De Vito, D.; Nguyen, K.C.D.; Cantore, S.; Bottalico, L.; Quagliuolo, L.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; et al. Rebalancing the Oral Microbiota as an Efficient Tool in Endocrine, Metabolic and Immune Disorders. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The Human Respiratory System and Its Microbiome at a Glimpse. Biology 2020, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Ferrazzano, G.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Anand David, A.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Phcog. Rev. 2016, 10, 84. [Google Scholar] [CrossRef]
- Abba, Y.; Hassim, H.; Hamzah, H.; Noordin, M.M. Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv. Virol. 2015, 2015, 184241. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B. Resveratrol, a Phenolic Antioxidant with Effects on Blood Platelet Functions. Platelets 2005, 16, 251–260. [Google Scholar] [CrossRef]
- Zhao, X.; Tong, W.; Song, X.; Jia, R.; Li, L.; Zou, Y.; He, C.; Liang, X.; Lv, C.; Jing, B.; et al. Antiviral Effect of Resveratrol in Piglets Infected with Virulent Pseudorabies Virus. Viruses 2018, 10, 457. [Google Scholar] [CrossRef]
- Lin, S.-C.; Ho, C.-T.; Chuo, W.-H.; Li, S.; Wang, T.T.; Lin, C.-C. Effective Inhibition of MERS-CoV Infection by Resveratrol. BMC Infect. Dis. 2017, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; De Vito, D.; Saini, R.; Inchingolo, F. Probiotics Improve Urogenital Health in Women. Open Access Maced. J. Med. Sci. 2018, 6, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics Efficacy on Oxidative Stress Values in Inflammatory Bowel Disease: A Randomized Double-Blinded Placebo-Controlled Pilot Study. EMIDDT 2019, 19, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Arora, I.; Sharma, M.; Tollefsbol, T.O. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2019, 20, 4567. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Park, B.; Goel, A.; Aggarwal, B.B. Epigenetic Changes Induced by Curcumin and Other Natural Compounds. Genes Nutr. 2011, 6, 93–108. [Google Scholar] [CrossRef]
- Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; Astudillo-de la Vega, H.; Hernández de la Cruz, O.N.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 79. [Google Scholar] [CrossRef]
- Aggarwal, R.; Jha, M.; Shrivastava, A.; Jha, A.K. Natural Compounds: Role in Reversal of Epigenetic Changes. Biochemistry 2015, 80, 972–989. [Google Scholar] [CrossRef]
- Shagufta; Ahmad, I. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. Chem. Sel. 2021, 6, 11502–11527. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef]
- Stokes, J., III; Vinayak, S.; Williams, J.; Malik, S.; Singh, R.; Manne, U.; Owonikoko, T.K.; Mishra, M.K. Optimum Health and Inhibition of Cancer Progression by Microbiome and Resveratrol. Front. Biosci. 2021, 26, 496–517. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Di Cosola, M.; Inchingolo, A.M.; Greco Lucchina, A.; Malcangi, G.; Pettini, F.; Scarano, A.; Bordea, I.R.; Hazballa, D.; Lorusso, F.; et al. Correlation between Occlusal Trauma and Oral Microbiota: A Microbiological Investigation. J. Biol. Regul. Homeost. Agents 2021, 35, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Dipalma, G.; Inchingolo, A.D.; Inchingolo, F.; Charitos, I.A.; Di Cosola, M.; Cazzolla, A.P. Focus on the Cariogenic Process: Microbial and Biochemical Interactions with Teeth and Oral Environment. J. Biol. Regul. Homeost. Agents 2021, 35, 429–440. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Calvello, R.; Panaro, M.A. Reviewing the Role of Resveratrol as a Natural Modulator of Microglial Activities. Curr. Pharm. Des. 2015, 21, 5277–5291. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-C.; Tsai, Y.-F.; Tsai, H.-I.; Yu, H.-P. Anti-Inflammatory and Organ-Protective Effects of Resveratrol in Trauma-Hemorrhagic Injury. Mediat. Inflamm. 2015, 2015, e643763. [Google Scholar] [CrossRef]
- Walker, J.M.; Eckardt, P.; Aleman, J.O.; da Rosa, J.C.; Liang, Y.; Iizumi, T.; Etheve, S.; Blaser, M.J.; Breslow, J.L.; Holt, P.R. The Effects of Trans-Resveratrol on Insulin Resistance, Inflammation, and Microbiota in Men with the Metabolic Syndrome: A Pilot Randomized, Placebo-Controlled Clinical Trial. J. Clin. Transl. Res. 2018, 4, 122–135. [Google Scholar]
- Dolinsky, V.W.; Dyck, J.R.B. Calorie Restriction and Resveratrol in Cardiovascular Health and Disease. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2011, 1812, 1477–1489. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Interactions of Gut Microbiota with Functional Food Components and Nutraceuticals. Pharm. Res. 2010, 61, 219–225. [Google Scholar] [CrossRef]
- Carrera-Quintanar, L.; López Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediat. Inflamm. 2018, 2018, 9734845. [Google Scholar] [CrossRef]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.-S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In Vivo and In Vitro Metabolism of Trans-Resveratrol by Human Gut Microbiota. Am. J. Clin. Nutr. 2013, 97, 295–309. [Google Scholar] [CrossRef]
- Nargeh, H.; Aliabadi, F.; Ajami, M.; Pazoki, H. The Role of Polyphenols on Gut Microbiota and Ubiquitin-Proteasome System in Neurodegenerative Diseases. J. Agric. Food Chem. 2021, 69, 6119–6144. [Google Scholar] [CrossRef]
- Asgary, S.; Karimi, R.; Momtaz, S.; Naseri, R.; Farzaei, M.H. Effect of Resveratrol on Metabolic Syndrome Components: A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2019, 20, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Gao, K.; Jia, C.; Zhang, F.; Tian, G.; Murtaza, G.; Chen, J. Significance of Resveratrol in Clinical Management of Chronic Diseases. Molecules 2017, 22, 1329. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, U.; Rubab, M.; Daliri, E.B.-M.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The Role of Quercetin in Plants. Plant Physiol. Biochem. 2021, 166, 10–19. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Hsiao, A.-F.; Lien, Y.-C.; Tzeng, I.-S.; Liu, C.-T.; Chou, S.-H.; Horng, Y.-S. The Efficacy of High- and Low-Dose Curcumin in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Complementary Ther. Med. 2021, 63, 102775. [Google Scholar] [CrossRef]
- Cianciulli, A.; Calvello, R.; Ruggiero, M.; Panaro, M.A. Inflammaging and Brain: Curcumin and Its Beneficial Potential as Regulator of Microglia Activation. Molecules 2022, 27, 341. [Google Scholar] [CrossRef]
- Shaikh, S.; Shaikh, J.; Naba, Y.S.; Doke, K.; Ahmed, K.; Yusufi, M. Curcumin: Reclaiming the Lost Ground against Cancer Resistance. CDR 2021, 4, 298–320. [Google Scholar] [CrossRef]
