Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Energy and Nutrient Intake Analysis
2.3. Assessment of Hepatic Steatosis
2.4. Clinical, Anthropometric, and Laboratory Evaluations
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Dietary Composition and NAFLD
3.3. Dietary Composition and Insulin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayonrinde, O.T. Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD-Reconciling the present with the past. JHEP Rep. 2021, 3, 100261. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kim, W.R. Nonobese Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2017, 15, 474–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, L.A.; Anstee, Q.M.; Tilg, H.; Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017, 66, 1138–1153. [Google Scholar] [CrossRef] [Green Version]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Ratziu, V. Non-pharmacological interventions in non-alcoholic fatty liver disease patients. Liver Int. 2017, 37 (Suppl. S1), 90–96. [Google Scholar] [CrossRef] [Green Version]
- Schattenberg, J.M.; Bergheim, I. Nutritional Intake and the Risk for Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019, 11, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalafati, I.P.; Borsa, D.; Dimitriou, M.; Revenas, K.; Kokkinos, A.; Dedoussis, G.V. Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study. Nutrition 2019, 61, 105–110. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Fliss Isakov, N.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Sadevirta, S.; Zhou, Y.; Kayser, B.; Ali, A.; Ahonen, L.; Lallukka, S.; Pelloux, V.; Gaggini, M.; Jian, C.; et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care 2018, 41, 1732–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Zhang, K.; Chen, Y.; Li, Y.; Li, Y.; Fu, K.; Feng, R. Associations between Dietary Nutrient Intakes and Hepatic Lipid Contents in NAFLD Patients Quantified by (1)H-MRS and Dual-Echo MRI. Nutrients 2016, 8, 527. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Tatsumi, H.; Hattori, M.; Sugiyama, H.; Wada, S.; Kuwahata, M.; Tanaka, S.; Kanemasa, K.; Sumida, Y.; Naito, Y.; et al. Comparisons of dietary intake in Japanese with non-alcoholic fatty liver disease and type 2 diabetes mellitus. J. Clin. Biochem. Nutr. 2016, 59, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehmeyer, M.H.; Zyriax, B.C.; Jagemann, B.; Roth, E.; Windler, E.; Schulze Zur Wiesch, J.; Lohse, A.W.; Kluwe, J. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine 2016, 95, e3887. [Google Scholar] [CrossRef]
- Cortez-Pinto, H.; Jesus, L.; Barros, H.; Lopes, C.; Moura, M.C.; Camilo, M.E. How different is the dietary pattern in non-alcoholic steatohepatitis patients? Clin. Nutr. 2006, 25, 816–823. [Google Scholar] [CrossRef]
- Nelson, M.; Atkinson, M.; Darbyshire, S. Food photography. I: The perception of food portion size from photographs. Br. J. Nutr. 1994, 72, 649–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Nutrition, Mahidol University. Nutrient Calculation Computer Software INMUCAL-Nutrients V.3 Database NB.2. Nakhon Pathom 2013. Available online: http://www.inmu.mahidol.ac.th/inmucal/ (accessed on 30 November 2018).
