CT-Determined Sarcopenia in GLIM-Defined Malnutrition and Prediction of 6-Month Mortality in Cancer Inpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of the Nutritional Status: Malnutrition According to GLIM Criteria
2.2. Body Composition Analysis by Computed Tomography
2.3. Other Body Composition Techniques
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, A.M.; Sullivan, E.S. Impact of musculoskeletal degradation on cancer outcomes and strategies for management in clinical practice. Proc. Nutr. Soc. 2021, 80, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Frontera, W.R.; Zayas, A.R.; Rodriguez, N. Aging of Human Muscle: Understanding Sarcopenia at the Single Muscle Cell Level. Phys. Med. Rehabil. Clin. N. Am. 2012, 23, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, L.E.; Ní Bhuachalla, É.B.; Power, D.G.; Cushen, S.J.; James, K.; Ryan, A.M. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. J. Cachexia Sarcopenia Muscle 2018, 9, 315–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blauwhoff-Buskermolen, S.; Versteeg, K.S.; De Van Der Schueren, M.A.E.; Braver, N.D.; Berkhof, J.; Langius, J.A.E.; Verheul, H.M.W. Loss of Muscle Mass During Chemotherapy Is Predictive for Poor Survival of Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2016, 34, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Daly, L.; Power, D.G.; O’Reilly, Á.; Donnellan, P.; Cushen, S.J.; O’Sullivan, K.; Twomey, M.; Woodlock, D.P.; Redmond, H.P.; Ryan, A.M. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer 2017, 116, 310–317. [Google Scholar] [CrossRef]
- Rutten, I.J.G.; Van Dijk, D.P.J.; Kruitwagen, R.F.P.M.; Beets-Tan, R.G.H.; Damink, S.O.; Van Gorp, T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J. Cachexia Sarcopenia Muscle 2016, 7, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Johns, N.; Stephens, N.; Fearon, K. Muscle wasting in cancer. Int. J. Biochem. Cell Biol. 2013, 45, 2215–2229. [Google Scholar] [CrossRef]
- Martin, L.; Senesse, P.; Gioulbasanis, I.; Antoun, S.; Bozzetti, F.; Deans, C.; Strasser, F.; Thoresen, L.; Jagoe, R.T.; Chasen, M.; et al. Diagnostic Criteria for the Classification of Cancer-Associated Weight Loss. J. Clin. Oncol. 2015, 33, 90–99. [Google Scholar] [CrossRef]
- Wheelwright, S.; Darlington, A.-S.; Hopkinson, J.B.; Fitzsimmons, D.; White, A.; Johnson, C.D. A systematic review of health-related quality of life instruments in patients with cancer cachexia. Support. Care Cancer 2013, 21, 2625–2636. [Google Scholar] [CrossRef]
- Bozzetti, F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 2017, 28, 2107–2118. [Google Scholar] [CrossRef]
- Prado, C.M.; Cushen, S.J.; Orsso, C.E.; Ryan, A. Sarcopenia and cachexia in the era of obesity: Clinical and nutritional impact. Proc. Nutr. Soc. 2016, 75, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, C.; Dinkel, C.; Mahajan, A.; Siddique, M.; Cook, G.; Goh, V. Imaging body composition in cancer patients: Visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging 2015, 6, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosbøl, M.