Reduction of Cardio-Metabolic Risk and Body Weight through a Multiphasic Very-Low Calorie Ketogenic Diet Program in Women with Overweight/Obesity: A Study in a Real-World Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Procedures
2.3. Blood and Urinary Biochemistry
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Analysis of the Ketogenetic Effect of VLCKD
3.3. Effect of VLCKD on Anthropometric Parameters
3.4. Effect of VLCKD on Glucometabolic and Cardiovascular Parameters
3.5. Effect of VLCKD on Markers of Liver, Kidney and Thyroid Function
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casanueva, F.F.; Moreno, B.; Rodríguez-Azeredo, R.; Massien, C.; Conthe, P.; Formiguera, X.; Barrios, V.; Balkau, B. Relationship of abdominal obesity with cardiovascular disease, diabetes and hyperlipidaemia in Spain. Clin. Endocrinol. 2010, 73, 35–40. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Magni, P.; Bier, D.M.; Pecorelli, S.; Agostoni, C.; Astrup, A.; Brighenti, F.; Cook, R.; Folco, E.; Fontana, L.; Gibson, R.A.; et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv. Nutr. 2017, 8, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8. [Google Scholar] [CrossRef]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Shah, N.; Goyal, A.; Khan, S.S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association between Obesity and Cardiovascular Outcomes: A Systematic Review and Meta-analysis of Mendelian Randomization Studies. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7. [Google Scholar] [CrossRef]
- Yumuk, P.F.; Dane, F.; Yumuk, V.D.; Yazici, D.; Ege, B.; Bekiroglu, N.; Toprak, A.; Iyikesici, S.; Basaran, G.; Turhal, N.S. Impact of body mass index on cancer development. J. BUON 2008, 13, 55–59. [Google Scholar] [PubMed]
- De Backer, G.G. Prevention of cardiovascular disease: Much more is needed. Eur. J. Prev. Cardiol. 2018, 25, 1083–1086. [Google Scholar] [CrossRef] [Green Version]
- Joseph, P.; Leong, D.; McKee, M.; Anand, S.S.; Schwalm, J.D.; Teo, K.; Mente, A.; Yusuf, S. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ. Res. 2017, 121, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Kraak, V.I.; Swinburn, B.; Lawrence, M.; Harrison, P. An accountability framework to promote healthy food environments. Public Health Nutr. 2014, 17, 2467–2483. [Google Scholar] [CrossRef] [Green Version]
- Donini, L.M.; Cuzzolaro, M.; Gnessi, L.; Lubrano, C.; Migliaccio, S.; Aversa, A.; Pinto, A.; Lenzi, A. Obesity treatment: Results after 4 years of a Nutritional and Psycho-Physical Rehabilitation Program in an outpatient setting. Eat. Weight. Disord. 2014, 19, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [Green Version]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr. 2008, 87, 1558S–1561S. [Google Scholar] [CrossRef] [Green Version]
- Spadafranca, A.; Rinelli, S.; Riva, A.; Morazzoni, P.; Magni, P.; Bertoli, S.; Battezzati, A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br. J. Nutr. 2013, 109. [Google Scholar] [CrossRef] [Green Version]
- Crujeiras, A.B.; Goyenechea, E.; Abete, I.; Lage, M.; Carreira, M.C.; Martínez, J.A.; Casanueva, F.F. Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels. J. Clin. Endocrinol. Metab. 2010, 95, 5037–5044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmingsson, E.; Johansson, K.; Eriksson, J.; Sundström, J.; Neovius, M.; Marcus, C. Weight loss and dropout during a commercial weight-loss program including a very-low-calorie diet, a low-calorie diet, or restricted normal food: Observational cohort study. Am. J. Clin. Nutr. 2012, 96, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Basciani, S.; Costantini, D.; Contini, S.; Persichetti, A.; Watanabe, M.; Mariani, S.; Lubrano, C.; Spera, G.; Lenzi, A.; Gnessi, L. Safety and efficacy of a multiphase dietetic protocol with meal replacements including a step with very low calorie diet. Endocrine 2015, 48, 863–870. [Google Scholar] [CrossRef]
- Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: Systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2019, 42, 1365–1386. [Google Scholar] [CrossRef]
- Rolland, C.; Johnston, K.L.; Lula, S.; Macdonald, I.; Broom, J. Long-term weight loss maintenance and management following a VLCD: A 3-year outcome. Int. J. Clin. Pract. 2014, 68, 379–387. [Google Scholar] [CrossRef]
- Moriconi, E.; Camajani, E.; Fabbri, A.; Lenzi, A.; Caprio, M. Very-Low-Calorie Ketogenic Diet as a Safe and Valuable Tool for Long-Term Glycemic Management in Patients with Obesity and Type 2 Diabetes. Nutrients 2021, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year Legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- HeartScore. Access HeartScore—Full Version. Available online: https://www.heartscore.org/en_GB/access (accessed on 2 April 2021).
- Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020, 21, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16. [Google Scholar] [CrossRef]
- Mongioì, L.M.; Cimino, L.; Condorelli, R.A.; Magagnini, M.C.; Barbagallo, F.; Cannarella, R.; La Vignera, S.; Calogero, A.E. Effectiveness of a Very Low Calorie Ketogenic Diet on Testicular Function in Overweight/Obese Men. Nutrients 2020, 12, 2967. [Google Scholar] [CrossRef] [PubMed]
- Aronica, L.; Volek, J.; Poff, A.; D’agostino, D.P. Genetic variants for personalised management of very low carbohydrate ketogenic diets. BMJ Nutr. Prev. Health 2020, 3, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Graham, I.; Tokgozoglu, L.; Catapano, A.L. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1141–1156. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Risi, R.; Camajani, E.; Contini, S.; Persichetti, A.; Tuccinardi, D.; Ernesti, I.; Mariani, S.; Lubrano, C.; Genco, A.; et al. Baseline HOMA IR and Circulating FGF21 Levels Predict NAFLD Improvement in Patients Undergoing a Low Carbohydrate Dietary Intervention for Weight Loss: A Prospective Observational Pilot Study. Nutrients 2020, 12, 2141. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.A.; Sainsbury, A. Strategies to Improve Adherence to Dietary Weight Loss Interventions in Research and Real-World Settings. Behav. Sci. 2017, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Salzano, C.; Savastano, S.; Colao, A. The management of very low-calorie ketogenic diet in obesity outpatient clinic: A practical guide. J. Transl. Med. 2019, 17, 356. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.; Bellido, D.; Sajoux, I.; Goday, A.; Saavedra, D.; Crujeiras, A.B.; Casanueva, F.F. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine 2014, 47, 793–805. [Google Scholar] [CrossRef]
- Norata, G.D.; Raselli, S.; Grigore, L.; Garlaschelli, K.; Dozio, E.; Magni, P.; Catapano, A.L. Leptin:adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery. Stroke 2007, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoli, S.; Magni, P.; Krogh, V.; Ruscica, M.; Dozio, E.; Testolin, G.; Battezzati, A. Is ghrelin a signal of decreased fat-free mass in elderly subjects? Eur. J. Endocrinol. 2006, 155, 321–330. [Google Scholar] [CrossRef] [PubMed]
MEAN ± SD | MINIMUM | MAXIMUM | |
---|---|---|---|
Age (years) | 49.5 ± 7.2 | 27 | 60 |
Weight (kg) | 81.8 ± 10.9 | 63.0 | 104.6 |
Height (m) | 1.62 ± 0.07 | 1.48 | 1.78 |
BMI (kg/m2) | 30.9 ± 2.7 | 26.96 | 36.06 |
Waist circumference (cm) | 96.0 ± 9.4 | 80.0 | 114.0 |
Hip circumference (cm) | 113.1 ± 7.7 | 100.0 | 130.0 |
Waist-to-hip ratio | 0.85 ± 0.08 | 0.72 | 1.04 |
