Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Data Source
2.2.1. Frailty
2.2.2. Cognitive Function Assessment
2.2.3. Cognitive Frailty
2.2.4. Dietary Intake Information
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NAHSIT | Nutrition and Health Survey in Taiwan |
DDS | Dietary diversity score |
MMSE | Mini–Mental State Examination |
FFQ | Simplified food-frequency questionnaire |
BMI | Body mass index |
TC | Total cholesterol |
Hb | Hemoglobin |
HbA1C | Hemoglobin A1c |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
TG | Triacylglycerol |
BUN | Blood urea nitrogen |
CRE | Creatinine |
References
- Robertson, D.A.; Savva, G.M.; Kenny, R.A. Frailty and cognitive impairment—A review of the evidence and causal mechanisms. Ageing Res. Rev. 2013, 12, 840–851. [Google Scholar] [CrossRef]
- Chye, L.; Wei, K.; Nyunt, M.S.Z.; Gao, Q.; Wee, S.L.; Ng, T.P. Strong Relationship between Malnutrition and Cognitive Frailty in the Singapore Longitudinal Ageing Studies (SLAS-1 and SLAS-2). J. Prev. Alzheimers Dis. 2018, 5, 142–148. [Google Scholar] [PubMed]
- Feng, L.; Zin Nyunt, M.S.; Gao, Q.; Feng, L.; Yap, K.B.; Ng, T.P. Cognitive Frailty and Adverse Health Outcomes: Findings From the Singapore Longitudinal Ageing Studies (SLAS). J. Am. Med. Dir. Assoc. 2017, 18, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.C.; Chang, Y.H.; Lee, M.S.; Wahlqvist, M.L. Dietary quality may enhance survival related to cognitive impairment in Taiwanese elderly. Food Nutr. Res. 2011, 55, 7387. [Google Scholar] [CrossRef]
- Kelaiditi, E.; Cesari, M.; Canevelli, M.; van Kan, G.A.; Ousset, P.J.; Gillette-Guyonnet, S.; Ritz, P.; Duveau, F.; Soto, M.E.; Provencher, V.; et al. Cognitive frailty: Rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J. Nutr. Health Aging 2013, 17, 726–734. [Google Scholar] [CrossRef]
- Borges, M.K.; Canevelli, M.; Cesari, M.; Aprahamian, I. Frailty as a Predictor of Cognitive Disorders: A Systematic Review and Meta-Analysis. Front. Med. (Lausanne) 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Huang, Y.C.; Su, H.H.; Lee, M.Z.; Wahlqvist, M.L. A simple food quality index predicts mortality in elderly Taiwanese. J. Nutr. Health Aging 2011, 15, 815–821. [Google Scholar] [CrossRef]
- Motokawa, K.; Watanabe, Y.; Edahiro, A.; Shirobe, M.; Murakami, M.; Kera, T.; Kawai, H.; Obuchi, S.; Fujiwara, Y.; Ihara, K.; et al. Frailty Severity and Dietary Variety in Japanese Older Persons: A Cross-Sectional Study. J. Nutr. Health Aging 2018, 22, 451–456. [Google Scholar] [CrossRef]
- An, R.; Liu, G.; Khan, N.; Yan, H.; Wang, Y. Dietary Habits and Cognitive Impairment Risk Among Oldest-Old Chinese. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.T.; Wahlqvist, M.L.; Chang, Y.H.; Kao, S.; Lee, M.S. Dietary diversity predicts type of medical expenditure in elders. Am. J. Manag. Care 2013, 19, e415–e423. [Google Scholar]
