Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Participants
Analytic Sample
2.2. Olfactory Function
2.3. Dietary Outcomes
2.4. Demographic, Clinical, and Lifestyle Characteristics
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.H.; Kim, S.W.; Stybayeva, G.; Lim, S.Y.; Hwang, S.H. Predictive value of olfactory and taste symptoms in the diagnosis of COVID-19: A systematic review and meta-analysis. Clin. Exp. Otorhinolaryngol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Goyal, H.; Haghbin, H.; Lee-Smith, W.M.; Gajendran, M.; Perisetti, A. The Association of “Loss of Smell” to COVID-19: A Systematic Review and Meta-Analysis. Am. J. Med. Sci. 2021, 361, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Hannum, M.E.; Ramirez, V.A.; Lipson, S.J.; Herriman, R.D.; Toskala, A.K.; Lin, C.; Joseph, P.V.; Reed, D.R. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19-Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem. Senses 2020, 45, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence and Characteristics of Taste Disorders in Cases of COVID-19: A Meta-analysis of 29,349 Patients. Otolaryngol. Head Neck Surg. 2020. [Google Scholar] [CrossRef]
- Karni, N.; Klein, H.; Asseo, K.; Benjamini, Y.; Israel, S.; Nammary, M.; Olshtain-Pops, K.; Nir-Paz, R.; Hershko, A.; Muszkat, M.; et al. Self-Rated Smell Ability Enables Highly Specific Predictors of COVID-19 Status: A Case-Control Study in Israel. Open Forum Infect. Dis 2021, 8, ofaa589. [Google Scholar] [CrossRef]
- Gerkin, R.C.; Ohla, K.; Veldhuizen, M.G.; Joseph, P.V.; Kelly, C.E.; Bakke, A.J.; Steele, K.E.; Farruggia, M.C.; Pellegrino, R.; Pepino, M.Y.; et al. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem. Senses 2020, 10.1093/chemse/bjaa081. [Google Scholar] [CrossRef]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; El-Sayed Moustafa, J.S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, J.C.; Mattes, R.D. Nutrition and taste and smell dysfunction. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 3–10. [Google Scholar] [CrossRef]
- Idler, E.L.; Benyamini, Y. Self-rated health and mortality: A review of twenty-seven community studies. J. Health Soc. Behav. 1997, 38, 21–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSalvo, K.B.; Bloser, N.; Reynolds, K.; He, J.; Muntner, P. Mortality prediction with a single general self-rated health question. A meta-analysis. J. Gen. Intern. Med. 2006, 21, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, A.F.; Zoer, I.; van der Molen, H.F.; Spreeuwers, D.; Frings-Dresen, M.H.; van Dijk, F.J. Review on the validity of self-report to assess work-related diseases. Int. Arch. Occup. Environ. Health 2012, 85, 229–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Wang, R.; Zhao, Y.; Ma, X.; Wu, M.; Yan, X.; He, J. The relationship between self-rated health and objective health status: A population-based study. BMC Public Health 2013, 13, 320. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ozodiegwu, I.D.; Nickel, J.C.; Wang, K.; Iwasaki, L.R. Self-reported health and behavioral factors are associated with metabolic syndrome in Americans aged 40 and over. Prev. Med. Rep. 2017, 7, 193–197. [Google Scholar] [CrossRef]
- Ekstrom, I.; Sjolund, S.; Nordin, S.; Nordin Adolfsson, A.; Adolfsson, R.; Nilsson, L.G.; Larsson, M.; Olofsson, J.K. Smell Loss Predicts Mortality Risk Regardless of Dementia Conversion. J. Am. Geriatr. Soc. 2017, 65, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, I.; Larsson, M.; Nordin, S.; Adolfsson, R.; Nilsson, L.G.; Olofsson, J.K. Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: A longitudinal, population-based study. J. Int. Neuropsychol. Soc. 2014, 20, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Drareni, K.; Hummel, T.; Bensafi, M.; Serex, C.A.; Hugentobler, M.; Rimmer, J.; Friedrich, H.; Voruz, F.; Terzic, A.; Landis, B.N. Olfactory and Gustatory Function in Patients With Different Types of Maxillofacial Trauma. Laryngoscope 2021, 131, E331–E337. [Google Scholar] [CrossRef]
- Lotsch, J.; Hummel, T. Clinical Usefulness of Self-Rated Olfactory Performance-A Data Science-Based Assessment of 6000 Patients. Chem. Senses 2019, 44, 357–364. [Google Scholar] [CrossRef]