- Ahmed, T.; Gilani, A.-H. Inhibitory Effect of Curcuminoids on Acetylcholinesterase Activity and Attenuation of Scopolamine-Induced Amnesia May Explain Medicinal Use of Turmeric in Alzheimer’s Disease. Pharmacol. Biochem. Behav. 2009, 91, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.F.-F.; Macdonald, R.; Lovegrove, J.A. Fruit Polyphenols and CVD Risk: A Review of Human Intervention Studies. Br. J. Nutr. 2010, 104, S28–S39. [Google Scholar] [CrossRef] [PubMed]
- Kunihiro, A.G.; Luis, P.B.; Frye, J.B.; Chew, W.; Chow, H.H.; Schneider, C.; Funk, J.L. Bone-Specific Metabolism of Dietary Polyphenols in Resorptive Bone Diseases. Mol. Nutr. Food Res. 2020, 64, 2000072. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Lewiecki, E.M. The Pathophysiology and Treatment of Osteoporosis. Clin. Ther. 2015, 37, 1837–1850. [Google Scholar] [CrossRef] [PubMed]
- Hatefi, M.; Ahmadi, M.R.H.; Rahmani, A.; Dastjerdi, M.M.; Asadollahi, K. Effects of Curcumin on Bone Loss and Biochemical Markers of Bone Turnover in Patients with Spinal Cord Injury. World Neurosurg. 2018, 114, e785–e791. [Google Scholar] [CrossRef]
- Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL–RANK Signaling in Osteoclastogenesis and Bone Disease. Trends Mol. Med. 2006, 12, 17–25. [Google Scholar] [CrossRef]
- Kim, W.K.; Ke, K.; Sul, O.J.; Kim, H.J.; Kim, S.H.; Lee, M.H.; Kim, H.J.; Kim, S.Y.; Chung, H.T.; Choi, H.S. Curcumin Protects against Ovariectomy-Induced Bone Loss and Decreases Osteoclastogenesis. J. Cell. Biochem. 2011, 112, 3159–3166. [Google Scholar] [CrossRef]
- Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Kuscuoglu, N.; Wilson, J.; McCaffrey, G.; Stafford, G.; Chen, G.; Lantz, R.C.; Jolad, S.D.; et al. Efficacy and Mechanism of Action of Turmeric Supplements in the Treatment of Experimental Arthritis. Arthritis Rheum. 2006, 54, 3452–3464. [Google Scholar] [CrossRef]
- Mohamad, N.V.; Soelaiman, I.-N.; Chin, K.-Y. A Concise Review of Testosterone and Bone Health. CIA 2016, 11, 1317–1324. [Google Scholar] [CrossRef]
- Cauley, J.A. Estrogen and Bone Health in Men and Women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef]
- Farr, J.N.; Khosla, S. Cellular Senescence in Bone. Bone 2019, 121, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Justesen, J.; Stenderup, K.; Ebbesen, E.N.; Mosekilde, L.; Steiniche, T.; Kassem, M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001, 2, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Llorach, R.; Farran-Codina, A.; Barupal, D.K.; Neveu, V.; Manach, C.; Andres-Lacueva, C.; Scalbert, A. Systematic Analysis of the Polyphenol Metabolome Using the Phenol-Explorer Database. Mol. Nutr. Food Res. 2016, 60, 203–211. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Raymaekers, K.; Stegen, S.; van Gastel, N.; Carmeliet, G. The Vasculature: A Vessel for Bone Metastasis. BoneKEy Rep. 2015, 4, 742. [Google Scholar] [CrossRef]
- Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; et al. Phase I Clinical Trial of Curcumin, a Chemopreventive Agent, in Patients with High-Risk or Pre-Malignant Lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar]
- Lombardo, A.; Bairati, C.; Goi, G.; Roggi, C.; Maccarini, L.; Bollini, D.; Burlina, A. Plasma Lysosomal Glycohydrolases in a General Population. Clin. Chim. Acta 1996, 247, 39–49. [Google Scholar] [CrossRef]
- Gratz, M.; Kunert-Keil, C.; John, U.; Cascorbi, I.; Kroemer, H.K. Identification and Functional Analysis of Genetic Variants of the Human ??-Glucuronidase in a German Population Sample. Pharm. Genom. 2005, 15, 875–881. [Google Scholar] [CrossRef]
- Kawai, Y. Understanding Metabolic Conversions and Molecular Actions of Flavonoids in Vivo:Toward New Strategies for Effective Utilization of Natural Polyphenols in Human Health. J. Med. Investig. 2018, 65, 162–165. [Google Scholar] [CrossRef]
- Ornstrup, M.J.; Harsløf, T.; Sørensen, L.; Stenkjær, L.; Langdahl, B.L.; Pedersen, S.B. Resveratrol Increases Osteoblast Differentiation In Vitro Independently of Inflammation. Calcif. Tissue Int. 2016, 99, 155–163. [Google Scholar] [CrossRef]
- Knop, F.K.; Konings, E.; Timmers, S.; Schrauwen, P.; Holst, J.J.; Blaak, E.E. Thirty Days of Resveratrol Supplementation Does Not Affect Postprandial Incretin Hormone Responses, but Suppresses Postprandial Glucagon in Obese Subjects. Diabet. Med. 2013, 30, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Gambino, R.; Ponzo, V.; Cioffi, I.; Goitre, I.; Evangelista, A.; Ciccone, G.; Cassader, M.; Procopio, M. Effects of Resveratrol on Bone Health in Type 2 Diabetic Patients. A Double-Blind Randomized-Controlled Trial. Nutr. Diabetes 2018, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Asis, M.; Hemmati, N.; Moradi, S.; Nagulapalli Venkata, K.C.; Mohammadi, E.; Farzaei, M.H.; Bishayee, A. Effects of Resveratrol Supplementation on Bone Biomarkers: A Systematic Review and Meta-Analysis. Ann. N. Y. Acad. Sci. 2019, 1457, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Bonazza, V.; Buffoli, B.; Nocini, P.F.; Albanese, M.; Zotti, F.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates. BioMed Res. Int. 2018, 2018, 4597321. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.-L.; Weng, X.-S.; Wu, Z.-H.; Guo, S.-G. Effect of Resveratrol on Preventing Steroid-Induced Osteonecrosis in a Rabbit Model. Chin. Med. J. 2016, 129, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.-S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takiguchi, T.; Suzuki, R.; Yamaguchi, A.; Deguchi, K.; Shionome, M.; Miyazawa, Y.; Nishihara, T.; Nagumo, M.; Hasegawa, K. Recombinant Human Bone Morphogenetic Protein-2 Stimulates Osteoblastic Differentiation in Cells Isolated from Human Periodontal Ligament. J. Dent. Res. 1999, 78, 1624–1633. [Google Scholar] [CrossRef]
- Niemann, S.; Bertling, A.; Brodde, M.F.; Fender, A.C.; Van de Vyver, H.; Hussain, M.; Holzinger, D.; Reinhardt, D.; Peters, G.; Heilmann, C.; et al. Panton-Valentine Leukocidin Associated with S. Aureus Osteomyelitis Activates Platelets via Neutrophil Secretion Products. Sci. Rep. 2018, 8, 2185. [Google Scholar] [CrossRef]
- Vitaglione, P.; Sforza, S.; Galaverna, G.; Ghidini, C.; Caporaso, N.; Vescovi, P.P.; Fogliano, V.; Marchelli, R. Bioavailability Oftrans-Resveratrol from Red Wine in Humans. Mol. Nutr. Food Res. 2005, 49, 495–504. [Google Scholar] [CrossRef]
- Li, Y.; Dånmark, S.; Edlund, U.; Finne-Wistrand, A.; He, X.; Norgård, M.; Blomén, E.; Hultenby, K.; Andersson, G.; Lindgren, U. Resveratrol-Conjugated Poly-ε-Caprolactone Facilitates in Vitro Mineralization and in Vivo Bone Regeneration. Acta Biomater. 2011, 7, 751–758. [Google Scholar] [CrossRef]