- Banjong, O.; Menefee, A.; Sranacharoenpong, K.; Chittchang, U.; Egkantrong, P.; Boonpraderm, A.; Tamachotipong, S. Dietary assessment of refugees living in camps: A case study of Mae La Camp, Thailand. Food Nutr. Bull. 2003, 24, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Jeharsae, R.; Sangthong, R.; Chongsuvivatwong, V. Dual dietary intake problems among under-five years old children living in an armed conflict area of southern Thailand. J. Med. Assoc. Thai 2011, 94, 1104–1108. [Google Scholar]
- Virojanawat, M.; Puapatanakul, P.; Chuengsaman, P.; Boonyakrai, C.; Buranaosot, S.; Katavetin, P.; Praditpornsilpa, K.; Eiam-Ong, S.; Kanjanabuch, T. Hypokalemia in peritoneal dialysis patients in Thailand: The pivotal role of low potassium intake. Int. Urol. Nephrol. 2021, 53, 1463–1471. [Google Scholar] [CrossRef]
- Jeong, Y.; Yi, K.; Hansana, V.; Kim, J.M.; Kim, Y. Comparison of Nutrient Intake in Lao PDR by the Korean CAN-Pro and Thailand INMUCAL Analysis Programs. Prev. Nutr. Food Sci. 2021, 26, 40–50. [Google Scholar] [CrossRef]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J.; et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consultation, W.H.O.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Blendis, L.; Halpern, Z.; Oren, R. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study. J. Hepatol. 2007, 47, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Volynets, V.; Kuper, M.A.; Strahl, S.; Maier, I.B.; Spruss, A.; Wagnerberger, S.; Konigsrainer, A.; Bischoff, S.C.; Bergheim, I. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Dis. Sci. 2012, 57, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Ampong, I.; Watkins, A.; Gutierrez-Merino, J.; Ikwuobe, J.; Griffiths, H.R. Dietary protein insufficiency: An important consideration in fatty liver disease? Br. J. Nutr. 2020, 123, 601–609. [Google Scholar] [CrossRef]
- Watkins, A.J.; Sinclair, K.D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1444–H1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorndal, B.; Berge, C.; Ramsvik, M.S.; Svardal, A.; Bohov, P.; Skorve, J.; Berge, R.K. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation. Lipids Health Dis. 2013, 12, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, E.A.; Gatta-Cherifi, B.; Gonnissen, H.K.; Westerterp-Plantenga, M.S. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans. PLoS ONE 2014, 9, e109617. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.C.; Flood, V.M.; Hector, D.J.; Rangan, A.M.; Gill, T.P. Dairy consumption and overweight and obesity: A systematic review of prospective cohort studies. Obes. Rev. 2011, 12, e582–e592. [Google Scholar] [CrossRef] [PubMed]