- Ekstrom, I.; Josefsson, M.; Larsson, M.; Ronnlund, M.; Nordin, S.; Olofsson, J.K. Subjective Olfactory Loss in Older Adults Concurs with Long-Term Odor Identification Decline. Chem. Senses 2019, 44, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Stephan, Y.; Sutin, A.R.; Luchetti, M.; Hognon, L.; Canada, B.; Terracciano, A. Personality and self-rated health across eight cohort studies. Soc. Sci. Med. 2020, 263, 113245. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.N.; Finch, B.K.; Lin, S.F.; Hummer, R.A.; Masters, R.K. Racial disparities in self-rated health: Trends, explanatory factors, and the changing role of socio-demographics. Soc. Sci. Med. 2014, 104, 163–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombak, A.E. Self-rated health and public health: A critical perspective. Front. Public Health 2013, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Oleszkiewicz, A.; Hummel, T. Whose nose does not know? Demographical characterization of people unaware of anosmia. Eur. Arch. Otorhinolaryngol. 2019, 276, 1849–1852. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.R.; Wroblewski, K.E.; Kern, D.W.; Kozloski, M.J.; Dale, W.; McClintock, M.K.; Pinto, J.M. Factors Associated with Inaccurate Self-Reporting of Olfactory Dysfunction in Older US Adults. Chem. Senses 2017, 42, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, A.M.; Schlitzer, J.L.; Schierberl, M.J.; Catalanotto, F.A.; Gent, J.; Peterson, M.G.; Bartoshuk, L.M.; Cain, W.S.; Goodspeed, R.B.; Leonard, G.; et al. Anosmia and nutritional status. Nutr. Res. 1985, 5, 149–156. [Google Scholar] [CrossRef]
- Mattes, R.; Cowart, B. Dietary assessment of patients with chemosensory disorders. J. Am. Diet. Assoc. 1994, 94, 50–56. [Google Scholar] [CrossRef]
- Ferris, A.M.; Duffy, V.B. The effect of olfactory deficits on nutritional status: Does age predict individuals at risk? Ann. N. Y. Acad. Sci. 1989, 561, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 44–51. [Google Scholar] [CrossRef]
- Duffy, V.; Backstrand, J.; Ferris, A. Olfactory dysfunction and related nutritional risk in free-living, elderly women. J. Am. Diet. Assoc. 1995, 95, 879–884. [Google Scholar] [CrossRef]
- Fluitman, K.S.; Hesp, A.C.; Kaihatu, R.F.; Nieuwdorp, M.; Keijser, B.J.F.; RG, I.J.; Visser, M. Poor Taste and Smell Are Associated with Poor Appetite, Macronutrient Intake, and Dietary Quality but Not with Undernutrition in Older Adults. J. Nutr. 2021, 151, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.G.; Kim, S.Y.; Kim, M.S.; Park, B.; Kim, J.H.; Choi, H.G. Olfactory Dysfunction Is Associated with the Intake of Macronutrients in Korean Adults. PLoS ONE 2016, 11, e0164495. [Google Scholar] [CrossRef]
- Gallo, S.; Byham-Gray, L.; Duffy, V.; Hoffman, H.; Hayes, J.; Rawal, S. Associations of Olfactory Dysfunction with Anthropometric and Cardiometabolic Measures: Findings from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Physiol. Behav. 2020, 215, 112702. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary patterns: From nutritional epidemiologic analysis to national guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [Green Version]
- Ledikwe, J.H.; Blanck, H.M.; Khan, L.K.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Low-energy-density diets are associated with high diet quality in adults in the United States. J. Am. Diet. Assoc. 2006, 106, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 13 October 2021).
- U.S. Department of Agriculture; Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/ (accessed on 13 October 2021).
- Stevenson, R.J.; Mahmut, M.K.; Horstmann, A.; Hummel, T. The Aetiology of Olfactory Dysfunction and Its Relationship to Diet Quality. Brain Sci. 2020, 10, 769. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Russell, J.; Sue, C.M.; Flood, V.M.; Burlutsky, G.; Mitchell, P. Olfactory impairment in older adults is associated with poorer diet quality over 5 years. Eur. J. Nutr. 2016, 55, 1081–1087. [Google Scholar] [CrossRef]
- Roxbury, C.R.; Bernstein, I.A.; Lin, S.Y.; Rowan, N.R. Association between Chemosensory Dysfunction and Diet Quality in United States Adults. Am. J. Rhinol. Allergy 2021. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Surveys. Questionnaires, Datasets, and Related Documentation. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 13 October 2021).
- Hoffman, H.J.; Rawal, S.; Li, C.M.; Duffy, V.B. New chemosensory component to the U.S. National Health and Nutrition Examination Survey (NHANES), first-year results for measured olfactory dysfunction. Rev. Endocr. Metab. Disord. 2016, 17, 221–240. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey (NHANES). Taste and Smell Examination Component Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/Taste_Smell.pdf (accessed on 13 October 2021).
- U.S. Department of Agriculture; Agricultural Research Service; Beltsville Human Nutrition Research Center; Food Surveys Research Group (Beltsville, MD); U.S. Department of Health and Human Services; Centers for Disease Control and Prevention; National Center for Health Statistics (Hyattsville, MD). What We Eat in America, NHANES 2011–2014. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-documentation-and-data-sets/ (accessed on 13 October 2021).