- Chuang, S.Y.; Lo, Y.L.; Wu, S.Y.; Wang, P.N.; Pan, W.H. Dietary Patterns and Foods Associated With Cognitive Function in Taiwanese Older Adults: The Cross-sectional and Longitudinal Studies. J. Am. Med. Dir. Assoc. 2019, 20, 544–550.e4. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martinez-Gonzalez, M.A.; Martinez-Lapiscina, E.H.; Fito, M.; Perez-Heras, A.; Salas-Salvado, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.L.; Hsieh, Y.T.; Hsu, L.L.; Chuang, S.Y.; Chang, H.Y.; Hsu, C.C.; Chen, C.Y.; Pan, W.H. Dietary Pattern Associated with Frailty: Results from Nutrition and Health Survey in Taiwan. J. Am. Geriatr. Soc. 2017, 65, 2009–2015. [Google Scholar] [CrossRef]
- Tu, S.H.; Chen, C.; Hsieh, Y.T.; Chang, H.Y.; Yeh, C.J.; Lin, Y.C.; Pan, W.H. Design and sample characteristics of the 2005–2008 Nutrition and Health Survey in Taiwan. Asia Pac. J. Clin. Nutr. 2011, 20, 225–237. [Google Scholar]
- Willett, W. Issues in analysis and presentation of dietary data. In Nutritional Epidemiology; Willett, W., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 305–332. [Google Scholar]
- Tseng, H.M.; Lu, J.F.; Gandek, B. Cultural issues in using the SF-36 Health Survey in Asia: Results from Taiwan. Health Qual. Life Outcomes 2003, 1, 72. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jia, J.; Yang, Z. Mini-Mental State Examination in Elderly Chinese: A Population-Based Normative Study. J. Alzheimers Dis. 2016, 53, 487–496. [Google Scholar] [CrossRef]
- Van Kan, G.A.; Rolland, Y.; Bergman, H.; Morley, J.E.; Kritchevsky, S.B.; Vellas, B. The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J. Nutr. Health Aging. 2008, 12, 29–37. [Google Scholar] [CrossRef]
- Van Kan, G.A.; Rolland, Y.M.; Morley, J.E.; Vellas, B. Frailty: Toward a clinical definition. J. Am. Med. Dir. Assoc. 2008, 9, 71–72. [Google Scholar] [CrossRef]
- Katzman, R.; Zhang, M.Y.; Ouang Ya, Q.; Wang, Z.Y.; Liu, W.T.; Yu, E.; Wong, S.C.; Salmon, D.P.; Grant, I. A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J. Clin. Epidemiol. 1988, 41, 971–978. [Google Scholar] [CrossRef]
- Perneczky, R.; Wagenpfeil, S.; Komossa, K.; Grimmer, T.; Diehl, J.; Kurz, A. Mapping scores onto stages: Mini-mental state examination and clinical dementia rating. Am. J. Geriatr. Psychiatry 2006, 14, 139–144. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lee, M.S.; Pan, W.H.; Wahlqvist, M.L. Validation of a simplified food frequency questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the elderly. Asia Pac. J. Clin. Nutr. 2011, 20, 134–140. [Google Scholar] [PubMed]
- Kant, A.K.; Schatzkin, A.; Harris, T.B.; Ziegler, R.G.; Block, G. Dietary diversity and subsequent mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 1993, 57, 434–440. [Google Scholar] [CrossRef]
- Schafer, J.L. Multiple imputation: A primer. Stat. Methods Med. Res. 1999, 8, 3–15. [Google Scholar] [CrossRef]
- Sugimoto, T.; Sakurai, T.; Ono, R.; Kimura, A.; Saji, N.; Niida, S.; Toba, K.; Chen, L.K.; Arai, H. Epidemiological and clinical significance of cognitive frailty: A mini review. Ageing Res. Rev. 2018, 44, 1–7. [Google Scholar] [CrossRef]