- Praagman, J.; Franco, O.H.; Ikram, M.A.; Soedamah-Muthu, S.S.; Engberink, M.F.; van Rooij, F.J.; Hofman, A.; Geleijnse, J.M. Dairy products and the risk of stroke and coronary heart disease: The Rotterdam Study. Eur. J. Nutr. 2015, 54, 981–990. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Hirahatake, K.M.; Bruno, R.S.; Bolling, B.W.; Blesso, C.; Alexander, L.M.; Adams, S.H. Dairy Foods and Dairy Fats: New Perspectives on Pathways Implicated in Cardiometabolic Health. Adv. Nutr. 2020, 11, 266–279. [Google Scholar] [CrossRef]
- Kratz, M.; Marcovina, S.; Nelson, J.E.; Yeh, M.M.; Kowdley, K.V.; Callahan, H.S.; Song, X.; Di, C.; Utzschneider, K.M. Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not beta-cell function in humans. Am. J. Clin. Nutr. 2014, 99, 1385–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weickert, M.O.; Roden, M.; Isken, F.; Hoffmann, D.; Nowotny, P.; Osterhoff, M.; Blaut, M.; Alpert, C.; Gogebakan, O.; Bumke-Vogt, C.; et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am. J. Clin. Nutr. 2011, 94, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, N.; Kasuga, C.; Tanaka, A.; Kamachi, K.; Ai, M.; Urayama, K.Y.; Tanaka, A. Association between dietary fibre:carbohydrate intake ratio and insulin resistance in Japanese adults without type 2 diabetes. Br. J. Nutr. 2018, 119, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Castro-Quezada, I.; Flores-Guillen, E.; Nunez-Ortega, P.E.; Irecta-Najera, C.A.; Sanchez-Chino, X.M.; Mendez-Flores, O.G.; Olivo-Vidal, Z.E.; Garcia-Miranda, R.; Solis-Hernandez, R.; Ochoa-Diaz-Lopez, H. Dietary Carbohydrates and Insulin Resistance in Adolescents from Marginalized Areas of Chiapas, Mexico. Nutrients 2019, 11, 3066. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Kostenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Whiting, S.J.; Barton, C.N. Vitamin D intake: A global perspective of current status. J. Nutr. 2005, 135, 310–316. [Google Scholar] [CrossRef]
- Spiro, A.; Buttriss, J.L. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014, 39, 322–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, C.C.; Liao, M.T.; Lu, K.C.; Wu, C.C. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol. 2012, 2012, 634195. [Google Scholar] [CrossRef]
- Williamson, D.A.; Allen, H.R.; Martin, P.D.; Alfonso, A.J.; Gerald, B.; Hunt, A. Comparison of digital photography to weighed and visual estimation of portion sizes. J. Am. Diet. Assoc. 2003, 103, 1139–1145. [Google Scholar] [CrossRef]
Characteristics | Total (n = 252) | NAFLD (n = 41) | No NAFLD (n = 211) | p-Value * |
---|---|---|---|---|
Age (years) | 37.6 ± 10.0 | 40.9 ± 10.5 | 36.9 ± 9.8 | 0.019 |
Female sex, n (%) | 204 (81.0%) | 30 (73.2%) | 174 (82.5%) | 0.166 |
Healthcare profession | 0.035 | |||
Physician | 50 (19.8%) | 5 (12.2%) | 45 (21.3%) | |
Nurse | 104 (41.3%) | 14 (34.1%) | 90 (42.7%) | |
Non-clinical staff | 98 (38.9%) | 22 (53.7%) | 76 (36.0%) | |