- Centers for Disease Control (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey. NCHS Research Ethics Review Board (ERB) Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 13 October 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey (NHANES). 2011–2012 Data Documentation, Codebook, and Frequencies: Taste and Smell Disorders. Available online: http://www.cdc.gov/nchs/nhanes/nhanes2011-2012/CSQ_G.htm (accessed on 13 October 2021).
- Rawal, S.; Hoffman, H.J.; Chapo, A.K.; Duffy, V.B. Sensitivity and Specificity of Self-reported Olfactory Dysfunction in a Home-based Study of Independent-living, Healthy Older Women. Chemosens. Percept. 2014, 7, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawal, S.; Hoffman, H.J.; Honda, M.; Huedo-Medina, T.B.; Duffy, V.B. The Taste and Smell Protocol in the 2011–2014 U.S. National Health and Nutrition Examination Survey (NHANES): Test-Retest Reliability and Validity Testing. Chemosens. Percept. 2015, 8, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Rawal, S.; Hoffman, H.J.; Bainbridge, K.E.; Huedo-Medina, T.B.; Duffy, V.B. Prevalence and risk factors of self-reported smell and taste alterations: Results from the 2011-2012 US National Health and Nutrition Examination Survey (NHANES). Chem. Senses 2016, 41, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, T.; Kivimaki, M.; Pentti, J.; Virtanen, M.; Klaukka, T.; Vahtera, J. Self-report as an indicator of incident disease. Ann. Epidemiol. 2010, 20, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey (NHANES). MEC In-Person Dietary Interviewers Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/manuals/mec_in_person_dietary_procedures_manual_jan_2012.pdf (accessed on 13 October 2021).
- U.S. Department of Agriculture; Agricultural Research Service. USDA Food and Nutrient Database for Dietary Studies. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/ (accessed on 13 October 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). Food Patterns Equivalents Database: Methodology and User Guides. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-methodology/ (accessed on 13 October 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). NHANES Dietary Data. Available online: https://wwwn.cdc.gov/nchs/nhanes/Search/DataPage.aspx?Component=Dietary (accessed on 13 October 2021).
- U.S. Department of Agriculture; Agricultural Research Service. Food Patterns Equivalents Database: Databases and SAS Data Sets. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-databases/ (accessed on 13 October 2021).
- Kant, A.K.; Graubard, B.I. Energy density of diets reported by American adults: Association with food group intake, nutrient intake, and body weight. Int. J. Obes. 2005, 29, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K. Indexes of overall diet quality: A review. J. Am. Diet. Assoc. 1996, 96, 785–791. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Smiciklas-Wright, H.; Guthrie, H.A.; Krebs-Smith, J. The effects of variety in food choices on dietary quality. J. Am. Diet. Assoc. 1987, 87, 897–903. [Google Scholar] [CrossRef]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr 2003, 133, 3911s–3926s. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- National Cancer Institute. SAS Code. Available online: https://epi.grants.cancer.gov/hei/sas-code.html (accessed on 13 October 2021).
- Swanevelder, S.; Sewry, N.; Schwellnus, M.; Jordaan, E. Predictors of multiple injuries in individual distance runners: A retrospective study of 75,401 entrants in 4 annual races-SAFER XX. J. Sport Health Sci. 2021. [Google Scholar] [CrossRef]
- Martin, L.M.; Leff, M.; Calonge, N.; Garrett, C.; Nelson, D.E. Validation of self-reported chronic conditions and health services in a managed care population. Am. J. Prev. Med. 2000, 18, 215–218. [Google Scholar] [CrossRef]
- Kant, A.K.; Graubard, B.I.; Atchison, E.A. Intakes of plain water, moisture in foods and beverages, and total water in the adult US population—Nutritional, meal pattern, and body weight correlates: National Health and Nutrition Examination Surveys 1999-2006. Am. J. Clin. Nutr. 2009, 90, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S. Analysis of NHANES 1999–2002 data reveals noteworthy association of alcohol consumption with obesity. Ann. Gastroenterol. 2014, 27, 250–257. [Google Scholar] [PubMed]
- Korn, E.; Graubard, B. Analysis of Health Surveys; John Wiley & Sons: Hoboken, NJ, USA, 1999; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032619 (accessed on 13 October 2021).
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A.E.; Goldberg, G.R.; Jebb, S.A.; Livingstone, M.B.; Cole, T.J.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys. Eur. J. Clin. Nutr. 1991, 45, 583–599. [Google Scholar]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey. NHANES Demographics Data. Available online: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics (accessed on 13 October 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey: Analytic Guidelines, 2011–2014 and 2015–2016. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/analyticguidelines/11-16-analytic-guidelines.pdf (accessed on 13 October 2021).