SBP (mmHg) | 127.2 ± 10.2 | 110 | 160 |
DBP (mmHg) | 81.5 ± 8.9 | 60 | 100 |
Heart rate (bpm) | 69.4 ± 6.3 | 52 | 80 |
FPG (mg/dL) | 95.1 ± 15.6 | 73 | 155 |
HbA1c (mmol/mol) | 36.98 ± 5.19 | 30.05 | 58.40 |
Insulin (mU/L) | 12.65 ± 7.31 | 3.00 | 39.60 |
HOMA-IR | 3.17 ± 2.67 | 0.64 | 15.16 |
Total cholesterol (mg/dL) | 223.0 ± 37.7 | 159 | 339 |
HDL-cholesterol (mg/dL) | 58.0 ± 12.9 | 37.3 | 82.7 |
Non HDL-cholesterol (mg/mL) | 164.9 ± 35.7 | 101.3 | 289.3 |
Triglycerides (mg/dL) | 104.7 ± 41.4 | 44 | 208 |
LDL-cholesterol (mg/dL) (*) | 144.0 ± 33.6 | 80.1 | 248.3 |
Uric acid (mg/dL) | 4.6 ± 1.0 | 3.1 | 6.6 |
AST (mg/dL) | 18.5 ± 4.6 | 12 | 32 |
ALT (mg/dL) | 20.5 ± 12.2 | 8 | 63 |
γ-GT (mg/dL) | 21.0 ± 8.6 | 10 | 46 |
Creatinine (mg/dL) | 0.74 ± 0.13 | 0.44 | 0.98 |
Creatinine clearance (mL/min) | 122.40 ± 33.09 | 73.65 | 221.49 |
BUN (mg/dL) | 33.39 ± 8.62 | 22.40 | 51.00 |
TSH (mUI/L) | 2.38 ± 0.80 | 1.01 | 3.70 |
Mean ± SD | Absolute Change (% Change) | p-Value * | ||
---|---|---|---|---|
FPG (mg/dL) | Baseline | 95.1 ± 15.6 | −9.3 (−9.8) | 0.001 |
Visit 2 | 85.9 ± 12.1 | |||
Visit 3 | 85.8 ± 11.9 | |||
HbA1c (mmol/mol) | Baseline | 36.98 ± 5.19 | −2.47 (−6.0) | 0.001 |
Visit 2 | 34.75 ± 2.82 | |||
Visit 3 | 34.51 ± 3.14 | |||
Insulin (µU/mL) | Baseline | 12.65 ± 7.31 | −4.72 (−37.3) | 0.001 |
Visit 2 | 7.73 ± 4.92 | |||
Visit 3 | 7.93 ± 6.10 | |||
HOMA-IR | Baseline | 3.17 ± 2.67 | −1.39 (−43.8) | 0.001 |
Visit 2 | 1.73 ± 1.23 | |||
Visit 3 | 1.78 ± 1.82 | |||
TyG index | Baseline | 8.43 ± 0.45 | −0.41 (−4.9) | 0.001 |
Visit 2 | 8.05 ± 0.38 | |||
Visit 3 | 8.02 ± 0.49 |
Mean ± SD | Absolute Change (% Change) | p-Value * | ||
---|---|---|---|---|
SBP (mmHg) | Baseline | 127.2 ± 10.2 | −3.5 (−2.8) | 0.006 |
Visit 1 | 123.3 ± 9.8 | |||
Visit 2 | 123.2 ± 9.6 | |||
Visit 3 | 121.4 ± 8.4 | |||
Visit 4 | 123.7 ± 9.6 | |||
DBP (mmHg) | Baseline | 81.5 ± 8.9 | −3.5 (−4.3) | 0.211 |
Visit 1 | 80.1 ± 8.2 | |||
Visit 2 | 80.0 ± 9.3 | |||
Visit 3 | 78.6 ± 9.0 | |||
Visit 4 | 78.0 ± 8.6 | |||
HR (bpm) | Baseline | 69.4 ± 6.3 | −0.3 (−0.4) | 0.021 |
Visit 1 | 72.0 ± 6.7 | |||
Visit 2 | 69.7 ± 5.0 | |||
Visit 3 | 70.4 ± 6.8 | |||
Visit 4 | 69.1 ± 12.9 | |||
TC (mg/dL) | Baseline | 223.0 ± 37.7 | −13.2 (−5.9) | 0.000 |
Visit 2 | 194.8 ± 30.7 | |||
Visit 3 | 209.7 ± 28.4 | |||
HDL-C (mg/dL) | Baseline | 58.0 ± 12.9 | 3.3 (5.7) | 0.000 |
Visit 2 | 52.7 ± 12.7 | |||
Visit 3 | 61.7 ± 13.0 | |||
TG (mg/dL) | Baseline | 104.7 ± 41.4 | −27.1 (−25.9) | 0.000 |
Visit 2 | 78.4 ± 29.1 | |||
Visit 3 | 77.6 ± 31.1 | |||
LDL-C (mg/dL) (°) | Baseline | 144.0 ± 33.6 | −11.2 (−7.8) | 0.000 |
Visit 2 | 126.4 ± 23.4 | |||
Visit 3 | 132.8 ± 23.7 | |||
