Trajectories of Dietary Patterns and Their Associations with Overweight/Obesity among Chinese Adults: China Health and Nutrition Survey 1991–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Measurement of Variables
2.3. Statistical Analysis
3. Results
3.1. Dietary Patterns
3.2. Trajectories of Dietary Patterns
3.3. The Characteristics of the Participants at Baseline
3.4. Trajectories of Dietary Patterns and Overweight/Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, X.-F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 June 2021).
- Lakerveld, J.; Mackenbach, J. The Upstream Determinants of Adult Obesity. Obes. Facts 2017, 10, 216–222. [Google Scholar] [CrossRef]
- Shook, R.P. Obesity and energy balance: What is the role of physical activity? Expert Rev. Endocrinol. Metab. 2016, 11, 511–520. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Wang, Z.H.; Wang, H.J.; Du, W.W.; Su, C.; Jiang, H.R.; Zhai, F.Y.; Zhang, B.; Zhang, J. Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur. J. Clin. Nutr. 2015, 69, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Shi, Z.; Lv, J.; Du, H.; Qi, L.; Guo, Y.; Bian, Z.; Chang, L.; Tang, X.; Jiang, Q.; et al. Major Dietary Patterns in Relation to General and Central Obesity among Chinese Adults. Nutrients 2015, 7, 5834–5849. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Zheng, P.-F.; Zhang, X.-Y.; Si, C.-J.; Yu, X.-L.; Gao, W.; Zhang, L.; Liao, D. Association between Dietary Patterns and the Indicators of Obesity among Chinese: A Cross-Sectional Study. Nutrients 2015, 7, 7995–8009. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Wan, Q.; Zhao, S. Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China. Int. J. Environ. Res. Public Health 2016, 13, 1080. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhang, R.; Xia, S.; Huang, L.; Meng, J.; Fang, Y.; Ding, G. Dietary Patterns and Obesity among Chinese Adults: Results from a Household-Based Cross-Sectional Study. Int. J. Environ. Res. Public Health 2017, 14, 487. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.-Q.; Li, F.; Meng, P.; You, J.; Wu, M.; Li, S.-G.; Chen, B. Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations. Nutrients 2016, 8, 448. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.; Shi, Z. Trajectories of Dietary Patterns, Sleep Duration, and Body Mass Index in China: A Population-Based Longitudinal Study from China Nutrition and Health Survey, 1991–2009. Nutrients 2020, 12, 2245. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Du, W.; Huang, F.; Jiang, H.; Bai, J.; Zhang, X.; Zhang, B.; Wang, H. Twenty-Five-Year Trends in Dietary Patterns among Chinese Adults from 1991 to 2015. Nutrients 2021, 13, 1327. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D. Group-Based Modeling of Development; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Zhang, B.; Zhai, F.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.-F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Nagin, D.S.; Odgers, C.L. Group-Based Trajectory Modeling in Clinical Research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batis, C.; Mendez, M.A.; Sotres-Alvarez, D.; Gordon-Larsen, P.; Popkin, B. Dietary pattern trajectories during 15 years of follow-up and HbA1c, insulin resistance and diabetes prevalence among Chinese adults. J. Epidemiol. Community Health 2014, 68, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Pahkala, K.; Juonala, M.; Rovio, S.P.; A Sabin, M.; Rönnemaa, T.; Buscot, M.-J.; Smith, K.J.; Männistö, S.; Jula, A.; et al. Dietary Pattern Trajectories from Youth to Adulthood and Adult Risk of Impaired Fasting Glucose: A 31-year Cohort Study. J. Clin. Endocrinol. Metab. 2021, 106, e2078–e2086. [Google Scholar] [CrossRef] [PubMed]