- Gao, M.; Jebb, S.A.; Aveyard, P.; Ambrosini, G.L.; Perez-Cornago, A.; Carter, J.; Sun, X.; Piernas, C. Associations between dietary patterns and the incidence of total and fatal cardiovascular disease and all-cause mortality in 116,806 individuals from the UK Biobank: A prospective cohort study. BMC Med. 2021, 19, 83. [Google Scholar] [CrossRef]
- Vernarelli, J.A.; DiSarro, R. Debunking the High Cost of Healthy Diets: Consumer Behavior Predicts Dietary Energy Density in a Nationally Representative Sample of US Adults. Am. J. Health Promot. 2021, 35, 543–550. [Google Scholar] [CrossRef]
- Chambaron, S.; Chisin, Q.; Chabanet, C.; Issanchou, S.; Brand, G. Impact of olfactory and auditory priming on the attraction to foods with high energy density. Appetite 2015, 95, 74–80. [Google Scholar] [CrossRef]
- Grech, A.; Rangan, A.; Allman-Farinelli, M. Social Determinants and Poor Diet Quality of Energy-Dense Diets of Australian Young Adults. Healthcare 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Mendes, A.; Pereira, J.L.; Fisberg, R.M.; Marchioni, D.M. Dietary energy density was associated with diet quality in Brazilian adults and older adults. Appetite 2016, 97, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Smith, J.; Fulgoni, V.L., 3rd. The New Hybrid Nutrient Density Score NRFh 4:3:3 Tested in Relation to Affordable Nutrient Density and Healthy Eating Index 2015: Analyses of NHANES Data 2013-16. Nutrients 2021, 13, 1734. [Google Scholar] [CrossRef]
- Kennedy, E. Dietary diversity, diet quality, and body weight regulation. Nutr. Rev. 2004, 62, S78–S81. [Google Scholar] [CrossRef] [PubMed]
- Nolden, A.A.; Hayes, J.E. Perceptual Qualities of Ethanol Depend on Concentration, and Variation in These Percepts Associates with Drinking Frequency. Chemosens. Percept. 2015, 8, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaby, J.M.; Baker, A.N.; Hayes, J.E. Vanillin modifies affective responses to but not burning sensations from ethanol in mixtures. Physiol. Behav. 2019, 211, 112668. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Peterson, J.; Bartoshuk, L.M. Associations between taste genetics, oral sensations and alcohol intake. Physiol. Behav. 2004, 82, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Stelmach-Mardas, M.; Rodacki, T.; Dobrowolska-Iwanek, J.; Brzozowska, A.; Walkowiak, J.; Wojtanowska-Krosniak, A.; Zagrodzki, P.; Bechthold, A.; Mardas, M.; Boeing, H. Link between Food Energy Density and Body Weight Changes in Obese Adults. Nutrients 2016, 8, 229. [Google Scholar] [CrossRef]
- Rouhani, M.H.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Associations between dietary energy density and obesity: A systematic review and meta-analysis of observational studies. Nutrition 2016, 32, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.A.; Crane, T.E.; Garcia, D.O.; Wertheim, B.C.; Hingle, M.; Snetselaar, L.; Datta, M.; Rohan, T.; LeBlanc, E.; Chlebowski, R.T.; et al. Association between Dietary Energy Density and Obesity-Associated Cancer: Results from the Women’s Health Initiative. J. Acad. Nutr. Diet 2018, 118, 617–626. [Google Scholar] [CrossRef]