non HDL-C (mg/dL) | Baseline | 164.9 ± 35.7 | −16.5 (−10.1) | 0.000 |
Visit 2 | 142.1 ± 23.4 | |||
Visit 3 | 148.4 ± 24.4 | |||
TG/HDL-C | Baseline | 1.97 ± 1.14 | −0.6 (−30.5) | 0.001 |
Visit 2 | 1.62 ± 1.05 | |||
Visit 3 | 1.35 ± 0.73 | |||
Uric acid (mg/dL) | Baseline | 4.6 ± 1.0 | −0.3 (−6.5) | 0.093 |
Visit 2 | 4.5 ± 1.1 | |||
Visit 3 | 4.3 ± 1.1 | |||
AST (UI/L) | Baseline | 18.5 ± 4.6 | −0.3 (−1.6) | 0.246 |
Visit 2 | 19.5 ± 6.0 | |||
Visit 3 | 18.2 ± 5.3 | |||
ALT (UI/L) | Baseline | 20.5 ± 12.2 | −1.5 (−7.3) | 0.899 |
Visit 2 | 21.4 ± 13.5 | |||
Visit 3 | 19.0 ± 9.2 | |||
γ-GT (UI/L) | Baseline | 21.0 ± 8.6 | −5.1 (−24.3) | 0.000 |
Visit 2 | 16.0 ± 8.3 | |||
Visit 3 | 15.9 ± 9.1 | |||
Creatinine (mg/dL) | Baseline | 0.74 ± 0.13 | −0.09 (−12.2) | 0.004 |
Visit 2 | 0.73 ± 0.13 | |||
Visit 3 | 0.65 ± 0.11 | |||
CC (mL/min) | Baseline | 122.39 ± 33.09 | −4.40 (−3.6) | 0.026 |
Visit 2 | 110.32 ± 26.15 | |||
Visit 3 | 117.99 ± 25.59 | |||
BUN (mg/dL) | Baseline | 33.39 ± 8.62 | 2.46 (7.4) | 0.092 |
Visit 2 | 35.35 ± 6.22 | |||
Visit 3 | 35.85 ± 8.94 | |||
TSH (mUI/L) | Baseline | 2.40 ± 0.77 | −0.09 (−3.8) | 0.629 |
Visit 2 | 2.21 ± 0.88 | |||
Visit 3 | 2.31 ± 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tragni, E.; Vigna, L.; Ruscica, M.; Macchi, C.; Casula, M.; Santelia, A.; Catapano, A.L.; Magni, P. Reduction of Cardio-Metabolic Risk and Body Weight through a Multiphasic Very-Low Calorie Ketogenic Diet Program in Women with Overweight/Obesity: A Study in a Real-World Setting. Nutrients 2021, 13, 1804. https://doi.org/10.3390/nu13061804
Tragni E, Vigna L, Ruscica M, Macchi C, Casula M, Santelia A, Catapano AL, Magni P. Reduction of Cardio-Metabolic Risk and Body Weight through a Multiphasic Very-Low Calorie Ketogenic Diet Program in Women with Overweight/Obesity: A Study in a Real-World Setting. Nutrients. 2021; 13(6):1804. https://doi.org/10.3390/nu13061804
Chicago/Turabian StyleTragni, Elena, Luisella Vigna, Massimiliano Ruscica, Chiara Macchi, Manuela Casula, Alfonso Santelia, Alberico L. Catapano, and Paolo Magni. 2021. "Reduction of Cardio-Metabolic Risk and Body Weight through a Multiphasic Very-Low Calorie Ketogenic Diet Program in Women with Overweight/Obesity: A Study in a Real-World Setting" Nutrients 13, no. 6: 1804. https://doi.org/10.3390/nu13061804
APA StyleTragni, E., Vigna, L., Ruscica, M., Macchi, C., Casula, M., Santelia, A., Catapano, A. L., & Magni, P. (2021). Reduction of Cardio-Metabolic Risk and Body Weight through a Multiphasic Very-Low Calorie Ketogenic Diet Program in Women with Overweight/Obesity: A Study in a Real-World Setting. Nutrients, 13(6), 1804. https://doi.org/10.3390/nu13061804