- Appannah, G.; Murray, K.; Trapp, G.; Dymock, M.; Oddy, W.H.; Ambrosini, G.L. Dietary pattern trajectories across adolescence and early adulthood and their associations with childhood and parental factors. Am. J. Clin. Nutr. 2021, 113, 36–46. [Google Scholar] [CrossRef]
- Jayedi, A.; Soltani, S.; Abdolshahi, A.; Shab-Bidar, S. Healthy and unhealthy dietary patterns and the risk of chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Br. J. Nutr. 2020, 124, 1133–1144. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhai, F.Y.; Wang, H.J.; Zhang, J.G.; Du, W.W.; Su, C.; Jiang, H.R.; Zhang, B.; Zhang, J. Secular trends in meat and seafood consumption patterns among Chinese adults, 1991–2011. Eur. J. Clin. Nutr. 2014, 69, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.; Du, S.F.; Wang, Z.; Zhang, J.G.; Du, W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; A Beydoun, M. Meat consumption is associated with obesity and central obesity among US adults. Int. J. Obes. 2009, 33, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.P.; Chung, H.J.; Kim, H.J.; Hong, S.T. Paradoxical Effects of Fruit on Obesity. Nutrients 2016, 8, 633. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Y.; Zhang, D. Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Ann. Epidemiol. 2016, 26, 870–882.e2. [Google Scholar] [CrossRef]
- Tan, S.Y.; Dhillon, J.; Mattes, R.D. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 412S–422S. [Google Scholar] [CrossRef] [Green Version]
- Guarneiri, L.L.; A Cooper, J. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. 2021, 12, 384–401. [Google Scholar] [CrossRef]
- Lin, T.K.; Teymourian, Y.; Tursini, M.S. The effect of sugar and processed food imports on the prevalence of overweight and obesity in 172 countries. Glob. Health 2018, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, J.-H.; Lv, J.; Wu, Q.; Xu, T.; Zhang, H.; Liu, Q.-H.; Yang, H.-K. Rice protein improves adiposity, body weight and reduces lipids level in rats through modification of triglyceride metabolism. Lipids Health Dis. 2012, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifu, C.N.; Fahey, P.P.; Hailemariam, T.G.; Frost, S.A.; Atlantis, E. Dietary patterns associated with obesity outcomes in adults: An umbrella review of systematic reviews. Public Health Nutr. 2021, 1–49. [Google Scholar] [CrossRef] [PubMed]
Southern Dietary Pattern | Modern Dietary Pattern | Meat Dietary Pattern | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | p | Group 1 | Group 2 | Group 3 | p | Group 1 | Group 2 | Group 3 | Group 4 | p | |
N | 2021 | 4382 | 2896 | 7045 | 1818 | 436 | 662 | 4396 | 3728 | 513 | |||
Age (years) | 40.6 ± 14.5 | 41.8 ± 14.8 | 38.0 ± 12.9 | <0.0001 | 40.0 ± 14.3 | 40.3 ± 13.9 | 46.3 ± 14.9 | <0.0001 | 39.6 ± 12.9 | 40.9 ± 14.2 | 40.3 ± 14.7 | 37.5 ± 13.1 | <0.0001 |
Female, % | 51.0 | 57.7 | 39.0 | <0.0001 | 49.7 | 52.1 | 54.4 | 0.0487 | 41.5 | 52.0 | 51.8 | 38.0 | <0.0001 |
Education, high % | 18.7 | 26.2 | 17.0 | <0.0001 | 14.5 | 40.1 | 59.8 | <0.0001 | 6.8 | 15.4 | 30.3 | 33.5 | <0.0001 |