- Park, S.Y.; Boushey, C.J.; Shvetsov, Y.B.; Wirth, M.D.; Shivappa, N.; Hebert, J.R.; Haiman, C.A.; Wilkens, L.R.; Le Marchand, L. Diet Quality and Risk of Lung Cancer in the Multiethnic Cohort Study. Nutrients 2021, 13, 1614. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhao, Y.; Nie, J.; Xu, H.; Yu, C.; Wang, S. Higher HEI-2015 Score Is Associated with Reduced Risk of Depression: Result from NHANES 2005–2016. Nutrients 2021, 13, 348. [Google Scholar] [CrossRef]
- Kaye, E.A.; Sohn, W.; Garcia, R.I. The Healthy Eating Index and coronal dental caries in US adults: National Health and Nutrition Examination Survey 2011–2014. J. Am. Dent. Assoc. 2020, 151, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, Y.; Li, J.; Liu, Y.; Zhou, L.; Yu, Y. Association between Healthy Eating Index-2015 and physical frailty among the United States elderly adults: The National Health and Nutrition Examination Survey (NHANES) 2011–2014. Aging Clin. Exp. Res. 2021. [Google Scholar] [CrossRef]
- Gicevic, S.; Tahirovic, E.; Bromage, S.; Willett, W. Diet quality and all-cause mortality among US adults, estimated from National Health and Nutrition Examination Survey (NHANES), 2003–2008. Public Health Nutr. 2021, 1–11. [Google Scholar] [CrossRef]
- Petrocelli, M.; Cutrupi, S.; Salzano, G.; Maglitto, F.; Salzano, F.A.; Lechien, J.R.; Saussez, S.; Boscolo-Rizzo, P.; De Riu, G.; Vaira, L.A. Six-month smell and taste recovery rates in coronavirus disease 2019 patients: A prospective psychophysical study. J. Laryngol. Otol. 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Beckers, E.; Mustin, V.; Ducarme, M.; Journe, F.; Marchant, A.; Jouffe, L.; Barillari, M.R.; Cammaroto, G.; et al. Prevalence and 6-month recovery of olfactory dysfunction: A multicentre study of 1363 COVID-19 patients. J. Intern. Med. 2021. [Google Scholar] [CrossRef]
- Klein, H.; Asseo, K.; Karni, N.; Benjamini, Y.; Nir-Paz, R.; Muszkat, M.; Israel, S.; Niv, M.Y. Onset, duration and unresolved symptoms, including smell and taste changes, in mild COVID-19 infection: A cohort study in Israeli patients. Clin Microbiol Infect. 2021, 27, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Wieckiewicz, M.; Danel, D.; Pondel, M.; Smardz, J.; Martynowicz, H.; Wieczorek, T.; Mazur, G.; Pudlo, R.; Wieckiewicz, G. Identification of risk groups for mental disorders, headache and oral behaviors in adults during the COVID-19 pandemic. Sci. Rep. 2021, 11, 10964. [Google Scholar] [CrossRef]
- Chiesa-Estomba, C.M.; Lechien, J.R.; Radulesco, T.; Michel, J.; Sowerby, L.J.; Hopkins, C.; Saussez, S. Patterns of smell recovery in 751 patients affected by the COVID-19 outbreak. Eur. J. Neurol. 2020, 27, 2318–2321. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Carroll, R.; Ruppert, D.; Stefanski, L.; Crainiceanu, C. Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed.; Chapman & Hall: Boca Raton, FL, USA, 2006. [Google Scholar]
Demographic, Clinical, and Lifestyle Characteristics | All Participants | Self-Reported Olfactory Dysfunction a | Self-Reported Normosmic | p-Value * |
---|---|---|---|---|
n = 6356 | n = 1399 | n = 4957 | ||
Age (years) | 57.9 ± 0.2 | 58.6 ± 0.4 | 57.7 ± 0.2 | 0.005 |
Age/sex categories | ||||
Males 40–64 years | 34.5 | 7.7 (0.5) | 26.9 (0.9) | 0.5 |
Males ≥65 years | 12.9 | 3.2 (0.2) | 9.7 (0.4) | |
Females 40–64 years | 37.1 | 8.0 (0.5) | 29.1 (0.8) | |
Females ≥65 years | 15.5 | 3.4 (0.3) | 12.2 (0.4) | |
Race | ||||
Mexican American | 6.3 | 6.1 (1.5) | 6.3 (1.3) | 0.003 |