Body mass index (kg/m2) | 23.8 ± 4.5 | 28.8 ± 4.5 | 22.8 ± 3.7 | <0.001 |
Body mass index category | <0.001 | |||
Normal (18.5–22.9 kg/m2) | 128 (50.8%) | 1 (2.4%) | 127 (60.2%) | |
Overweight (23–24.9 kg/m2) | 40 (15.9%) | 7 (17.1%) | 33 (15.6%) | |
Obese (≥25 kg/m2) | 84 (33.3%) | 33 (80.5%) | 51 (24.2%) | |
Waist circumference (cm) | 77.8 ± 10.8 | 88.3 ± 10.7 | 75.8 ± 9.6 | <0.001 |
Waist/hip ratio | 0.84 ± 0.07 | 0.87 ± 0.07 | 0.83 ± 0.07 | <0.001 |
Systolic blood pressure (mmHg) | 114 ± 14 | 124 ± 14 | 112 ± 13 | <0.001 |
Diastolic blood pressure (mmHg) | 74 ± 10 | 82 ± 10 | 73 ± 10 | <0.001 |
Metabolic syndrome | 20 (7.9%) | 13 (31.7%) | 7 (3.3%) | <0.001 |
Hypertension | 11 (4.4%) | 7 (17.1%) | 4 (1.9%) | <0.001 |
Hypertriglyceridemia | 30 (11.9%) | 18 (43.9%) | 12 (5.7%) | <0.001 |
Low HDL-C | 39 (15.5%) | 15 (36.6%) | 24 (11.4%) | <0.001 |
Hyperglycemia/diabetes | 46 (18.3%) | 17 (41.5%) | 29 (13.7%) | <0.001 |
Central obesity | 81 (32.1%) | 32 (78.0%) | 49 (23.2%) | <0.001 |
AST (U/L) | 20 ± 7 | 23 ± 12 | 18 ± 5 | 0.016 |
ALT (U/L) | 19 ± 7 | 32 ± 26 | 16 ± 9 | <0.001 |
Alkaline phosphatase (U/L) | 58 ± 15 | 68 ± 18 | 56 ± 14 | <0.001 |
GGT (U/L) | 18 (13, 27) | 34 (22, 54) | 16 (12, 24) | <0.001 |
Total bilirubin (mg/dL) | 0.55 ± 0.27 | 0.47 ± 0.20 | 0.56 ± 0.28 | 0.068 |
Albumin (g/dL) | 4.57 ± 0.24 | 4.55 ± 0.28 | 4.57 ± 0.23 | 0.559 |
Platelet (× 109) | 281 ± 59 | 281 ± 57 | 281 ± 59 | 0.993 |
Glucose (mg/dL) | 93 ± 18 | 107 ± 37 | 91 ± 10 | 0.006 |
Hemoglobin A1c, % | 5.51 ± 0.67 | 6.04 ± 1.33 | 5.40 ± 0.35 | 0.004 |
HOMA-IR | 2.09 (1.39, 3.14) | 3.51 (2.74, 4.90) | 1.87 (1.34, 2.76) | <0.001 |
Triglycerides (mg/dL) | 77 (56, 109) | 145 (109, 199) | 71 (52, 97) | <0.001 |
Total cholesterol (mg/dL) | 199 (171, 223) | 207 (190, 244) | 197 (167, 216) | 0.003 |
HDL-C (mg/dL) | 64 (52, 75) | 49 (46, 56) | 67 (55, 75) | <0.001 |
LDL-C (mg/dL) | 112 (90, 135) | 130 (108, 158) | 111 (89, 133) | 0.002 |
Total 25-hydroxyvitamin D (ng/mL) | 19.6 ± 6.2 | 19.3 ± 5.4 | 19.7 ± 6.3 | 0.720 |
Ferritin (ng/mL) | 82 (38, 146) | 140 (54, 242) | 77 (37, 127) | 0.003 |
hs-CRP (mg/L) | 0.97 (0.42, 2.28) | 2.08 (1.24, 3.71) | 0.76 (0.40, 2.16) | <0.001 |
Dietary Composition | Total (n = 252) | NAFLD (n = 41) | No NAFLD (n = 211) | p-Value * | Insulin Resistance (n = 99) | No Insulin Resistance (n = 153) | p-Value ** |
---|---|---|---|---|---|---|---|
Total energy intake (kcal) | 1381 ± 328 | 1406 ± 381 | 1377 ± 317 | 0.601 | 1394 ± 367 | 1373 ± 300 | 0.632 |
Carbohydrate (g) | 181.0 ± 46.7 | 181.9 ± 49.6 | 180.9 ± 46.3 | 0.896 | 181.5 ± 48.3 | 180.7 ± 45.9 | 0.905 |
Carbohydrate (% calorie) | 52.6 ± 6.8 | 52.2 ± 6.5 | 52.6 ± 6.9 | 0.742 | 52.4 ± 6.1 | 52.7 ± 7.3 | 0.708 |
Fat (g) | 47.7 ± 14.9 | 48.3 ± 17.5 | 47.5 ± 14.3 | 0.765 | 47.8 ± 15.8 | 47.6 ± 14.3 | 0.935 |