- Kapetanovic, I.M.; Muzzio, M.; Huang, Z.; Thompson, T.N.; McCormick, D.L. Pharmacokinetics, Oral Bioavailability, and Metabolic Profile of Resveratrol and Its Dimethylether Analog, Pterostilbene, in Rats. Cancer Chemother. Pharm. 2011, 68, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Uberti, F.; Morsanuto, V.; Aprile, S.; Ghirlanda, S.; Stoppa, I.; Cochis, A.; Grosa, G.; Rimondini, L.; Molinari, C. Biological Effects of Combined Resveratrol and Vitamin D3 on Ovarian Tissue. J. Ovarian Res. 2017, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Tangestani, H.; Djafarian, K.; Emamat, H.; Arabzadegan, N.; Shab-Bidar, S. Efficacy of Vitamin D Fortified Foods on Bone Mineral Density and Serum Bone Biomarkers: A Systematic Review and Meta-Analysis of Interventional Studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Lestari, M.L.A.D.; Indrayanto, G. Curcumin. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 39, pp. 113–204. ISBN 978-0-12-800173-8. [Google Scholar]
- Geißler, S.; Barrantes, A.; Tengvall, P.; Messersmith, P.B.; Tiainen, H. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir 2016, 32, 8050–8060. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Florit, M.; Pacha-Olivenza, M.A.; Fernández-Calderón, M.C.; Córdoba, A.; González-Martín, M.L.; Monjo, M.; Ramis, J.M. Quercitrin-Nanocoated Titanium Surfaces Favour Gingival Cells against Oral Bacteria. Sci. Rep. 2016, 6, 22444. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, A.; Satué, M.; Gómez-Florit, M.; Hierro-Oliva, M.; Petzold, C.; Lyngstadaas, S.P.; González-Martín, M.L.; Monjo, M.; Ramis, J.M. Flavonoid-Modified Surfaces: Multifunctional Bioactive Biomaterials with Osteopromotive, Anti-Inflammatory, and Anti-Fibrotic Potential. Adv. Healthc. Mater. 2015, 4, 540–549. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Shah, A.; Gourishetti, K.; Nayak, Y. Osteogenic Activity of Resveratrol in Human Fetal Osteoblast Cells. Pharmacogn. Mag. 2019, 15, 250–255. [Google Scholar] [CrossRef]
- Abbas, S.R.; Khan, R.T.; Shafique, S.; Mumtaz, S.; Khan, A.A.; Khan, A.M.; Hassan, Z.; Hussain, S.A.; Abbas, S.; Abbas, M.R.; et al. Study of Resveratrol against Bone Loss by Using In-Silico and In-Vitro Methods. Braz. J. Biol. 2021, 83, e248024. [Google Scholar] [CrossRef]
- Vidoni, C.; Ferraresi, A.; Secomandi, E.; Vallino, L.; Gardin, C.; Zavan, B.; Mortellaro, C.; Isidoro, C. Autophagy Drives Osteogenic Differentiation of Human Gingival Mesenchymal Stem Cells. Cell Commun. Signal. 2019, 17, 98. [Google Scholar] [CrossRef]
- Li, M.; Yan, J.; Chen, X.; Tam, W.; Zhou, L.; Liu, T.; Pan, G.; Lin, J.; Yang, H.; Pei, M.; et al. Spontaneous Up-Regulation of SIRT1 during Osteogenesis Contributes to Stem Cells’ Resistance to Oxidative Stress. J. Cell. Biochem. 2018, 119, 4928–4944. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Shen, Y.-S.; He, M.-C.; Yang, F.; Yang, P.; Pang, F.-X.; He, W.; Cao, Y.-M.; Wei, Q.-S. Polydatin Promotes the Osteogenic Differentiation of Human Bone Mesenchymal Stem Cells by Activating the BMP2-Wnt/β-Catenin Signaling Pathway. Biomed. Pharm. 2019, 112, 108746. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, A.; Posa, F.; De Maria, S.; Ravagnan, G.; Ballini, A.; Porro, C.; Trotta, T.; Grano, M.; Muzio, L.L.; Mori, G. Polydatin, Natural Precursor of Resveratrol, Promotes Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018, 15, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Samali, A.; Orrenius, S. Triggering and Modulation of Apoptosis by Oxidative Stress. Free Radic. Biol. Med. 2000, 29, 323–333. [Google Scholar] [CrossRef]
- Yang, Q.; Leong, S.A.; Chan, K.P.; Yuan, X.; Ng, T.K. Complex Effect of Continuous Curcumin Exposure on Human Bone Marrow-derived Mesenchymal Stem Cell Regenerative Properties through Matrix Metalloproteinase Regulation. Basic Clin. Pharmacol. Toxicol. 2021, 128, 141–153. [Google Scholar] [CrossRef]
- Son, H.-E.; Kim, T.H.; Jang, W.-G. Curculactones A and B Induced the Differentiation of C3H10T1/2 and MC3T3-E1 Cells to Osteoblasts. Bioorganic Med. Chem. Lett. 2017, 27, 1301–1303. [Google Scholar] [CrossRef]
- Torre, E.; Iviglia, G.; Cassinelli, C.; Morra, M.; Russo, N. Polyphenols from Grape Pomace Induce Osteogenic Differentiation in Mesenchymal Stem Cells. Int. J. Mol. Med. 2020, 45, 1721–1734. [Google Scholar] [CrossRef]
- Bian, W.; Xiao, S.; Yang, L.; Chen, J.; Deng, S. Quercetin Promotes Bone Marrow Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation through the H19/MiR-625-5p Axis to Activate the Wnt/β-Catenin Pathway. BMC Complement. Med. Ther. 2021, 21, 243. [Google Scholar] [CrossRef]
- Li, J.; Xin, Z.; Cai, M. The Role of Resveratrol in Bone Marrow-derived Mesenchymal Stem Cells from Patients with Osteoporosis. J. Cell. Biochem. 2019, 120, 16634–16642. [Google Scholar] [CrossRef]
- Gao, Y.; He, C. Anti-Proliferative and Anti-Metastasis Effects of Ten Oligostilbenes from the Seeds of Paeonia Suffruticosa on Human Cancer Cells. Oncol. Lett. 2017, 13, 4371–4377. [Google Scholar] [CrossRef]
- Xie, D.; Zheng, G.-Z.; Xie, P.; Zhang, Q.-H.; Lin, F.-X.; Chang, B.; Hu, Q.-X.; Du, S.-X.; Li, X.-D. Antitumor Activity of Resveratrol against Human Osteosarcoma Cells: A Key Role of Cx43 and Wnt/β-Catenin Signaling Pathway. Oncotarget 2017, 8, 111419–111432. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Bellavia, D.; Raimondi, L.; Carina, V.; Costa, V.; Fini, M.; Giavaresi, G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals 2022, 15, 342. [Google Scholar] [CrossRef] [PubMed]
- Lama, S.; Luce, A.; Bitti, G.; Chacon-Millan, P.; Itro, A.; Ferranti, P.; D’Auria, G.; Cammarota, M.; Nicoletti, G.F.; Ferraro, G.A.; et al. Polydatin Incorporated in Polycaprolactone Nanofibers Improves Osteogenic Differentiation. Pharmaceuticals 2022, 15, 727. [Google Scholar] [CrossRef] [PubMed]
- Luce, A.; Lama, S.; Millan, P.C.; Itro, A.; Sangiovanni, A.; Caputo, C.; Ferranti, P.; Cappabianca, S.; Caraglia, M.; Stiuso, P. Polydatin Induces Differentiation and Radiation Sensitivity in Human Osteosarcoma Cells and Parallel Secretion through Lipid Metabolite Secretion. Oxid. Med. Cell. Longev. 2021, 2021, 3337013. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.N.M.; Hussin, Y.; Che Rahim, N.F.; Nordin, N.; Mohamad, N.E.; Yeap, S.K.; Yong, C.Y.; Masarudin, M.J.; Cheah, Y.K.; Abu, N.; et al. Curcumin Analog DK1 Induces Apoptosis in Human Osteosarcoma Cells In Vitro through Mitochondria-Dependent Signaling Pathway. Molecules 2018, 23, 75. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.N.M.; Rahim, N.F.C.; Hussin, Y.; Yeap, S.K.; Masarudin, M.J.; Mohamad, N.E.; Akhtar, M.N.; Osman, M.A.; Cheah, Y.K.; Alitheen, N.B. Anti-Metastatic and Anti-Angiogenic Effects of Curcumin Analog DK1 on Human Osteosarcoma Cells In Vitro. Pharmaceuticals 2021, 14, 532. [Google Scholar] [CrossRef]