Other Hispanic | 4.9 | 4.6 (1.1) | 5.0 (0.9) | |
Non-Hispanic White | 71.0 | 73.4 (3.0) | 70.3 (2.9) | |
Non-Hispanic Black | 10.7 | 9.8 (1.7) | 11.0 (1.6) | |
Non-Hispanic Asian | 4.7 | 2.9 (0.7) | 5.2 (0.7) | |
Other Race—Including Multi-Racial | 2.3 | 3.1 (0.7) | 2.1 (0.3) | |
Sex | ||||
Male | 47.4 | 48.8 (1.6) | 47.0 (0.9) | 0.3 |
Female | 52.6 | 51.2 (1.6) | 53.0 (0.9) | |
Education level | ||||
High school or less | 38.4 | 40.6 (2.6) | 37.8 (2.1) | 0.1 |
More than high school | 61.6 | 59.4 (2.6) | 62.2 (2.1) | |
Marital status b | ||||
Married or living with a partner | 65.6 | 63.2 (1.9) | 66.3 (1.2) | 0.2 |
Not Married | 34.4 | 36.8 (1.9) | 33.7 (1.2) | |
Ratio of family income to poverty | 3.1 ± 0.1 | 2.9 ± 0.1 | 3.2 ± 0.1 | <0.001 |
Body mass index (kg/m2) | 29.3 ± 0.2 | 30.0 ± 0.3 | 29.2 ± 0.2 | <0.001 |
Waist circumference (cm) | 101.4 ± 0.4 | 103.3 ± 0.7 | 100.9 ± 0.4 | <0.001 |
Chronic disease score c | 0.35 ± 0.01 | 0.43 ± 0.02 | 0.33 ± 0.01 | <0.001 |
Self-reported general health condition | ||||
Excellent, very good, good | 79.5 | 72.0 (2.1) | 81.7 (1.1) | <0.001 |
Fair, Poor | 20.5 | 28.0 (2.1) | 18.3 (1.1) | |
Physical activity d | ||||
Yes | 60.4 | 59.1 (2.2) | 60.8 (1.1) | 0.4 |
No | 39.6 | 40.9 (2.2) | 39.2 (1.1) | |
History of heavy drinking e | ||||
Yes | 7.2 | 10.8 (2.3) | 6.2 (1.1) | <0.001 |
No | 92.8 | 89.2 (2.3) | 93.8 (1.1) | |
Smoking history | ||||
Never smokers | 51.7 | 45.0 (2.2) | 53.7 (1.4) | 0.001 |
Former smokers | 29.9 | 33.5 (1.9) | 28.9 (1.2) | |
Current smokers | 18.4 | 21.5 (1.5) | 17.5 (1.1) |
Dietary Measures | All Participant (n = 6356) | Males 40–64 Years | Males ≥ 65 Years | Females 40–64 Years | Females ≥ 65 Years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Olfactory Dysfunction (n = 412) | Normosmic (n = 1602) | Olfactory Dysfunction (n = 250) | Normosmic (n = 799) | Olfactory Dysfunction (n = 507) | Normosmic (n = 1709) | Olfactory Dysfunction (n = 230) | Normosmic (n = 847) | ||||||
Mean ± SEM | Mean ± SEM | Mean ± SEM | p-Value * | Mean ± SEM | Mean ± SEM | p-Value * | Mean ± SEM | Mean ± SEM | p-Value * | Mean ± SEM | Mean ± SEM | p-Value * | |
Energy intake (kcal) | 2057 ± 19 | 2497 ± 72 | 2521 ± 42 | 0.7 | 2139 ± 60 | 2087 ± 40 | 0.4 | 1856 ± 40 | 1788 ± 21 | 0.06 | 1643 ± 53 | 1599 ± 34 | 0.4 |
Energy density of foods (kcal/g) a | 1.88 ± 0.02 | 2.04 ± 0.04 | 1.95 ± 0.02 | 0.006 | 1.93 ± 0.05 | 1.80 ± 0.03 | <0.001 | 1.90 ± 0.04 | 1.87 ± 0.03 | 0.4 | 1.85 ± 0.05 | 1.71 ± 0.03 | 0.003 |
HEI-2015 total score b | 53.2 ± 0.5 | 50.1 ± 0.8 | 51.8 ± 0.7 | 0.032 | 53.1 ± 1.3 | 55.2 ± 0.9 | 0.023 | 51.1 ± 0.9 | 53.6 ± 0.7 | <0.001 | 56.7 ± 1.2 | 56.3 ± 0.7 | 0.7 |
HEI-2015 moderation score c | 23.8 ± 0.2 | 23.5 ± 0.4 | 23.7 ± 0.3 | 0.7 | 23.8 ± 0.6 | 24.6 ± 0.4 | 0.07 | 22.3 ± 0.3 | 23.9 ± 0.3 | <0.001 | 24.5 ± 0.5 | 24.5 ± 0.3 | 0.9 |
HEI-2015 adequacy score d | 29.4 ± 0.4 | 26.6 ± 0.6 | 28.1 ± 0.5 | 0.006 | 29.3 ± 0.9 | 30.6 ± 0.6 | 0.040 | 28.8 ± 0.7 | 29.7 ± 0.5 | 0.09 | 32.1 ± 0.8 | 31.8 ± 0.5 | 0.6 |
% Energy from total fat | 33.9 ± 0.2 | 34.1 ± 0.6 | 33.7 ± 0.4 | 0.4 | 34.4 ± 0.6 | 34.3 ± 0.5 | 0.8 | 35.0 ± 0.5 | 33.5 ± 0.3 | <0.001 | 35.2 ± 0.7 | 33.6 ± 0.5 | 0.016 |
% Energy from saturated fat | 10.8 ± 0.1 | 10.9 ± 0.2 | 10.8 ± 0.1 | 0.6 | 11.3 ± 0.3 | 11.0 ± 0.2 | 0.3 | 11.3 ± 0.3 | 10.5 ± 0.1 | <0.001 | 11.3 ± 0.4 | 10.7 ± 0.2 | 0.049 |