- Stenholm, S.; Strandberg, T.E.; Pitkala, K.; Sainio, P.; Heliovaara, M.; Koskinen, S. Midlife obesity and risk of frailty in old age during a 22-year follow-up in men and women: The Mini-Finland Follow-up Survey. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Monteil, D.; Walrand, S.; Vannier-Nitenberg, C.; Van Oost, B.; Bonnefoy, M. The Relationship between Frailty, Obesity and Social Deprivation in Non-Institutionalized Elderly People. J. Nutr. Health Aging 2020, 24, 821–826. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M. The relevance of nutrition for the concept of cognitive frailty. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 61–68. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Chang, H.Y.; Lee, M.S.; Chia-Yu Chen, R.; Pan, W.H. Skeletal muscle mass and risk of death in an elderly population. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 784–791. [Google Scholar] [CrossRef]
- Tembo, M.C.; Holloway-Kew, K.L.; Bortolasci, C.C.; Sui, S.X.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. Total Antioxidant Capacity and Frailty in Older Men. Am. J. Mens Health 2020, 14, 1557988320946592. [Google Scholar] [CrossRef]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Ding, F.; Xiao, L.; Shi, R.; Wang, H.; Han, W.; Huang, Z. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases. Nutrients 2017, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Jung, C.C.; Chen, J.H.; Chiou, J.M.; Chen, T.F.; Chen, Y.F.; Tang, S.C.; Yeh, S.J.; Lee, M.S. Association of Dietary Patterns With Global and Domain-Specific Cognitive Decline in Chinese Elderly. J. Am. Geriatr. Soc. 2017, 65, 1159–1167. [Google Scholar] [CrossRef]
- Xu, X.; Parker, D.; Shi, Z.; Byles, J.; Hall, J.; Hickman, L. Dietary Pattern, Hypertension and Cognitive Function in an Older Population: 10-Year Longitudinal Survey. Front. Public Health 2018, 6, 201. [Google Scholar] [CrossRef]
- Bhasin, S.; Apovian, C.M.; Travison, T.G.; Pencina, K.; Moore, L.L.; Huang, G.; Campbell, W.W.; Li, Z.; Howland, A.S.; Chen, R.; et al. Effect of Protein Intake on Lean Body Mass in Functionally Limited Older Men: A Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 530–541. [Google Scholar] [CrossRef]
- Toffanello, E.D.; Inelmen, E.M.; Minicuci, N.; Campigotto, F.; Sergi, G.; Coin, A.; Miotto, F.; Enzi, G.; Manzato, E. Ten-year trends in dietary intake, health status and mortality rates in free-living elderly people. J. Nutr. Health Aging 2010, 14, 259–264. [Google Scholar] [CrossRef]
Characteristic | Frailty Severity | p† | ||
---|---|---|---|---|
Robust | Prefrailty | Frailty | ||
n (%) | 649 (56.6) | 402 (37.3) | 64 (6.2) | |
Men, % | 47.8 | 48.6 | 33.5 | 0.126 |
Age (years), % | 72.4 ± 0.3 | 75.3 ± 0.5 | 78.2 ± 1.4 | <0.001 |
65–69 | 40.1 | 23.0 | 12.0 | <0.001 |
70–74 | 26.1 | 23.7 | 16.7 | |
75–79 | 19.6 | 24.0 | 27.6 | |