- Lu, K.-H.; Wu, H.-H.; Lin, R.-C.; Lin, Y.-C.; Lu, P.W.-A.; Yang, S.-F.; Yang, J.-S. Curcumin Analogue L48H37 Suppresses Human Osteosarcoma U2OS and MG-63 Cells’ Migration and Invasion in Culture by Inhibition of UPA via the JAK/STAT Signaling Pathway. Molecules 2020, 26, 30. [Google Scholar] [CrossRef]
- Neacșu, I.A.; Matei, L.; Bîrcă, A.C.; Ionuț, A.; Ene, V.L.; Dragu, L.D.; Ficai, A.; Bleotu, C.; Andronescu, E. Sisteme Curcumină—Hidroxiapatită Pentru Tratamentul Cancerului OSOS. Rev. Romana Mater. 2021, 51, 505–513. [Google Scholar]
- Dong, X.; Zou, S.; Guo, C.; Wang, K.; Zhao, F.; Fan, H.; Yin, J.; Chen, D. Multifunctional Redox-Responsive and CD44 Receptor Targeting Polymer-Drug Nanomedicine Based Curcumin and Alendronate: Synthesis, Characterization and In Vitro Evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 168–177. [Google Scholar] [CrossRef]
- Wang, G.; Song, W.; Shen, N.; Yu, H.; Deng, M.; Tang, Z.; Fu, X.; Chen, X. Curcumin-Encapsulated Polymeric Nanoparticles for Metastatic Osteosarcoma Cells Treatment. Sci. China Mater. 2017, 60, 995–1007. [Google Scholar] [CrossRef]
- Yu, Q.; Meng, Z.; Liu, Y.; Li, Z.; Sun, X.; Zhao, Z. Photocuring Hyaluronic Acid/Silk Fibroin Hydrogel Containing Curcumin Loaded CHITOSAN Nanoparticles for the Treatment of MG-63 Cells and ME3T3-E1 Cells. Polymers 2021, 13, 2302. [Google Scholar] [CrossRef] [PubMed]
- Diomede, F.; Fonticoli, L.; Guarnieri, S.; Della Rocca, Y.; Rajan, T.S.; Fontana, A.; Trubiani, O.; Marconi, G.D.; Pizzicannella, J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas Gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 7534. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhao, B.; Zhang, W.; Jia, L.; Zhang, Y.; Xu, X. Curcumin Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells through the PI3K/AKT/Nrf2 Signaling Pathway. Iran. J. Basic Med. Sci. 2020, 23, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Di Cristo, F.; Valentino, A.; De Luca, I.; Peluso, G.; Bonadies, I.; Calarco, A.; Di Salle, A. PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022, 27, 2205. [Google Scholar] [CrossRef]
- Córdoba, A.; Manzanaro-Moreno, N.; Colom, C.; Rønold, H.J.; Lyngstadaas, S.P.; Monjo, M.; Ramis, J.M. Quercitrin Nanocoated Implant Surfaces Reduce Osteoclast Activity In Vitro and In Vivo. Int. J. Mol. Sci. 2018, 19, 3319. [Google Scholar] [CrossRef]
- Khanizadeh, F.; Rahmani, A.; Asadollahi, K.; Ahmadi, M.R.H. Combination Therapy of Curcumin and Alendronate Modulates Bone Turnover Markers and Enhances Bone Mineral Density in Postmenopausal Women with Osteoporosis. Arch. Endocrinol. Metab. 2018, 62, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Ky, H.; Pauzi, A.Z.M.; Ho, W.Y.; Tan, S.W.; Alan-Ong, H.K.; Zareen, S.; et al. Synthetic Curcumin Derivative DK1 Possessed G2/M Arrest and Induced Apoptosis through Accumulation of Intracellular ROS in MCF-7 Breast Cancer Cells. Cancer Cell Int. 2017, 17, 30. [Google Scholar] [CrossRef]
- Hassan, J.K.; Sharrad, A.K.; Sheri, F.H. Effect of Quercetin Supplement on Some Bone Mineralization Biomarkers in Diabetic Type 2 Patients. Adv. Pharmacol. Pharm. 2018, 6, 43–49. [Google Scholar] [CrossRef]
- Chen, J.-R.; Lazarenko, O.P.; Wu, X.; Kang, J.; Blackburn, M.L.; Shankar, K.; Badger, T.M.; Ronis, M.J.J. Dietary-Induced Serum Phenolic Acids Promote Bone Growth via P38 MAPK/β-Catenin Canonical Wnt Signaling. J. Bone Min. Res. 2010, 25, 2399–2411. [Google Scholar] [CrossRef]
- Bu, S.Y.; Hunt, T.S.; Smith, B.J. Dried Plum Polyphenols Attenuate the Detrimental Effects of TNF-Alpha on Osteoblast Function Coincident with up-Regulation of Runx2, Osterix and IGF-I. J. Nutr. Biochem. 2009, 20, 35–44. [Google Scholar] [CrossRef]
- Trzeciakiewicz, A.; Habauzit, V.; Mercier, S.; Lebecque, P.; Davicco, M.-J.; Coxam, V.; Demigne, C.; Horcajada, M.-N. Hesperetin Stimulates Differentiation of Primary Rat Osteoblasts Involving the BMP Signalling Pathway. J. Nutr. Biochem. 2010, 21, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Byun, M.R.; Sung, M.K.; Kim, A.R.; Lee, C.H.; Jang, E.J.; Jeong, M.G.; Noh, M.; Hwang, E.S.; Hong, J.-H. (−)-Epicatechin Gallate (ECG) Stimulates Osteoblast Differentiation via Runt-Related Transcription Factor 2 (RUNX2) and Transcriptional Coactivator with PDZ-Binding Motif (TAZ)-Mediated Transcriptional Activation. J. Biol. Chem. 2014, 289, 9926–9935. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Mora, R.; Casado-Díaz, A.; De Castro, M.D.; Quesada-Gómez, J.M. Oleuropein Enhances Osteoblastogenesis and Inhibits Adipogenesis: The Effect on Differentiation in Stem Cells Derived from Bone Marrow. Osteoporos. Int. 2011, 22, 675–684. [Google Scholar] [CrossRef]
- Patisaul, H.B.; Jefferson, W. The Pros and Cons of Phytoestrogens. Front. Neuroendocr. 2010, 31, 400–419. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Levenson, A.S.; Biswas, P.K. Structural Insights into Resveratrol’s Antagonist and Partial Agonist Actions on Estrogen Receptor Alpha. BMC Struct. Biol. 2013, 13, 27. [Google Scholar] [CrossRef]
- Cottart, C.-H.; Nivet-Antoine, V.; Beaudeux, J.-L. Review of Recent Data on the Metabolism, Biological Effects, and Toxicity of Resveratrol in Humans. Mol. Nutr. Food Res. 2014, 58, 7–21. [Google Scholar] [CrossRef]
- Mobasheri, A.; Shakibaei, M. Osteogenic Effects of Resveratrol in Vitro: Potential for the Prevention and Treatment of Osteoporosis. Ann. N. Y. Acad. Sci. 2013, 1290, 59–66. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Stensløkken, K.-O.; Vaage, I.J. Osteoblast Differentiation at a Glance. Med. Sci. Monit. Basic Res. 2016, 22, 95–106. [Google Scholar] [CrossRef]
- Mizutani, K.; Ikeda, K.; Kawai, Y.; Yamori, Y. Resveratrol Stimulates the Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells. Biochem. Biophys. Res. Commun. 1998, 253, 859–863. [Google Scholar] [CrossRef]
- Rucinski, M.; Ziolkowska, A.; Hochol, A.; Pucher, A.; Macchi, C.; Belloni, A.S.; Nussdorfer, G.G.; Malendowicz, L.K. Estradiol and Resveratrol Stimulating Effect on Osteocalcin, but Not Osteonectin and Collagen-1alpha Gene Expression in Primary Culture of Rat Calvarial Osteoblast-like Cells. Int. J. Mol. Med. 2006, 18, 565–570. [Google Scholar]
- Estrogen Response in the HFOB 1.19 Human Fetal Osteoblastic Cell Line Stably Transfected with the Human Estrogen Receptor Gene. Available online: https://mayoclinic.pure.elsevier.com/en/publications/estrogen-response-in-the-hfob-119-human-fetal-osteoblastic-cell-l/fingerprints/ (accessed on 10 July 2022).