% Energy from added sugar | 12.2 ± 0.3 | 14.1 ± 0.6 | 12.0 ± 0.4 | <0.001 | 11.2 ± 0.7 | 10.4 ± 0.4 | 0.1 | 13.6 ± 0.6 | 12.5 ± 0.5 | 0.037 | 11.9 ± 0.5 | 11.2 ± 0.4 | 0.2 |
% Energy from alcoholic beverages | 4.37 ± 0.23 | 5.73 ± 0.65 | 5.80 ± 0.48 | 0.9 | 2.92 ± 0.52 | 4.16 ± 0.40 | 0.016 | 3.21 ± 0.50 | 4.44 ± 0.43 | 0.006 | 1.92 ± 0.49 | 1.89 ± 0.24 | 0.9 |
Total fruits (cup eq/1000 kcal) | 0.52 ± 0.02 | 0.42 ± 0.04 | 0.41 ± 0.03 | 0.7 | 0.46 ± 0.04 | 0.61 ± 0.04 | <0.001 | 0.47 ± 0.04 | 0.54 ± 0.03 | 0.037 | 0.64 ± 0.05 | 0.75 ± 0.04 | 0.042 |
Whole fruits (cup eq/1000 kcal) | 0.40 ± 0.02 | 0.32 ± 0.04 | 0.30 ± 0.02 | 0.4 | 0.33 ± 0.04 | 0.45 ± 0.04 | <0.001 | 0.38 ± 0.03 | 0.43 ± 0.03 | 0.1 | 0.49 ± 0.05 | 0.58 ± 0.04 | 0.07 |
Total vegetables (cup eq/1000 kcal) | 0.91 ± 0.02 | 0.78 ± 0.07 | 0.85 ± 0.02 | 0.2 | 0.84 ± 0.09 | 0.91 ± 0.04 | 0.2 | 0.92 ± 0.06 | 0.96 ± 0.03 | 0.3 | 0.87 ± 0.05 | 1.04 ± 0.04 | 0.001 |
Dark leafy greens and beans (cup eq/1000 kcal) | 0.15 ± 0.01 | 0.13 ± 0.03 | 0.13 ± 0.01 | 0.9 | 0.13 ± 0.03 | 0.14 ± 0.02 | 0.5 | 0.17 ± 0.03 | 0.18 ± 0.02 | 0.4 | 0.12 ± 0.02 | 0.16 ± 0.01 | 0.026 |
Whole grains (oz eq/1000 kcal) | 0.53 ± 0.02 | 0.39 ± 0.04 | 0.46 ± 0.03 | 0.08 | 0.61 ± 0.07 | 0.63 ± 0.04 | 0.7 | 0.49 ± 0.04 | 0.50 ± 0.02 | 0.7 | 0.69 ± 0.07 | 0.70 ± 0.04 | 0.9 |
Dietary diversity e | 11.7 ± 0.1 | 11.6 ± 0.3 | 11.8 ± 0.2 | 0.4 | 11.9 ± 0.4 | 12.7 ± 0.2 | 0.004 | 11.3 ± 0.2 | 11.5 ± 0.2 | 0.3 | 11.9 ± 0.4 | 11.6 ± 0.2 | 0.4 |
Dietary Measures | Unadjusted | Model 1 a | Model 2 b | Model 3 c |
---|---|---|---|---|
Mean Difference (95% CI) | Mean Difference (95% CI) | Mean Difference (95% CI) | Mean Difference (95% CI) | |
Energy intake | 36.6 (−42.7, 115.9) | 24.6 (−57.9, 107.1) | 32.7 (−49.5, 115.0) | 33.0 (−50.0, 115.6) |
Energy density of foods (kcal/g) | 0.08 (0.03, 0.13) ** | 0.06 (0.002, 0.12) * | 0.06 (0.002, 0.12) * | 0.06 (0.004, 0.11) * |
HEI–2015 total score | −1.67 (−2.74, −0.61) ** | −1.15 (−2.29, −0.01) * | −1.09 (−2.22, 0.05) | −1.07 (−2.19, 0.05) |
HEI–2015 moderation score | −0.74 (−1.26, −0.22) ** | −0.71 (−1.27, −0.16) * | −0.67 (−1.22, −0.12) * | −0.67 (−1.22, −0.11) * |
HEI–2015 adequacy score | −0.94 (−1.72, −0.15) * | −0.43 (−1.21, 0.35) | −0.42 (−1.20, 0.36) | −0.41 (−1.18, 0.36) |
% Energy from total fat | 0.97 (0.30, 1.63) ** | 1.01 (0.25, 1.76) ** | 0.96 (0.21, 1.72) * | 0.96 (0.22, 1.70) * |
% Energy from saturated fat | 0.48 (0.15, 0.80) ** | 0.48 (0.13, 0.83) ** | 0.47 (0.12, 0.82) ** | 0.47 (0.12, 0.81) ** |
% Energy from added sugar | 1.30 (0.60, 2.00) *** | 0.95 (0.29, 1.62) ** | 1.00 (0.33, 1.67) ** | 1.00 (0.33, 1.66) ** |
% Energy from alcoholic beverages | −0.64 (−1.47, 0.20) | −0.86 (−1.74, 0.03) | −0.77 (−1.66, 0.12) | −0.77 (−1.65, 0.12) |
Total fruits (cup eq/1000 kcal) | −0.06 (−0.11, −0.01) * | −0.03 (−0.08, 0.02) | −0.03 (−0.08, 0.02) | −0.03 (−0.08, 0.02) |
Whole fruits (cup eq/1000 kcal) | −0.04 (−0.08, 0.003) | −0.02 (−0.06, 0.03) | −0.02 (−0.06, 0.03) | −0.02 (−0.06, 0.03) |
Total vegetables (cup eq/1000 kcal) | −0.08 (−0.16, 0.004) | −0.05 (−0.14, 0.03) | −0.06 (−0.14, 0.03) | −0.06 (−0.14, 0.03) |
Dark leafy greens and beans (cup eq/1000 kcal) | −0.01 (−0.04, 0.01) | −0.004 (−0.03, 0.02) | −0.002 (−0.03, 0.03) | −0.002 (−0.03, 0.03) |