≥80 | 14.3 | 29.3 | 43.7 | |
Education, % | 0.145 | |||
Illiterate | 7.7 | 12.7 | 14.4 | |
Up to primary school | 44.5 | 47.3 | 48.9 | |
High school and above | 47.9 | 39.5 | 36.7 | |
Smoking, % | 26.7 | 34.1 | 25.1 | 0.084 |
Alcohol use, % | 48.0 | 46.4 | 47.2 | 0.932 |
Physical activity (METs/week) | 24.7 ± 1.5 | 21.7 ± 1.4 | 12.5 ± 1.9 | <0.001 |
MMSE (score) | 26.2 ± 0.3 | 25.0 ± 0.3 | 23.0 ± 0.9 | <0.001 |
BMI (kg/m2), % | 24.2 ± 0.2 | 25.1 ± 0.4 | 26.7 ± 0.9 | 0.034 |
<18.5 | 3.5 | 3.6 | 0.0 | 0.037 |
18.5–23.9 | 48.0 | 36.2 | 24.5 | |
24–26.9 | 31.4 | 31.8 | 28.4 | |
≥27 | 17.1 | 28.4 | 47.1 | |
Perceived economic status, % | 0.212 | |||
More than enough | 15.1 | 14.8 | 18.5 | |
Just enough | 58.8 | 53.9 | 43.4 | |
Some difficulties | 20.8 | 20.7 | 26.3 | |
Very difficult | 5.3 | 10.6 | 11.9 | |
Perceived health status, % | <0.001 | |||
Good | 36.9 | 27.7 | 19.5 | |
Fair | 52.8 | 45.3 | 23.8 | |
Poor | 10.3 | 27.0 | 56.8 | |
Diease history, % | ||||
Diabetes mellitus | 13.8 | 27.3 | 53.0 | <0.001 |
Hypertension | 44.6 | 59.6 | 72.9 | <0.001 |
Hyperlipidemia | 11.6 | 25.0 | 19.3 | <0.001 |
Kidney disease | 1.5 | 5.5 | 9.3 | 0.006 |
Heart disease | 8.5 | 22.6 | 29.9 | <0.001 |
Cognitive Function | Frailty Severity | |||||
---|---|---|---|---|---|---|
Robust | Prefrailty | Frailty | ||||
Normal | Impaired | Normal | Impaired | Normal | Impaired | |
n (%) | 385 (35.3) | 264 (21.3) | 179 (16.5) | 223 (20.8) | 17 (2.0) | 47 (4.2) |
DDS, % | 4.93 ± 0.06 | 4.77 ± 0.07 | 4.95 ± 0.06 | 4.69 ± 0.08 * | 5.17 ± 0.29 | 4.62 ± 0.21 |
>4 | 73.1 | 65.1 | 81.9 | 64.4 | 73.2 | 54.5 |
≤4 | 26.9 | 34.9 | 18.1 | 35.6 | 26.8 | 45.5 |
Energy, kcal/day | 1854 ± 46.8 | 1589 ± 47.0 * | 1907 ± 66.0 | 1602 ± 67.5 * | 1867 ± 173 | 1426 ± 92.5 * |
Daily nutrient densities (/1000 Kcal) | ||||||
Carbohydrate, g/day | 139 ± 2.22 | 151 ± 2.22 * | 137 ± 2.52 | 138 ± 2.71 | 141 ± 7.43 | 139 ± 3.65 |
Fat, g/day | 30.7 ± 0.79 | 26.7 ±0.84 * | 32.2 ± 0.91 | 31.2 ± 1.06 | 32.9 ± 2.55 | 32.1 ± 1.48 |
Protein, g/day | 42.7 ± 0.74 | 39.2 ±0.84 * | 41.2 ± 1.03 | 42.0 ±1.06 | 37.9 ± 1.95 * | 41.5 ± 2.27 |
Food intake frequency, times/day | ||||||
Dairy products | 0.53 ± 0.05 | 0.38 ± 0.04 * | 0.49 ± 0.09 | 0.42 ± 0.04 | 1.49 ± 0.33 * | 0.24 ± 0.11 * |
Whole grains | 0.51 ± 0.05 | 0.34 ± 0.06 * | 0.53 ± 0.09 | 0.35 ± 0.07 | 0.24 ± 0.10 * | 0.21 ± 0.12 * |
Vegetables | 3.60 ± 0.18 | 3.19 ± 0.18 | 3.20 ± 0.14 * | 2.75 ± 0.15 * | 3.42 ± 0.44 | 2.91 ± 0.43 |
Pickled vegetable | 0.10 ± 0.01 | 0.12 ± 0.02 | 0.10 ± 0.02 | 0.17 ± 0.03 * | 0.03 ± 0.02 * | 0.16 ± 0.08 |
Fruit | 1.52 ± 0.08 | 0.97 ± 0.06 * | 1.32 ± 0.08 | 1.04 ± 0.08 * | 1.72 ± 0.48 | 0.96 ± 0.15 * |
Soybean | 0.48 ± 0.04 | 0.42 ± 0.04 | 0.51 ± 0.04 | 0.44 ± 0.06 | 0.59 ± 0.24 | 0.44 ± 0.08 |
Fish/seafood | 1.22 ± 0.07 | 0.91 ± 0.07 * | 1.10 ± 0.10 | 0.93 ± 0.08 * | 0.90 ± 0.21 | 1.47 ± 0.17 |
Egg | 0.40 ± 0.02 | 0.34 ± 0.03 * | 0.47 ± 0.09 | 0.36 ± 0.03 | 0.30 ± 0.06 | 0.39 ± 0.06 |