- Harris, S.A.; Enger, R.J.; Riggs, B.L.; Spelsberg, T.C. Development and Characterization of a Conditionally Immortalized Human Fetal Osteoblastic Cell Line. J. Bone Miner. Res. 1995, 10, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X.; Li, N.; Liu, T.; Liu, J.; Li, Z.; Xiao, H.; Li, J. Long-Term Resveratrol Treatment Prevents Ovariectomy-Induced Osteopenia in Rats without Hyperplastic Effects on the Uterus. Br. J. Nutr. 2014, 111, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Ameen, O.; Yassien, R.I.; Naguib, Y.M. Activation of FoxO1/SIRT1/RANKL/OPG Pathway May Underlie the Therapeutic Effects of Resveratrol on Aging-Dependent Male Osteoporosis. BMC Musculoskelet. Disord. 2020, 21, 375. [Google Scholar] [CrossRef] [PubMed]
- Fili, S.; Karalaki, M.; Schaller, B. Therapeutic Implications of Osteoprotegerin. Cancer Cell Int. 2009, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713. [Google Scholar] [CrossRef]
- Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef]
- Gargiulo, C.; Inchingolo, F.; Nguyen, K.; Aityan, S.; van Pham, H.; Dipalma, G.; Ballini, A.; Strong, D.M.; Filgueira, L.; Tran, T.; et al. Aging and Metabolic Disorders, the Role of Molecular Mechanisms Leading to Bone Degeneration as a Possible Cause of Implant and Graft Loss: A Review; SignPost: Bari, Italy, 2019; ISBN 978-81-308-0585-6. [Google Scholar]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-Aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Abed, É.; Delalandre, A.; Lajeunesse, D. Beneficial Effect of Resveratrol on Phenotypic Features and Activity of Osteoarthritic Osteoblasts. Arthritis Res. Ther. 2017, 19, 151. [Google Scholar] [CrossRef]
- Tatullo, M.; Gargiulo, I.C.; Dipalma, G.; Ballini, A.; Inchingolo, A.M.; Paduanelli, G.; Nguyen, C.; Đẳng, K.; Inchingolo, A.D.; Makeeva, I.; et al. Stem Cells and Regenerative Medicine. In Translational Systems Medicine and Oral Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 387–407. ISBN 978-0-12-813762-8. [Google Scholar]
- Inoue, K.; Nomura, C.; Ito, S.; Nagatsu, A.; Hino, T.; Oka, H. Purification of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin by High-Speed Countercurrent Chromatography. J. Agric. Food Chem. 2008, 56, 9328–9336. [Google Scholar] [CrossRef]
- Deguchi, A. Curcumin Targets in Inflammation and Cancer. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 88–96. [Google Scholar] [CrossRef]
- Li, N.; Hua, J. Interactions between Mesenchymal Stem Cells and the Immune System. Cell Mol. Life Sci. 2017, 74, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, D.H.; Heck, B.E.; Shaffer, M.; Hur, J.; Yoo, K.H. A Natural Supplement Formula Reduces Anti-Oxidative Stress and Enhances Osteo-Chondrogenic Differentiation Potential in Mesenchymal Stem Cells. J. Clin. Biochem. Nutr. 2020, 66, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Attari, F.; Zahmatkesh, M.; Aligholi, H.; Mehr, S.E.; Sharifzadeh, M.; Gorji, A.; Mokhtari, T.; Khaksarian, M.; Hassanzadeh, G. Curcumin as a Double-Edged Sword for Stem Cells: Dose, Time and Cell Type-Specific Responses to Curcumin. DARU J. Pharm. Sci. 2015, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Sun, L.; Webster, T.J. Short Communication: Selective Cytotoxicity of Curcumin on Osteosarcoma Cells Compared to Healthy Osteoblasts. Int. J. Nanomed. 2014, 9, 461–465. [Google Scholar] [CrossRef]
- Xie, X.; Liu, M.; Meng, Q. Angelica Polysaccharide Promotes Proliferation and Osteoblast Differentiation of Mesenchymal Stem Cells by Regulation of Long Non-Coding RNA H19: An Animal Study. Bone Jt. Res. 2019, 8, 323–332. [Google Scholar] [CrossRef]
- Ma, X.; Bian, Y.; Yuan, H.; Chen, N.; Pan, Y.; Zhou, W.; Gao, S.; Du, X.; Hao, S.; Yan, Z.; et al. Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via H19/MiR-675/APC Axis. Aging 2020, 12, 10527–10543. [Google Scholar] [CrossRef]
- Liang, W.-C.; Fu, W.-M.; Wang, Y.-B.; Sun, Y.-X.; Xu, L.-L.; Wong, C.-W.; Chan, K.-M.; Li, G.; Waye, M.M.-Y.; Zhang, J.-F. H19 Activates Wnt Signaling and Promotes Osteoblast Differentiation by Functioning as a Competing Endogenous RNA. Sci. Rep. 2016, 6, 20121. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The Recent Prevalence of Osteoporosis and Low Bone Mass in the United States Based on Bone Mineral Density at the Femoral Neck or Lumbar Spine. J. Bone Min. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group [Meeting Held in Rome from 22 to 25 June 1992]; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and Benefits of Estrogen plus Progestin in Healthy Postmenopausal Women: Principal Results from the Women’s Health Initiative Randomized Controlled Trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef]
- Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol. Rev. 2017, 97, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Delmas, P.D. Clinical Potential of RANKL Inhibition for the Management of Postmenopausal Osteoporosis and Other Metabolic Bone Diseases. J. Clin. Densitom. 2008, 11, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Han, A.; Park, Y. Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011. Nutrients 2021, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Cheng, L.; Jiang, W. Fruit and Vegetable Consumption and the Risk of Postmenopausal Osteoporosis: A Meta-Analysis of Observational Studies. Food Funct. 2018, 9, 2607–2616. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative Stress in Bone Remodeling: Role of Antioxidants. Clin. Cases Min. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef]
- Ginés, C.; Cuesta, S.; Kireev, R.; García, C.; Rancan, L.; Paredes, S.D.; Vara, E.; Tresguerres, J.A.F. Protective Effect of Resveratrol against Inflammation, Oxidative Stress and Apoptosis in Pancreas of Aged SAMP8 Mice. Exp. Gerontol. 2017, 90, 61–70. [Google Scholar] [CrossRef]
- Sarubbo, F.; Esteban, S.; Miralles, A.; Moranta, D. Effects of Resveratrol and Other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr. Neuropharmacol. 2018, 16, 126–136. [Google Scholar] [CrossRef]
- Guo, D.-W.; Han, Y.-X.; Cong, L.; Liang, D.; Tu, G.-J. Resveratrol Prevents Osteoporosis in Ovariectomized Rats by Regulating MicroRNA-338-3p. Mol. Med. Rep. 2015, 12, 2098–2106. [Google Scholar] [CrossRef]
- De la Guardia, R.D.; Lopez-Millan, B.; Roca-Ho, H.; Bueno, C.; Gutiérrez-Agüera, F.; Fuster, J.L.; Anguita, E.; Zanetti, S.R.; Vives, S.; Nomdedeu, J.; et al. Bone Marrow Mesenchymal Stem/Stromal Cells from Risk-Stratified Acute Myeloid Leukemia Patients Are Anti-Inflammatory in in Vivo Preclinical Models of Hematopoietic Reconstitution and Severe Colitis. Haematologica 2019, 104, e54–e58. [Google Scholar] [CrossRef]
- Inchingolo, F.; Hazballa, D.; Inchingolo, A.D.; Malcangi, G.; Marinelli, G.; Mancini, A.; Maggiore, M.E.; Bordea, I.R.; Scarano, A.; Farronato, M.; et al. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials 2022, 15, 1120. [Google Scholar] [CrossRef]