Ø.; Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 2015, 35, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Birdsell, L.A.; Baracos, V.E. The emerging role of computerized tomography in assessing cancer cachexia. Curr. Opin. Support. Palliat. Care 2009, 3, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, J.; Esfandiari, N.; Baracos, V.E.; Buteau, F.A.; Frenette, J.; Putman, C.T.; Mazurak, V.C. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014, 210, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurício, S.F.; Xiao, J.; Prado, C.M.; Gonzalez, M.C.; Correia, M.I.T.D. Different nutritional assessment tools as predictors of postoperative complications in patients undergoing colorectal cancer resection. Clin. Nutr. 2018, 37, 1505–1511. [Google Scholar] [CrossRef]
- Feliciano, E.M.C.; Kroenke, C.H.; Meyerhardt, J.A.; Prado, C.M.; Bradshaw, P.T.; Kwan, M.L.; Xiao, J.; Alexeeff, S.; Corley, D.; Weltzien, E.; et al. Association of Systemic Inflammation and Sarcopenia With Survival in Nonmetastatic Colorectal Cancer: Results from the C SCANS study. JAMA Oncol. 2017, 3, e172319. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [Green Version]
- Giglio, J.; Kamimura, M.A.; Souza, N.C.S.; Bichels, A.V.; Cordeiro, A.C.; Pinho, N.; Avesani, C. Muscle mass assessment by computed tomography in chronic kidney disease patients: Agreement with surrogate methods. Eur. J. Clin. Nutr. 2018, 73, 46–53. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- August, D.A.; Huhmann, M.B. American Society for Parenteral and Enteral Nutrition (ASPEN) Board of Directors. ASPEN Clinical Guidelines: Nutrition Support Therapy During Adult Anticancer Treatment and in Hematopoietic Cell Transplantation. J. Parenter. Enter. Nutr. 2009, 33, 472–500. [Google Scholar] [CrossRef]
- Olveira, G.; Tapia, M.J.; Ocón, J.; Cabrejas-Gómez, C.; Ballesteros-Pomar, M.D.; Vidal-Casariego, A.; Arraiza-Irigoyen, C.; Olivares, J.; Conde-García, M.C.; García-Manzanares, Á.; et al. The Subjective Global Assessment Predicts In-Hospital Mortality Better than Other Nutrition-Related Risk Indexes in Noncritically Ill Inpatients Who Receive Total Parenteral Nutrition in Spain (Prospective Multicenter Study). J. Acad. Nutr. Diet. 2013, 113, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Bolívar, V.; Sánchez-Torralvo, F.J.; Ruiz-Vico, M.; González-Almendros, I.; Barrios, M.; Padín, S.; Alba, E.; Olveira, G. GLIM Criteria Using Hand Grip Strength Adequately Predict Six-Month Mortality in Cancer Inpatients. Nutrients 2019, 11, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tang, M.; Zhang, Q.; Zhang, K.-P.; Guo, Z.-Q.; Xu, H.-X.; Yuan, K.-T.; Yu, M.; Braga, M.; Cederholm, T.; et al. The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. Clin. Nutr. 2021, 40, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- De Groot, L.M.; Lee, G.; Ackerie, A.; Van Der Meij, B.S. Malnutrition Screening and Assessment in the Cancer Care Ambulatory Setting: Mortality Predictability and Validity of the Patient-Generated Subjective Global Assessment Short form (PG-SGA SF) and the GLIM Criteria. Nutrients 2020, 12, 2287. [Google Scholar] [CrossRef]
- Huang, D.-D.; Yu, D.-Y.; Song, H.-N.; Wang, W.-B.; Luo, X.; Wu, G.-F.; Yu, Z.; Liu, N.-X.; Dong, Q.-T.; Chen, X.-L.; et al. The relationship between the GLIM-defined malnutrition, body composition and functional parameters, and clinical outcomes in elderly patients undergoing radical gastrectomy for gastric cancer. Eur. J. Surg. Oncol. 2021. [Google Scholar] [CrossRef]