Fat (% calorie) | 30.9 ± 5.4 | 30.5 ± 4.7 | 31.0 ± 5.6 | 0.598 | 30.6 ± 4.8 | 31.1 ± 5.8 | 0.499 |
Protein (g) | 57.0 ± 20.0 | 60.9 ± 25.4 | 56.3 ± 18.7 | 0.263 | 59.4 ± 25.8 | 55.5 ± 15.0 | 0.175 |
Protein (% calorie) | 16.5 ± 3.3 | 17.2 ± 3.8 | 16.3 ± 3.2 | 0.110 | 16.9 ± 3.9 | 16.2 ± 2.9 | 0.132 |
Protein (g per body weight kg) | 0.96 ± 0.36 | 0.84 ± 0.12 | 0.98 ± 0.36 | 0.022 | 0.90 ± 0.43 | 1.00 ± 0.30 | 0.035 |
Saturated fat (g) | 19.5 ± 31.0 | 22.8 ± 48.8 | 18.9 ± 26.4 | 0.622 | 20.3 ± 36.2 | 19.0 ± 27.3 | 0.774 |
Cholesterol (mg) | 253.9 ± 123.7 | 267.0 ± 177.6 | 251.4 ± 110.7 | 0.592 | 256.4 ± 139.1 | 252.3 ± 113.1 | 0.806 |
Full-fat dairy (g) | 49.7 ± 75.3 | 29.2 ± 49.4 | 53.1 ± 78.9 | 0.013 | 34.1 ± 59.7 | 59.0 ± 82.6 | 0.006 |
Red meat (g) | 49.7 ± 36.6 | 60.3 ± 51.4 | 47.7 ± 32.7 | 0.135 | 53.9 ± 40.8 | 47.0 ± 33.5 | 0.163 |
White meat (g) | 47.3 ± 34.9 | 51.0 ± 51.1 | 46.6 ± 31.0 | 0.593 | 49.6 ± 40.3 | 45.8 ± 31.0 | 0.422 |
Processed meat (g) | 14.1 ± 18.6 | 14.3 ± 15.2 | 14.0 ± 19.2 | 0.914 | 13.7 ± 16.1 | 14.3 ± 20.1 | 0.788 |
Refined sugar (g) | 50.2 ± 25.6 | 46.4 ± 23.8 | 52.1 ± 25.9 | 0.197 | 49.4 ± 25.3 | 52.3 ± 25.8 | 0.393 |
Starch (g) | 294.0 ± 121.6 | 318.3 ± 144.0 | 289.3 ± 116.6 | 0.162 | 310.1 ± 129.3 | 283.6 ± 115.6 | 0.091 |
Fiber (g) | 8.1 ± 3.8 | 7.4 ± 3.3 | 8.2 ± 3.8 | 0.203 | 7.4 ± 3.3 | 8.5 ± 4.0 | 0.020 |
Refined grain (g) | 279.6 ± 124.4 | 302.1 ± 151.8 | 275.2 ± 118.3 | 0.289 | 294.0 ± 132.0 | 270.2 ± 118.7 | 0.138 |
Vegetable (g) | 56.6 ± 43.4 | 56.2 ± 37.2 | 56.7 ± 44.6 | 0.950 | 55.7 ± 46.8 | 57.2 ± 41.2 | 0.778 |
Fruit (g) | 85.3 ± 102.8 | 73.8 ± 101.0 | 87.6 ± 103.3 | 0.433 | 76.5 ± 98.3 | 91.0 ± 105.6 | 0.276 |
Dietary Composition | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Unadjusted Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) * | p-Value | |
Carbohydrate ≥ 60% of total energy | 0.23 (0.03–1.73) | 0.152 | 0.22 (0.03–1.74) | 0.151 |
Fat ≥ 30% of total energy | 0.66 (0.34–1.31) | 0.234 | 0.69 (0.34–1.40) | 0.302 |
Protein < 15% of total energy | 0.66 (0.31–1.43) | 0.296 | 0.59 (0.26–1.31) | 0.194 |
Protein intake < 1.0 g/kg/day | 2.95 (1.30–6.70) | 0.010 | 3.66 (1.41–9.52) | 0.008 |
Saturated fat ≥ 20 g/day | 1.20 (0.49–2.94) | 0.697 | 1.13 (0.42–3.05) | 0.808 |
Cholesterol ≥ 254 mg/day | 0.84 (0.42–1.68) | 0.618 | 0.80 (0.36–1.80) | 0.591 |
Full-fat dairy product ≥ 50 g/day | 0.42 (0.19–0.96) | 0.040 | 0.42 (0.18–0.99) | 0.047 |
Red meat ≥ 50 g/day | 1.01 (0.51–1.99) | 0.985 | 1.09 (0.52–2.27) | 0.829 |
White meat ≥ 47 g/day | 0.94 (0.48–1.84) | 0.851 | 0.91 (0.45–1.84) | 0.793 |
Processed meat ≥ 14 g/day | 1.05 (0.52–2.10) | 0.899 | 1.16 (0.55–2.41) | 0.699 |
Refined sugar ≥ 50 g/day | 0.70 (0.35–1.38) | 0.300 | 0.54 (0.25–1.19) | 0.127 |
Starch ≥ 294 g/day | 0.99 (0.51–1.95) | 0.984 | 0.83 (0.38–1.79) | 0.631 |