Income, % | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Low | 41.7 | 24.1 | 35.1 | 37.5 | 13.7 | 5.5 | 49.0 | 38.4 | 22.5 | 12.9 | |||
Medium | 29.6 | 31.3 | 34.1 | 34.8 | 24.7 | 12.9 | 34.0 | 33.4 | 29.7 | 30.7 | |||
High | 28.7 | 44.6 | 30.8 | 27.7 | 61.6 | 81.6 | 17.0 | 28.2 | 47.8 | 56.4 | |||
Urban, % | 25.7 | 38.8 | 16.8 | <0.0001 | 22.4 | 46.5 | 63.5 | <0.0001 | 2.7 | 20.8 | 41.1 | 46.8 | <0.0001 |
Current smoker, % | 33.6 | 29.0 | 38.3 | <0.0001 | 34.3 | 29.6 | 24.5 | <0.0001 | 42.8 | 32.5 | 30.2 | 43.9 | <0.0001 |
Current drinker, % | 36.9 | 33.9 | 42.4 | <0.0001 | 37.3 | 36.8 | 36.7 | 0.8913 | 38.7 | 36.6 | 36.0 | 48.6 | <0.0001 |
Physical activity, % | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Low | 31.8 | 41.6 | 25.1 | 28.4 | 50.7 | 61.5 | 13.2 | 27.4 | 43.5 | 55.3 | |||
Medium | 36.1 | 31.3 | 37.0 | 34.8 | 32.2 | 31.3 | 33.1 | 35.0 | 33.4 | 33.0 | |||
High | 32.1 | 27.1 | 37.9 | 36.8 | 17.1 | 7.2 | 53.7 | 37.6 | 23.1 | 11.7 | |||
Energy (kcal/day) | 2377.8 ± 748.4 | 2206.7 ± 692.4 | 2514.4 ± 699.0 | <0.0001 | 2362.5 ± 725.3 | 2284.0 ± 705.8 | 2204.3 ± 656.0 | <0.0001 | 2594.4 ± 746.5 | 2399.0 ± 728.3 | 2221.6 ± 686.2 | 2362.0 ± 699.5 | <0.0001 |
BMI (kg/m2) | 21.2 ± 1.7 | 20.9 ± 1.8 | 20.7 ± 1.7 | <0.0001 | 20.8 ± 1.7 | 21.2 ± 1.7 | 21.3 ± 1.8 | <0.0001 | 21.0 ± 1.6 | 20.9 ± 1.7 | 20.8 ± 1.8 | 20.8 ± 1.7 | 0.0072 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
Southern dietary pattern | ||||
Model 1 | 1.00 (ref) | 0.45 (0.35, 0.56) *** | 0.51 (0.38, 0.67) *** | / |
Model 2 | 1.00 (ref) | 0.64 (0.51, 0.81) *** | 0.71 (0.54, 0.91) ** | / |
Modern dietary pattern | ||||
Model 1 | 1.00 (ref) | 0.83 (0.68, 1.00) | 0.65 (0.45, 0.93) * | / |
Model 2 | 1.00 (ref) | 0.76 (0.63, 0.91) ** | 0.64 (0.44, 0.90) * | / |
Meat dietary pattern | ||||
Model 1 | 1.00 (ref) | 1.37 (1.05, 1.76) * | 1.37 (1.03, 1.81) * | 2.20 (1.47, 3.26) *** |
Model 2 | 1.00 (ref) | 1.26 (0.88, 1.78) | 1.26 (0.85, 1.84) | 1.63 (1.04, 2.54) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, H.; Wang, Z.; Huang, F.; Zhang, X.; Du, W.; Su, C.; Ouyang, Y.; Li, L.; Bai, J.; et al. Trajectories of Dietary Patterns and Their Associations with Overweight/Obesity among Chinese Adults: China Health and Nutrition Survey 1991–2018. Nutrients 2021, 13, 2835. https://doi.org/10.3390/nu13082835
Zhang J, Wang H, Wang Z, Huang F, Zhang X, Du W, Su C, Ouyang Y, Li L, Bai J, et al. Trajectories of Dietary Patterns and Their Associations with Overweight/Obesity among Chinese Adults: China Health and Nutrition Survey 1991–2018. Nutrients. 2021; 13(8):2835. https://doi.org/10.3390/nu13082835
Chicago/Turabian StyleZhang, Jiguo, Huijun Wang, Zhihong Wang, Feifei Huang, Xiaofan Zhang, Wenwen Du, Chang Su, Yifei Ouyang, Li Li, Jing Bai, and et al. 2021. "Trajectories of Dietary Patterns and Their Associations with Overweight/Obesity among Chinese Adults: China Health and Nutrition Survey 1991–2018" Nutrients 13, no. 8: 2835. https://doi.org/10.3390/nu13082835
APA StyleZhang, J., Wang, H., Wang, Z., Huang, F., Zhang, X., Du, W., Su, C., Ouyang, Y., Li, L., Bai, J., Zhang, B., Du, S., & Ding, G. (2021). Trajectories of Dietary Patterns and Their Associations with Overweight/Obesity among Chinese Adults: China Health and Nutrition Survey 1991–2018. Nutrients, 13(8), 2835. https://doi.org/10.3390/nu13082835