- Rohanizadeh, R.; Deng, Y.; Verron, E. Therapeutic Actions of Curcumin in Bone Disorders. Bonekey Rep. 2016, 5, 793. [Google Scholar] [CrossRef] [PubMed]
- Peddada, K.V.; Peddada, K.V.; Shukla, S.K.; Mishra, A.; Verma, V. Role of Curcumin in Common Musculoskeletal Disorders: A Review of Current Laboratory, Translational, and Clinical Data. Orthop. Surg. 2015, 7, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Dede, A.D.; Tournis, S.; Dontas, I.; Trovas, G. Type 2 Diabetes Mellitus and Fracture Risk. Metabolism 2014, 63, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Rubin, M.R.; Schwartz, A.V.; Kanis, J.A. Type 2 Diabetes and Bone. J. Bone Min. Res. 2012, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo Isacco, C.; Inchingolo, A.D.; Nguyen Cao, K.D.; Malcangi, G.; Paduanelli, G.; Pham Hung, V.; Tran Cong, T.; Bordea, I.R.; Scarano, A.; Laforgia, A.; et al. The Bad Relationship, Osteo-Decay and Diabetes Type 2 Searching for a Link: A Literature Review. J. Biol. Regul. Homeost. Agents 2021, 35, 253–269. [Google Scholar] [CrossRef]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay Between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. S3), S131–S139. [Google Scholar] [CrossRef] [Green Version]
- Wells, A.; Grahovac, J.; Wheeler, S.; Ma, B.; Lauffenburger, D. Targeting Tumor Cell Motility as a Strategy against Invasion and Metastasis. Trends Pharm. Sci. 2013, 34, 283–289. [Google Scholar] [CrossRef]
- Suhail, Y.; Cain, M.P.; Vanaja, K.; Kurywchak, P.A.; Levchenko, A.; Kalluri, R.; Kshitiz. Systems Biology of Cancer Metastasis. Cell Syst. 2019, 9, 109–127. [Google Scholar] [CrossRef]
- Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; Confavreux, C.B.; Holen, I. Bone Metastasis: Mechanisms, Therapies, and Biomarkers. Physiol. Rev. 2021, 101, 797–855. [Google Scholar] [CrossRef]
- Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol. 2010, 21 (Suppl. S7), VII320–VII325. [Google Scholar] [CrossRef] [PubMed]
- Misaghi, A.; Goldin, A.; Awad, M.; Kulidjian, A.A. Osteosarcoma: A Comprehensive Review. SICOT-J 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Basu-Roy, U.; Basilico, C.; Mansukhani, A. Perspectives on Cancer Stem Cells in Osteosarcoma. Cancer Lett. 2013, 338, 158–167. [Google Scholar] [CrossRef]
- Yang, C.; Tian, Y.; Zhao, F.; Chen, Z.; Su, P.; Li, Y.; Qian, A. Bone Microenvironment and Osteosarcoma Metastasis. Int. J. Mol. Sci. 2020, 21, 6985. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Gorlick, R. Advancing Therapy for Osteosarcoma. Nat. Rev. Clin. Oncol. 2021, 18, 609–624. [Google Scholar] [CrossRef]
- Gill, J.; Hingorani, P.; Roth, M.; Gorlick, R. HER2-Targeted Therapy in Osteosarcoma. Adv. Exp. Med. Biol. 2020, 1257, 55–66. [Google Scholar] [CrossRef]
- Park, J.A.; Cheung, N.-K.V. GD2 or HER2 Targeting T Cell Engaging Bispecific Antibodies to Treat Osteosarcoma. J. Hematol. Oncol. 2020, 13, 172. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar]
- Gomez, L.S.; Zancan, P.; Marcondes, M.C.; Ramos-Santos, L.; Meyer-Fernandes, J.R.; Sola-Penna, M.; Da Silva, D. Resveratrol Decreases Breast Cancer Cell Viability and Glucose Metabolism by Inhibiting 6-Phosphofructo-1-Kinase. Biochimie 2013, 95, 1336–1343. [Google Scholar] [CrossRef]
- Doty, S.B. Morphological Evidence of Gap Junctions between Bone Cells. Calcif. Tissue Int. 1981, 33, 509–512. [Google Scholar] [CrossRef]
- Batra, N.; Kar, R.; Jiang, J.X. Gap Junctions and Hemichannels in Signal Transmission, Function and Development of Bone. Biochim. Biophys. Acta 2012, 1818, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Civitelli, R. Cell-Cell Communication in the Osteoblast/Osteocyte Lineage. Arch. Biochem. Biophys. 2008, 473, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, L.; De Luca, A.; Gallo, A.; Costa, V.; Russelli, G.; Cuscino, N.; Manno, M.; Raccosta, S.; Carina, V.; Bellavia, D.; et al. Osteosarcoma Cell-Derived Exosomes Affect Tumor Microenvironment by Specific Packaging of MicroRNAs. Carcinogenesis 2020, 41, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Ohnuma, S.; Ambudkar, S.V. Improving Cancer Chemotherapy with Modulators of ABC Drug Transporters. Curr. Drug Targets 2011, 12, 621–630. [Google Scholar] [CrossRef]
- Monsuez, J.-J.; Charniot, J.-C.; Vignat, N.; Artigou, J.-Y. Cardiac Side-Effects of Cancer Chemotherapy. Int. J. Cardiol. 2010, 144, 3–15. [Google Scholar] [CrossRef]
- Chen, M.; Li, D.; Gao, Z.; Zhang, C. Enzymatic Transformation of Polydatin to Resveratrol by Piceid-β-D-Glucosidase from Aspergillus Oryzae. Bioprocess Biosyst. Eng. 2014, 37, 1411–1416. [Google Scholar] [CrossRef]
- Du, Q.-H.; Peng, C.; Zhang, H. Polydatin: A Review of Pharmacology and Pharmacokinetics. Pharm. Biol. 2013, 51, 1347–1354. [Google Scholar] [CrossRef]
- Benjamin, R.S. Osteosarcoma: Better Treatment through Better Trial Design. Lancet Oncol. 2015, 16, 12–13. [Google Scholar] [CrossRef]
- Zhang, N.; Ying, M.-D.; Wu, Y.-P.; Zhou, Z.-H.; Ye, Z.-M.; Li, H.; Lin, D.-S. Hyperoside, a Flavonoid Compound, Inhibits Proliferation and Stimulates Osteogenic Differentiation of Human Osteosarcoma Cells. PLoS ONE 2014, 9, e98973. [Google Scholar] [CrossRef]
- Tang, N.; Song, W.-X.; Luo, J.; Haydon, R.C.; He, T.-C. Osteosarcoma Development and Stem Cell Differentiation. Clin. Orthop. Relat. Res. 2008, 466, 2114–2130. [Google Scholar] [CrossRef]
- Pino, D.S.; Casarin, R.C.; Pimentel, S.P.; Cirano, F.R.; Corrêa, M.G.; Ribeiro, F.V. Effect of Resveratrol on Critical-Sized Calvarial Defects of Diabetic Rats: Histometric and Gene Expression Analysis. J. Oral Maxillofac. Surg. 2017, 75, 2561.E1–2561.E10. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Lozada-García, M.C.; Enríquez, R.G.; Ramírez-Apán, T.O.; Nieto-Camacho, A.; Palacios-Espinosa, J.F.; Custodio-Galván, Z.; Soria-Arteche, O.; Pérez-Villanueva, J. Synthesis of Curcuminoids and Evaluation of Their Cytotoxic and Antioxidant Properties. Molecules 2017, 22, 633. [Google Scholar] [CrossRef]
- Lauvrak, S.U.; Munthe, E.; Kresse, S.H.; Stratford, E.W.; Namløs, H.M.; Meza-Zepeda, L.A.; Myklebost, O. Functional Characterisation of Osteosarcoma Cell Lines and Identification of MRNAs and MiRNAs Associated with Aggressive Cancer Phenotypes. Br. J. Cancer 2013, 109, 2228–2236. [Google Scholar] [CrossRef]
- Feng, C.; Xia, Y.; Zou, P.; Shen, M.; Hu, J.; Ying, S.; Pan, J.; Liu, Z.; Dai, X.; Zhuge, W.; et al. Curcumin Analog L48H37 Induces Apoptosis through ROS-Mediated Endoplasmic Reticulum Stress and STAT3 Pathways in Human Lung Cancer Cells. Mol. Carcinog. 2017, 56, 1765–1777. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yue, L.; Xu, H.; Li, N.; Li, J.; Zhang, Z.; Chunhua, R. Curcumin Suppresses Osteogenesis by Inducing MiR-126a-3p and Subsequently Suppressing the WNT/LRP6 Pathway. Aging 2021, 13, 9152–9153. [Google Scholar] [CrossRef] [PubMed]