Dietary fiber intake ≥ 8 g/day | 0.81 (0.41–1.61) | 0.551 | 0.55 (0.25–1.20) | 0.132 |
Refined grain ≥ 280 g/day | 0.97 (0.50–1.91) | 0.939 | 0.95 (0.44–2.03) | 0.895 |
Vegetable (g) ≥ 57 g/day | 0.91 (0.46–1.81) | 0.793 | 0.89 (0.43–1.84) | 0.758 |
Fruit ≥ 85 g/day | 1.01 (0.50–2.01) | 0.991 | 0.82 (0.38–1.75) | 0.602 |
Dietary Composition | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Unadjusted Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) * | p-Value | |
Carbohydrate ≥ 60% of total energy | 0.43 (0.15–1.19) | 0.104 | 0.41 (0.14–1.21) | 0.106 |
Fat ≥ 30% of total energy | 0.69 (0.42–1.15) | 0.157 | 0.66 (0.38–1.13) | 0.128 |
Protein < 15% of total energy | 0.73 (0.42–1.27) | 0.263 | 0.68 (0.38–1.23) | 0.201 |
Protein intake < 1.0 g/kg/day | 2.19 (1.27–3.78) | 0.005 | 3.09 (1.59–6.05) | 0.001 |
Saturated fat ≥ 20 g/day | 0.89 (0.43–1.81) | 0.738 | 0.88 (0.40–1.94) | 0.750 |
Cholesterol ≥ 254 mg/day | 0.83 (0.49–1.39) | 0.481 | 0.75 (0.41–1.37) | 0.346 |
Full-fat dairy product ≥ 50 g/day | 0.48 (0.28–0.85) | 0.011 | 0.46 (0.25–0.82) | 0.009 |
Red meat ≥ 50 g/day | 1.19 (0.71–2.00) | 0.509 | 1.40 (0.80–2.47) | 0.239 |
White meat ≥ 47 g/day | 1.24 (0.75–2.06) | 0.405 | 1.22 (0.72–2.09) | 0.459 |
Processed meat ≥ 14 g/day | 1.13 (0.67–1.91) | 0.658 | 1.13 (0.65–1.98) | 0.656 |
Refined sugar ≥ 50 g/day | 0.72 (0.43–1.19) | 0.200 | 0.58 (0.32–1.05) | 0.073 |
Starch ≥ 294 g/day | 1.34 (0.81–2.24) | 0.254 | 1.41 (0.78–2.55) | 0.254 |
Dietary fiber intake ≥ 8 g/day | 0.54 (0.32–0.92) | 0.022 | 0.41 (0.22–0.74) | 0.003 |
Refined grain ≥ 280 g/day | 1.31 (0.79–2.18) | 0300 | 1.45 (0.81–2.59) | 0.207 |
Vegetable (g) ≥ 57 g/day | 0.90 (0.54–1.51) | 0.701 | 1.01 (0.58–1.75) | 0.985 |
Fruit ≥ 85 g/day | 0.69 (0.40–1.17) | 0.169 | 0.60 (0.33–1.09) | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charatcharoenwitthaya, P.; Tansakul, E.; Chaiyasoot, K.; Bandidniyamanon, W.; Charatcharoenwitthaya, N. Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance. Nutrients 2021, 13, 4438. https://doi.org/10.3390/nu13124438
Charatcharoenwitthaya P, Tansakul E, Chaiyasoot K, Bandidniyamanon W, Charatcharoenwitthaya N. Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance. Nutrients. 2021; 13(12):4438. https://doi.org/10.3390/nu13124438
Chicago/Turabian StyleCharatcharoenwitthaya, Phunchai, Eakchakarj Tansakul, Kusuma Chaiyasoot, Wimolrak Bandidniyamanon, and Natthinee Charatcharoenwitthaya. 2021. "Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance" Nutrients 13, no. 12: 4438. https://doi.org/10.3390/nu13124438
APA StyleCharatcharoenwitthaya, P., Tansakul, E., Chaiyasoot, K., Bandidniyamanon, W., & Charatcharoenwitthaya, N. (2021). Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance. Nutrients, 13(12), 4438. https://doi.org/10.3390/nu13124438