- Huang, D.-D.; Wu, G.-F.; Luo, X.; Song, H.-N.; Wang, W.-B.; Liu, N.-X.; Yu, Z.; Dong, Q.-T.; Chen, X.-L.; Yan, J.-Y. Value of muscle quality, strength and gait speed in supporting the predictive power of GLIM-defined malnutrition for postoperative outcomes in overweight patients with gastric cancer. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Raja, R.; Lim, A.V.; Lim, Y.P.; Lim, G.; Chan, S.P.; Vu, C.K.F. Malnutrition screening in hospitalised patients and its implication on reimbursement. Intern. Med. J. 2004, 34, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Tangvik, R.J.; Tell, G.S.; Guttormsen, A.B.; Eisman, J.A.; Henriksen, A.; Nilsen, R.M.; Ranhoff, A.H. Nutritional risk profile in a university hospital population. Clin. Nutr. 2015, 34, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Kruizenga, H.; Van Keeken, S.; Weijs, P.; Bastiaanse, L.; Beijer, S.; Waal, G.H.-D.; Jager-Wittenaar, H.; Jonkers-Schuitema, C.; Klos, M.; Remijnse-Meester, W.; et al. Undernutrition screening survey in 564,063 patients: Patients with a positive undernutrition screening score stay in hospital 1.4 d longer. Am. J. Clin. Nutr. 2016, 103, 1026–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, E.; McMillan, D.C. Towards a simple objective framework for the investigation and treatment of cancer cachexia: The Glasgow Prognostic Score. Cancer Treat. Rev. 2014, 40, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition 1993, 9, 480–491. [Google Scholar]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Chernoff, H. Large-Sample Theory: Parametric Case. Ann. Math. Stat. 1956, 27, 1–22. [Google Scholar] [CrossRef]
- Lehmann, E.L. Elements of Large-Sample Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mintziras, I.; Miligkos, M.; Wächter, S.; Manoharan, J.; Maurer, E.; Bartsch, D.K. Sarcopenia and sarcopenic obesity are significantly associated with poorer overall survival in patients with pancreatic cancer: Systematic review and meta-analysis. Int. J. Surg. 2018, 59, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-P.; Yu, D.-Y.; Ma, B.-W.; Shen, Z.-L.; Zou, H.-B.; Zhang, X.-Z.; Yan, X.-L.; Zhuang, C.-L.; Yu, Z. Feasibility of substituting handgrip strength for muscle mass as a constituent standard in the Global Leadership Initiative on Malnutrition for diagnosing malnutrition in patients with gastrointestinal cancers. Nutrition 2021, 84, 111044. [Google Scholar] [CrossRef] [PubMed]
n = 208 | ||
Age (years) | mean ± SD | 60.5 ± 12.9 |
Sex | n (%) | |
Men | 115 (55.3) | |
Women | 93 (44.7) | |
Type of hospital admission | n (%) | |
Programmed | 32 (15.4) | |
Urgent | 176 (84.6) | |
Stage | n (%) | |
I | 4 (2) | |
II | 9 (4.3) | |
III | 43 (20.7) | |
IV | 154 (74) | |
Glasgow prognostic score | n (%) | |
No inflammation | 9 (4.3) | |
Inflammation | 199 (95.7) | |
BMI (kg/m2) | mean ± SD | |
Men | 24.9 ± 5.1 | |
Women | 24.3 ± 5.1 | |
<cut-off points | n (%) | 42 (20.2) |
6-Month exitus | n (%) | 104 (50) |
n = 208 | Men | Women | p Value | |
---|---|---|---|---|
Skeletal muscle cross-sectional area (cm2) | M ± SD | 136.17 ± 32.55 | 98.05 ± 21.22 | <0.001 |