Livestock | 0.57 ± 0.03 | 0.55 ± 0.07 | 0.57 ± 0.05 | 0.55 ± 0.04 | 0.45 ± 0.09 | 0.39 ± 0.07 * |
Poultry | 0.20 ± 0.01 | 0.18 ± 0.02 | 0.20 ± 0.02 | 0.19 ± 0.02 | 0.31 ± 0.10 | 0.16 ± 0.02 |
Processed meat | 0.13 ± 0.02 | 0.08 ± 0.01 | 0.16 ± 0.02 | 0.13 ± 0.02 | 0.19 ± 0.05 | 0.20 ± 0.04 |
Nuts and seeds | 0.38 ± 0.04 | 0.21 ± 0.03 * | 0.32 ± 0.05 | 0.18 ± 0.03 * | 0.46 ± 0.16 | 0.20 ± 0.09 * |
Tea | 0.44 ± 0.04 | 0.39 ± 0.06 | 0.49 ± 0.06 | 0.28 ± 0.05 * | 0.12 ± 0.09 * | 0.18 ± 0.09 * |
Coffee | 0.34 ± 0.04 | 0.19 ± 0.04 * | 0.30 ± 0.05 | 0.21 ± 0.06 | 0.27 ± 0.16 | 0.10 ± 0.05 * |
Snacks | 0.45 ± 0.04 | 0.33 ± 0.05 * | 0.53 ± 0.08 | 0.38 ± 0.06 | 0.63 ± 0.17 | 0.32 ± 0.08 |
Fried food | 0.03 ± 0.01 | 0.01 ± 0.00 * | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.01 |
Sweet beverage | 0.36 ± 0.04 | 0.35 ± 0.05 | 0.33 ± 0.04 | 0.38 ± 0.06 | 0.21 ± 0.11 | 0.27 ± 0.08 |
Nutritional-related blood biochemistry (n = 650) | ||||||
TC, mg/dL | 193 ± 3.55 | 186 ± 3.76 | 189 ± 4.25 | 179 ± 4.24 * | 189 ± 16.68 | 187 ± 9.68 |
Hb, g/dL | 13.6 ± 0.11 | 13.2 ± 0.17 * | 13.7 ± 0.24 | 12.7 ± 0.23 * | 12.2 ± 0.50 * | 12.7 ± 0.32 * |
HbA1C, % | 6.02 ± 0.08 | 6.27 ± 0.08 * | 6.07 ± 0.09 | 6.44 ± 0.23 | 6.20 ± 0.31 | 7.02 ± 0.28 * |
LDL, mg/dL | 122 ± 3.29 | 118 ± 3.11 | 119 ± 4.11 | 111 ± 4.39 | 117 ± 13.16 | 115 ± 9.85 |
HDL, mg/dL | 55.5 ± 1.74 | 52.0 ± 1.31 | 54.1 ± 2.14 | 51.6 ± 1.38 | 52.2 ± 6.04 | 49.7 ± 5.17 |
TG, mg/dL | 125 ± 6.33 | 118.8 ± 6.18 | 128 ± 9.49 | 118 ± 7.62 | 139 ± 27.7 | 160 ± 20.3 |
BUN, mg/dL | 16.1 ± 0.47 | 17.0 ± 0.59 | 17.4 ± 0.50 * | 18.5 ± 0.89 * | 21.0 ± 2.87 | 20.9 ± 1.97 * |
CRE, mg/dL | 0.83 ± 0.02 | 0.89 ± 0.04 | 0.92 ± 0.04 | 0.97 ± 0.06 * | 1.10 ± 0.14 | 1.06 ± 0.14 |
Frailty Severity | p-Value | |||
---|---|---|---|---|
Robust | Prefrailty | Frailty | ||
Cognitive impairment/normal | 264/385 | 223/179 | 47/17 | |
Crude | 1.00 | 2.09 (1.59˗2.75) | 3.55 (1.57˗8.03) | <0.001 |
Model 1 | 1.00 | 1.70 (1.21˗2.40) | 2.36 (1.05˗5.30) | 0.005 |
Mode 2 | 1.00 | 1.71 (1.18˗2.47) | 2.58 (0.87˗7.71) | 0.011 |
Model 3 | 1.00 | 1.56 (1.12˗2.18) | 2.23 (0.75˗6.68) | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-C.; Huang, Y.-C.; Lee, M.-S.; Chang, H.-Y.; Doong, J.-Y. Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan. Nutrients 2021, 13, 418. https://doi.org/10.3390/nu13020418
Huang W-C, Huang Y-C, Lee M-S, Chang H-Y, Doong J-Y. Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan. Nutrients. 2021; 13(2):418. https://doi.org/10.3390/nu13020418
Chicago/Turabian StyleHuang, Wei-Ching, Yi-Chen Huang, Meei-Shyuan Lee, Hsing-Yi Chang, and Jia-Yau Doong. 2021. "Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan" Nutrients 13, no. 2: 418. https://doi.org/10.3390/nu13020418
APA StyleHuang, W.-C., Huang, Y.-C., Lee, M.-S., Chang, H.-Y., & Doong, J.-Y. (2021). Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan. Nutrients, 13(2), 418. https://doi.org/10.3390/nu13020418