- Arredondo, A.; Blanc, V.; Mor, C.; Nart, J.; León, R. Tetracycline and Multidrug Resistance in the Oral Microbiota: Differences between Healthy Subjects and Patients with Periodontitis in Spain. J. Oral Microbiol. 2021, 13, 1847431. [Google Scholar] [CrossRef]
- Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Sardaro, N.; et al. Periodontal Disease and Bone Pathogenesis: The Crosstalk between Cytokines and Porphyromonas Gingivalis. J. Biol. Regul. Homeost. Agents 2015, 29, 273–281. [Google Scholar]
- Di Naro, E.; Loverro, M.; Converti, I.; Loverro, M.T.; Ferrara, E.; Rapone, B. The Effect of Menopause Hypoestrogenism on Osteogenic Differentiation of Periodontal Ligament Cells (PDLC) and Stem Cells (PDLCs): A Systematic Review. Healthcre 2021, 9, 572. [Google Scholar] [CrossRef]
- Montemurro, N.; Perrini, P.; Marani, W.; Chaurasia, B.; Corsalini, M.; Scarano, A.; Rapone, B. Multiple Brain Abscesses of Odontogenic Origin. May Oral Microbiota Affect Their Development? A Review of the Current Literature. Appl. Sci. 2021, 11, 3316. [Google Scholar] [CrossRef]
- Rapone, B.; Ferrara, E.; Montemurro, N.; Converti, I.; Loverro, M.; Loverro, M.; Gnoni, A.; Scacco, S.; Siculella, L.; Corsalini, M.; et al. Oral Microbiome and Preterm Birth: Correlation or Coincidence? A Narrative Review. Open Access Maced. J. Med. Sci. 2020, 8, 123–132. [Google Scholar] [CrossRef]
- Cantore, S.; Ballini, A.; De Vito, D.; Martelli, F.S.; Georgakopoulos, I.; Almasri, M.; Dibello, V.; Altini, V.; Farronato, G.; Dipalma, G.; et al. Characterization of Human Apical Papilla-Derived Stem Cells. J. Biol. Regul. Homeost. Agents 2017, 31, 901–910. [Google Scholar] [PubMed]
- Maeda, H.; Tomokiyo, A.; Fujii, S.; Wada, N.; Akamine, A. Promise of Periodontal Ligament Stem Cells in Regeneration of Periodontium. Stem Cell Res. 2011, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, F.; Gao, Y.; Yin, P.; Pan, C.; Liu, W.; Zhou, Z.; Wang, J. Curcumin Protects Human Adipose-Derived Mesenchymal Stem Cells against Oxidative Stress-Induced Inhibition of Osteogenesis. J. Pharm. Sci. 2016, 132, 192–200. [Google Scholar] [CrossRef]
- Yang, M.-W.; Wang, T.-H.; Yan, P.-P.; Chu, L.-W.; Yu, J.; Gao, Z.-D.; Li, Y.-Z.; Guo, B.-L. Curcumin Improves Bone Microarchitecture and Enhances Mineral Density in APP/PS1 Transgenic Mice. Phytomedicine 2011, 18, 205–213. [Google Scholar] [CrossRef]
- Bharti, A.C.; Takada, Y.; Aggarwal, B.B. Curcumin (Diferuloylmethane) Inhibits Receptor Activator of NF-Kappa B Ligand-Induced NF-Kappa B Activation in Osteoclast Precursors and Suppresses Osteoclastogenesis. J. Immunol. 2004, 172, 5940–5947. [Google Scholar] [CrossRef]
- Genco, R.J.; Sanz, M. Clinical and Public Health Implications of Periodontal and Systemic Diseases: An Overview. Periodontol. 2000 2020, 83, 7–13. [Google Scholar] [CrossRef]
- Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin Is an Effective Inhibitor of Quorum Sensing, Biofilm Formation and Virulence Factors in Pseudomonas Aeruginosa. J. Appl. Microbiol. 2016, 120, 966–974. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Semjonova, A.; Inchingolo, A.M.; Patano, A.; Coloccia, G.; Ceci, S.; Marinelli, G.; Pede, C.D.; Ciocia, A.M.; et al. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. Children 2022, 9, 1014. [Google Scholar] [CrossRef]
- Signorini, L.; De Leonardis, F.; Santacroce, L.; Haxhirexha, K.; Topi, S.; Fumarola, L.; Dipalma, G.; Coscia, M.F.; Inchingolo, F. Probiotics May Modulate the Impact of Aging on Adults. J. Biol. Regul. Homeost. Agents 2020, 34, 1601–1606. [Google Scholar] [CrossRef]
- Inchingolo, F.; Dipalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological Results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1323–1328. [Google Scholar] [PubMed]
- Cantore, S.; Ballini, A.; De Vito, D.; Abbinante, A.; Altini, V.; Dipalma, G.; Inchingolo, F.; Saini, R. Clinical Results of Improvement in Periodontal Condition by Administration of Oral Probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1329–1334. [Google Scholar] [PubMed]
- Ballini, A.; Cantore, S.; Saini, R.; Pettini, F.; Fotopoulou, E.A.; Saini, S.R.; Georgakopoulos, I.P.; Dipalma, G.; Gargiulo Isacco, C.; Inchingolo, F. Effect of Activated Charcoal Probiotic Toothpaste Containing Lactobacillus Paracasei and Xylitol on Dental Caries: A Randomized and Controlled Clinical Trial. J. Biol. Regul. Homeost. Agents 2019, 33, 977–981. [Google Scholar] [PubMed]
- Inchingolo, F.; Santacroce, L.; Cantore, S.; Ballini, A.; Del Prete, R.; Topi, S.; Saini, R.; Dipalma, G.; Arrigoni, R. Probiotics and EpiCor® in Human Health. J. Biol. Regul. Homeost. Agents 2019, 33, 1973–1979. [Google Scholar] [CrossRef]
- Pacifici, A.; Pacifici, L.; Nuzzolese, M.; Cascella, G.; Ballini, A.; Santacroce, L.; Dipalma, G.; Aiello, E.; Amantea, M.; Saini, R.; et al. The Alteration of Stress-Related Physiological Parameters after Probiotics Administration in Oral Surgeons with Different Degrees of Surgical Experience. Clin. Ter. 2020, 171, e197–e208. [Google Scholar] [CrossRef]
- Santacroce, L.; Sardaro, N.; Topi, S.; Pettini, F.; Bottalico, L.; Cantore, S.; Cascella, G.; Del Prete, R.; Dipalma, G.; Inchingolo, F. The Pivotal Role of Oral Microbiota in Health and Disease. J. Biol. Regul. Homeost. Agents 2020, 34, 733–737. [Google Scholar] [CrossRef]
- Lindhe, J.; Meyle, J.; Group D of European Workshop on Periodontology. Peri-Implant Diseases: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol. 2008, 35, 282–285. [Google Scholar] [CrossRef]
- Inchingolo, F.; Ballini, A.; Georgakopoulos, P.G.; Inchingolo, A.D.; Tsantis, S.; Vito, D.D.; Cantore, S.; Georgakopoulos, I.P.; Dipalma, G. Immediate Implant placement by using bone-albumin allograft and concentrated growth factors (CGFS): Preliminary results of a pilot study. Oral Implantol. 2018, 11, 31–40. [Google Scholar]
- Inchingolo, F.; Ballini, A.; Mura, S.A.; Farronato, D.; Cirulli, N.; Pettini, F.; Gheno, E.; Vermesan, D.; Pederzoli, P.; Resta, G.; et al. Use of Platelet Rich Fibrin and Bio-OSS/SINT-Oss for Implant-Prosthetic Rehabilitation in Maxillary Atrophy with Sinus Pathology: A 48-Month Follow-Up. 2015. Available online: https://journals.sagepub.com/doi/full/10.1177/1721727X15578346 (accessed on 18 July 2022).
- Zitzmann, N.U.; Berglundh, T. Definition and Prevalence of Peri-Implant Diseases. J. Clin. Periodontol. 2008, 35, 286–291. [Google Scholar] [CrossRef]
- Derks, J.; Tomasi, C. Peri-Implant Health and Disease. A Systematic Review of Current Epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S158–S171. [Google Scholar] [CrossRef]
- Flavonoids: Chemistry, Biochemistry and Applications. Available online: https://www.routledge.com/Flavonoids-Chemistry-Biochemistry-and-Applications/Andersen-Markham/p/book/9780849320217 (accessed on 17 July 2022).