Muscle attenuation (HU) | M ± SD | 37.96 ± 23.99 | 34.71 ± 19.66 | 0.29 |
Skeletal muscle index (cm2/m2) | M ± SD | 47.39 ± 12.31 | 38.66 ± 8.26 | <0.001 |
Subcutaneous adipose tissue area (cm2) | M ± SD | 131.82 ± 69.38 | 179.58 ± 93.78 | <0.001 |
Visceral adipose tissue area (cm2) | M ± SD | 178.34 ± 125.06 | 113.04. ± 88.51 | <0.001 |
Subcutaneous and visceral adipose tissue attenuation (HU) | M ± SD | −82.74 ± 17.62 | −84.67 ± 15.94 | 0.42 |
Fat free mass by anthropometry (kg) | M ± SD | 51.05 ± 7.53 | 40.72 ± 6.71 | <0.001 |
Fat free mass index by anthropometry (kg/m2) | M ± SD | 17.73 ± 2.46 | 15.96 ± 2.43 | <0.001 |
Fat free mass by BIA (kg) | M ± SD | 60.77 ± 8.73 | 46.42 ± 6.74 | <0.001 |
Fat free mass index by BIA (kg/m2) | M ± SD | 21.07 ± 2.59 | 18.12 ± 2.22 | <0.001 |
BMI | Skeletal Muscle Cross-Sectional Area | Fat Free Mass (Anthropometry) | Skeletal Muscle Index | FFMI (BIA) | FFMI (Anthropometry) | Hand Grip Strength | |
---|---|---|---|---|---|---|---|
BMI | - | 0.291 a | 0.558 a | 0.379 a | 0.784 a | 0.789 a | 0.154 b |
Skeletal muscle cross-sectional area | 0.291 a | - | 0.651 a | 0.897 a | 0.614 a | 0.467 a | 0.608 a |
Fat free mass (anthropometry) | 0.558 a | 0.651 a | - | 0.458 a | 0.698 a | 0.840 a | 0.557 a |
SMI | 0.379 a | 0.897 a | 0.458 a | - | 0.579 a | 0.485 a | 0.452 a |
FFMI (BIA) | 0.784 a | 0.614 a | 0.698 a | 0.579 a | - | 0.781 a | 0.481 a |
FFMI (anthropometry) | 0.789 a | 0.467 a | 0.840 a | 0.485 a | 0.781 a | - | 0.306 a |
Hand grip strength | 0.154 b | 0.608 a | 0.557 a | 0.452 a | 0.481 a | 0.306 a | - |
Survivors (n = 104) Mean ± SD | Deceased (n = 104) Mean ± SD | p Value | |
---|---|---|---|
Skeletal muscle cross-sectional area (cm2) | 126.08 ± 37.75 | 112.88 ± 27.89 | 0.003 |
Muscle attenuation (HU) | 40.74 ± 27.48 | 32.32 ± 14.16 | 0.007 |
Skeletal muscle index (cm2/m2) | 45.69 ± 12.94 | 41.28 ± 9.45 | 0.006 |
Subcutaneous adipose tissue area (cm2) | 155.86 ± 87.69 | 150.67 ± 81.44 | 0.660 |
Visceral adipose tissue area (cm2) | 153.46 ± 115.62 | 144.49 ± 113.98 | 0.575 |
Subcutaneous and visceral adipose tissue attenuation (HU) | −86.19 ± 17.02 | −81.06 ± 16.43 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Torralvo, F.J.; Ruiz-García, I.; Contreras-Bolívar, V.; González-Almendros, I.; Ruiz-Vico, M.; Abuín-Fernández, J.; Barrios, M.; Alba, E.; Olveira, G. CT-Determined Sarcopenia in GLIM-Defined Malnutrition and Prediction of 6-Month Mortality in Cancer Inpatients. Nutrients 2021, 13, 2647. https://doi.org/10.3390/nu13082647
Sánchez-Torralvo FJ, Ruiz-García I, Contreras-Bolívar V, González-Almendros I, Ruiz-Vico M, Abuín-Fernández J, Barrios M, Alba E, Olveira G. CT-Determined Sarcopenia in GLIM-Defined Malnutrition and Prediction of 6-Month Mortality in Cancer Inpatients. Nutrients. 2021; 13(8):2647. https://doi.org/10.3390/nu13082647
Chicago/Turabian StyleSánchez-Torralvo, Francisco José, Ignacio Ruiz-García, Victoria Contreras-Bolívar, Inmaculada González-Almendros, María Ruiz-Vico, Jose Abuín-Fernández, Manuel Barrios, Emilio Alba, and Gabriel Olveira. 2021. "CT-Determined Sarcopenia in GLIM-Defined Malnutrition and Prediction of 6-Month Mortality in Cancer Inpatients" Nutrients 13, no. 8: 2647. https://doi.org/10.3390/nu13082647