Whole grains (oz eq/1000 kcal) | −0.03 (−0.08, 0.02) | −0.03 (−0.08, 0.02) | −0.03 (−0.09, 0.02) | −0.03 (−0.09, 0.02) |
Dietary diversity Score d | −0.19 (−0.50, 0.12) | −0.04 (−0.34, 0.26) | −0.02 (−0.32, 0.28) | −0.02 (−0.31, 0.28) |
Dietary Measures | Males 40–64 Years | Males ≥65 Years | Females 40–64 Years | Females ≥65 Years |
---|---|---|---|---|
Mean Difference a (95% CI) | Mean Difference a (95% CI) | Mean Difference a (95% CI) | Mean Difference a (95% CI) | |
Energy intake | −48.4 (−214.2, 117.4) | 77.1 (−52.1, 206.3) | 87.4 (−27.5, 202.4) | 55.7 (−67.0, 178.3) |
Energy density of foods (kcal/g) | 0.06 (−0.04, 0.17) | 0.10 (0.01, 0.19) * | 0.01 (−0.08, 0.09) | 0.12 (0.01, 0.23) * |
HEI–2015 total score | −1.01 (−3.00, 0.99) | −1.34 (−4.35, 1.68) | −1.58 (−3.58, 0.41) | 0.94 (−1.23, 3.10) |
HEI–2015 moderation score | −0.02 (−1.11, 1.07) | −0.56 (−2.10, 0.98) | −1.62 (−2.47, −0.77) *** | 0.12 (−1.01, 1.24) |
HEI–2015 adequacy score | −0.99 (−2.21, 0.23) | −0.78 (−2.61, 1.06) | 0.03 (−1.43, 1.50) | 0.82 (−0.57, 2.21) |
% Energy from total fat | 0.17 (−1.24, 1.58) | 0.02 (−1.41, 1.44) | 1.90 (0.71, 3.10) ** | 1.41 (−0.35, 3.18) |
% Energy from saturated fat | 0.02 (−0.65, 0.68) | 0.22 (−0.47, 0.92) | 0.96 (0.31, 1.61) ** | 0.49 (−0.39, 1.37) |
% Energy from added sugar | 1.57 (0.49, 2.65) ** | 0.66 (−0.98, 2.31) | 0.63 (−0.69, 1.95) | 0.87 (−0.19, 1.93) |
% Energy from alcoholic beverages | −0.02 (−1.76, 1.73) | −1.03 (−2.45, 0.39) | −1.71 (−3.18, −0.25) * | 0.05 (−1.05, 1.15) |
Total fruits (cup eq/1000 kcal) | 0.03 (−0.08, 0.14) | −0.11 (−0.22, 0.00003) | −0.04 (−0.13, 0.05) | −0.09 (−0.23, 0.05) |
Whole fruits (cup eq/1000 kcal) | 0.04 (−0.05, 0.13) | −0.09 (−0.20, 0.01) | −0.02 (−0.10, 0.06) | −0.07 (−0.20, 0.07) |
Total vegetables (cup eq/1000 kcal) | −0.06 (−0.19, 0.07) | −0.04 (−0.24, 0.17) | −0.01 (−0.15, 0.13) | −0.17 (−0.28, −0.05) ** |
Dark leafy greens and beans (cup eq/1000 kcal) | 0.01 (−0.05, 0.08) | −0.01 (−0.07, 0.05) | 0.01 (−0.05, 0.06) | −0.03 (−0.08, 0.02) |
Whole grains (oz eq/1000 kcal) | −0.06 (−0.14, 0.03) | −0.05 (−0.19, 0.10) | −0.01 (−0.10, 0.08) | −0.004 (−0.14, 0.13) |
Dietary diversity b | −0.23 (−0.80, 0.34) | −0.38 (−1.17, 0.40) | 0.16 (−0.27, 0.58) | 0.37 (−0.53, 1.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawal, S.; Duffy, V.B.; Berube, L.; Hayes, J.E.; Kant, A.K.; Li, C.-M.; Graubard, B.I.; Hoffman, H.J. Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES). Nutrients 2021, 13, 4561. https://doi.org/10.3390/nu13124561
Rawal S, Duffy VB, Berube L, Hayes JE, Kant AK, Li C-M, Graubard BI, Hoffman HJ. Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES). Nutrients. 2021; 13(12):4561. https://doi.org/10.3390/nu13124561
Chicago/Turabian StyleRawal, Shristi, Valerie B. Duffy, Lauren Berube, John E. Hayes, Ashima K. Kant, Chuan-Ming Li, Barry I. Graubard, and Howard J. Hoffman. 2021. "Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES)" Nutrients 13, no. 12: 4561. https://doi.org/10.3390/nu13124561
APA StyleRawal, S., Duffy, V. B., Berube, L., Hayes, J. E., Kant, A. K., Li, C. -M., Graubard, B. I., & Hoffman, H. J. (2021). Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011–2014 National Health and Nutrition Examination Survey (NHANES). Nutrients, 13(12), 4561. https://doi.org/10.3390/nu13124561