Articles screening strategy | KEYWORDS: A: “Resveratrol”; B: “Curcumin”; C: “Quercetin”; D: “bone”; |
Boolean Indicators: “A” AND “D”; “B” AND “D”; “C” AND “D” | |
Timespan: from January 2017 up to 3 July 2022. | |
Electronic Databases: PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, Embedded |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Vidoni et al., 2019 | Cell Commun Signal | In vitro | HGMSCs cultured with RSV and osteogenic differentiation factors | Up-regulation of autophagy and differentiation of HGMSCs in OB, through the activation of the AMPK-BECLIN1 pathway | [93] |
Chen et al., 2019 | Biomed Pharmacother | In vitro | HBMSCs and polydatin administration | Osteogenic differentiation and proliferation of HBMSCs were both boosted by PD | [95] |
Di Benedetto et al., 2018 | Int J Med Sci | In vitro | RSV and Polydatin extracted from Polygonum cuspidatum | Positive effects on bone-related cells and stopping the growth of osteosarcoma cells | [96] |
Shah et al., 2019 | Pharmacognosy Magazine | In vitro | Alizarin staining for the mineralization assays, total protein content, ALP’s activity, and cell viability assay were used to assess the OB cell proliferation and differentiation potentials of RSV |
| [91] |
Abbas et al., 2021 | Braz. J. Biol. | In silico and in vitro | In silico: 3D resveratrol structure docked (PyRx free software) with RANKL In vitro: osteoclasts cell from femora and tibia of mice together with M-CSF | RSV binds tightly to RANKL reducing the actin ring formation, decreases the Reactive Oxygen Species (ROS) level, protecting the bone loss | [92] |
Li et al., 2018 | J Cell Biochem | In vitro study | 21-day exposure of hBM-MSCs to hydrogen peroxide (H2O2) (25 μM–100 μM), RSV (5 μM) and nicotinamide (NAM) (10 mM) | SIRT1 is involved in the osteogenesis of hBM-MSCs and antioxidant mechanisms. RSV activates SIRT1, NAM inhibits SIRT1 | [94] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Chandra et al., 2000 | Free Radic Biol Med | In vitro | hBM-MSCs cultured in an osteogenic medium and treated with NS-J exposed to H2O2 | Curcumin and Boswellia have a strong antioxidative effect and enhance the differentiation of MSC in Ob | [148] |
Hatefi et al., 2018 | World Neurosurg | Clinical trial | 100 patients with Spinal cord injury from a rehabilitation clinic in Ilam City, Iran, between 2013 and 2015 | Indicators of BMD significantly improved. Significant differences between the interventional and control groups for the mean BMD of the femoral neck and hip | [57] |
Yang et al., 2021 | Basic Clin. Pharmacol. Toxicol. | In-vitro study | The hBM-MSCs were treated with 0.01–100 μmol/L curcumin for 7 days | No toxic effects on in vitro maintenance with curcumin amounts of 10 μmol/L or less. CU concentrations of 0.01–1 μmol/L, the hBM-MSCs proliferation significantly increased. CU concentrations of 5 and 10 μmol/L induced cell apoptosis and diminished cell division in hBM-MSCs. Administration of 5 µmol/L of CU lowered the expression of matrix metalloproteinases (MMPs) in hBM-MSCs, enzymes involved in metastatic processes | [98] |
Son et al., 2017 | Bioorganic & Medicinal Chemistry Letters | In-vitro study | MSCs were exposed to different concentrations of curculactones A or B for 48 h | Induce OB differentiation in MSCs through the osteogenic expression of genes such ALP, OC, Distal-less Homeobox 5, and Runt-related Transcription Factor 2 | [99] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Torre et al., 2017 | Int J Mol Med | In vitro study | Incubation of hBM-MSCs with two types of pomace extracts that are rich in PFs studied by RT-qPCR | Expression of genes involved in OBs differentiation of hBM-MSCs increases | [100] |
Bian et al., 2021 | BMC Complement Med Ther | In vitro study | qRT-PCR measured the expression of H19, miR-625-5p, BMP-2, osteocalcin and RUNX2; western blotting measured β-catenin protein levels | Q promotes osteogenic differentiation of hBM-MSCs through activation of the H19/miR-625-5p pathway and Wnt/β-catenin | [101] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Borsani et al., 2018 | BioMed Research International | Study in vitro | HOBs are studied in a medium constituted by osteoblast, antibiotic, and antifungal, at 37 °C, 5% CO2. Human OBs were treated with different concentrations of RSV | 10 μM RSV promotes human OB growth and differentiation RSV interacts with CGF positively preserving human OB treated with BP | [76] |
Li et al., 2019 | J Cell Biochem | Study in vitro | hBM-MSCs separated from three patients with OP, cultured in Dulbecco modified Eagle’s cell culture medium, treated with RSV at different concentrations and analysed after 48 h | RSV is essential for proliferation, apoptosis, osteogenesis of hBM-MSCs, and is efficient for treating patients with OP | [102] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Khanizadeh et al., 2018 | Archives of Endocrinology and Metabolism | Double-blind RCT | Sixty PM subjects, control group, alendronate group, alendronate plus CU group; BMDs measured by DXA before and after 12 months of treatment | In alendronate with CU group, decrease of BALP and CTx and rising osteocalcin; increase of BMD indexes in the four areas. No adverse events | [119] |
Ali et al., 2017 | Cancer Cell Int | Double-blind controlled trial, supplement study | Fifty-seven healthy subjects with low bone density followed either an SM to control low bone density or SM + CU; BMD of heel, small finger and upper jaw assessed at the start and weeks 4, 12, 24 | In CU-group, increase of BMD of the heel at week 12 and 24, of small finger and upper jaw at week 24. No safety and tolerability issues | [120] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Hassan et al., 2018 | Advances in Pharmacology and Pharmacy | Double-blind RCT | Forty patients with type 2-DM, 45–50 years, Q group vs. placebo; Serum calcium, osteocalcin, [25(OH)D] level measured at inclusion and 3 months | Increase in serum [25(OH)D] and calcium in the Q group | [121] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
---|---|---|---|---|---|
Gao et al., 2017 | Oncol Let | In vitro | Ten oligostilbenes and human cancer cell lines | Human bone cancer cells show antiproliferative action when exposed to RSV | [103] |
Xie et al., 2017 | Oncotarget | In vitro | RSV and OS cells | RSV promotes apoptosis and inhibits U2-OS cell motility, invasion, glycolysis, and proliferation | [104] |
De Luca et al., 2022 | Pharmaceuticals | In vitro | RSV was applied to OS cell lines at doses of 0–10–25–100 µM | decrease in tumour cell proliferation after treatment with RSV-doxorubicin (DOX) or RSV-cisplatin (CIS) | [105] |
Lama et al., 2022 | Pharmaceuticals | In vitro | PD on Polycaprolactone Nanofibers | PD promoted the proliferation of MSCs while inducing cell toxicity in Saos-2 cells | [106] |
Luce et al., 2021 | Oxid Med Cell Longev | In vitro | PD on Saos-2 | PD pretreatment may boost radiotherapy’s efficacy | [107] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
Di Cristo et al., 2022 | Molecules | In vitro | PLA (0.7 mol% L-isomer and polydispersity), Q Chloroform (CHL), N,N-Dimethylformamide (DMF), ethanol and acetone, Streptococcus mutans (ATCC® 25,175), Pseudomonas aeruginosa PAO1 (ATCC® BAA-47TM), LPS-G, immortalised human gingival fibroblast | PLA-Q membrane can limit biofilm maturation and exerts antioxidant and anti-inflammatory effects | [117] |
Authors | Journal | Experimental Model | Method of Administration | Type of Effect | Ref. |
Cordoba et al., 2015 | Adv. Healthcare Mater. | In vitro | The surface of titanium discs was aminosilanized with 3-aminopropyl) triethoxysilane (APTES) and then the Q was covalently bound, and the activity was evaluated with hUC-MSC and HGF cells | 1. Flavonoid-modified titanium surfaces are not toxic to cells as there was no production of LDH. 2. On the flavonoid-modified titanium surfaces, there was an overexpression of COL1A1, while EDN1 and IL6 were downregulated. 3. The metabolic activity of hUC-MSCs grown on APTES surfaces had high metabolic activity. | [89] |
Cordoba et al., 2018 | International Journal of Molecular Sciences | In vitro | RAW264.7 cells | Q implant surfaces reasonably reduced the expression of osteoclast-related genes in vitro (Trap, CalcR, Ctsk, H + ATPase, Mmp9) | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N.; et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022, 14, 3519. https://doi.org/10.3390/nu14173519
Inchingolo AD, Inchingolo AM, Malcangi G, Avantario P, Azzollini D, Buongiorno S, Viapiano F, Campanelli M, Ciocia AM, De Leonardis N, et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients. 2022; 14(17):3519. https://doi.org/10.3390/nu14173519
Chicago/Turabian StyleInchingolo, Alessio Danilo, Angelo Michele Inchingolo, Giuseppina Malcangi, Pasquale Avantario, Daniela Azzollini, Silvio Buongiorno, Fabio Viapiano, Merigrazia Campanelli, Anna Maria Ciocia, Nicole De Leonardis, and et al. 2022. "Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review" Nutrients 14, no. 17: 3519. https://doi.org/10.3390/nu14173519
APA StyleInchingolo, A. D., Inchingolo, A. M., Malcangi, G., Avantario, P., Azzollini, D., Buongiorno, S., Viapiano, F., Campanelli, M., Ciocia, A. M., De Leonardis, N., de Ruvo, E., Ferrara, I., Garofoli, G., Montenegro, V., Netti, A., Palmieri, G., Mancini, A., Patano, A., Piras, F., ... Dipalma, G. (2022). Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients, 14(17), 3519. https://doi.org/10.3390/nu14173519