Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
2.5. Study Selection and the Data Extraction Process
2.6. Risk of Bias and Synthesis of Results
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Study Setting and Participant Characteristics
3.2.2. Study Design
3.2.3. Breast Milk Micronutrient Measurement
3.2.4. Infant Developmental Outcome Measures
3.3. Risk of Bias within Studies
3.4. Results of Studies
3.4.1. Vitamin B6
3.4.2. Carotenoids
3.4.3. Selenium
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krebs, N.F.; Lozoff, B.; Georgieff, M.K. Neurodevelopment: The Impact of Nutrition and Inflammation During Infancy in Low-Resource Settings. Pediatrics 2017, 139, S50–S58. [Google Scholar] [CrossRef] [Green Version]
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martorell, R. Improved nutrition in the first 1000 days and adult human capital and health. Am. J. Hum. Biol. 2017, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, S.E.; Levitt, P.; Nelson, C.A., III. How the timing and quality of early experiences influence the development of brain architecture. Child. Dev. 2010, 81, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberg, S.J.; Georgieff, M.K. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, A.J.L.A.; Leite, Á.J.M.; de Almeida, I.S. The pediatrician’s role in the first thousand days of the child: The pursuit of healthy nutrition and development. J. Pediatr. 2015, 91, S44–S51. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediatr. 2018, 107, 1310–1321. [Google Scholar] [CrossRef]
- Semba, R.D.; Delange, F. Iodine in Human Milk: Perspectives for Infant Health. Nutr. Rev. 2001, 59, 269–278. [Google Scholar] [CrossRef]
- Adamo, A.M.; Oteiza, P.I. Zinc deficiency and neurodevelopment: The case of neurons. Biofactors 2012, 36, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Saher, G.; Brügger, B.; Lappe-Siefke, C.; Möbius, W.; Tozawa, R.-I.; Wehr, M.C.; Wieland, F.; Ishibashi, S.; Nave, K.-A. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 2005, 8, 468–475. [Google Scholar] [CrossRef]
- Grantham-McGregor, S. A review of studies of the effect of severe malnutrition on mental development. J. Nutr. 1995, 125, 2233S–2238S. [Google Scholar] [CrossRef]
- Delange, F. Iodine deficiency as a cause of brain damage. Postgrad. Med. J. 2001, 77, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011, 69, S43–S48. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, Z.A. Prevention of Micronutrient Deficiencies: Tools for Policy Makers and Public Health Workers. BMJ 1998, 317, 1460. [Google Scholar] [CrossRef] [PubMed]
- Elmadfa, I.; Meyer, A.L. Vitamins for the first 1000 days: Preparing for life. Int. J. Vitam. Nutr. Res. 2012, 82, 342–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Deoni, S.C.L.; Douglas, D.C.; Piryatinsky, I.; O’Muircheartaigh, J.; Waskeiwicz, N.; Lehman, K.; Han, M.; Dirks, H. Breastfeeding and early white matter development: A cross-sectional study. Neuroimage 2013, 82, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Belfort, M.B.; Anderson, P.J.; Nowak, V.A.; Lee, K.J.; Molesworth, C.; Thompson, D.K.; Doyle, L.W.; Inder, T.E. Breast Milk Feeding, Brain Development, and Neurocognitive Outcomes: A 7-Year Longitudinal Study in Infants Born at Less Than 30 Weeks’ Gestation. J. Pediatr. 2016, 177, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Der, G.; Batty, G.D.; Deary, I.J. Effect of breast feeding on intelligence in children: Prospective study, sibling pairs analysis, and meta-analysis. BMJ 2006, 333, 945. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, S.W.; Carter, R.C.; Jacobson, J.L. Breastfeeding as a Proxy for Benefits of Parenting Skills for Later Reading Readiness and Cognitive Competence. J. Pediatr 2014, 164, 440–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaus, M. Mother and infant: Early emotional ties. Pediatrics 1998, 102, 1244–1246. [Google Scholar]
- Lucas, A.; Morley, R.; Cole, T.J.; Lister, G.; Leeson-Payne, C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992, 339, 261–264. [Google Scholar] [CrossRef]
- Harit, D.; Faridi, M.M.A.; Aggarwal, A.; Sharma, S.B. Lipid profile of term infants on exclusive breastfeeding and mixed feeding: A comparative study. Eur. J. Clin. Nutr. 2008, 62, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of Breast Milk on Intelligence Quotient, Brain Size, and White Matter Development. Pediatr. Res. 2010, 67, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunnane, S.C.; Francescutti, V.; Brenna, J.T.; Crawford, M.A. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 2000, 35, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Overview of nutrients in human milk. Adv. Nutr. 2018, 9, 278S–294S. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.H. Maternal micronutrient malnutrition: Effects on breast milk and infant nutrition, and priorities for intervention. SCN News 1994, 11, 21–24. [Google Scholar]
- World Health Organization. Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition. 2013. Available online: https://apps.who.int/iris/handle/10665/84409 (accessed on 29 February 2021).
- Picciano, M.F. Nutrient Composition of Human Milk. Pediatr. Clin. N. Am. 2001, 48, 53–67. [Google Scholar] [CrossRef]
- Dorea, J.G. Iodine nutrition and breast feeding. J. Trace Elem. Med. Biol. 2002, 16, 207–220. [Google Scholar] [CrossRef]
- Dijkhuizen, M.A.; Wieringa, F.T.; West, C.E.; Muherdiyantiningsih; Muhilal. Concurrent micronutrient deficiencies in lactating mothers and their infants in Indonesia. Am. J. Clin. Nutr. 2001, 73, 786–791. [Google Scholar] [CrossRef]
- Bellows, A.L.; Smith, E.R.; Muhihi, A.; Briegleb, C.; Noor, R.A.; Mshamu, S.; Sudfeld, C.; Masanja, H.; Fawzi, W.W. Micronutrient Deficiencies among Breastfeeding Infants in Tanzania. Nutrients 2017, 9, 1258. [Google Scholar] [CrossRef] [Green Version]
- Stelle, I.; Venkatesan, S.; Edmond, K.; Moore, S.E. Acknowledging the gap: A systematic review of micronutrient supplementation in infants under six months of age. Wellcome Open Res. 2020, 5, 238. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- The EndNote Team. EndNote; EndNote 20; Clarivate: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cochrane Developmental, Psychosocial and Learning Problems. Data Collection Form for Intervention Reviews: RCTs and Non-RCTs Version 3. 2014. Available online: https://dplp.cochrane.org/data-extraction-forms (accessed on 10 March 2021).
- Critical Appraisal Skills Programme. CASP Checklists. 2019. Available online: https://casp-uk.net/casp-tools-checklists/ (accessed on 17 March 2021).
- Christian, P.; Shamim, A.; Shaikh, S.; Ali, H.; Mehra, S.; Lee, W.; Labrique, A.; Schulze, K.; Klemm, R.; West, K., Jr. Antenatal multiple micronutrient supplementation and growth in the first two years of life and cognitive function at 24 months in rural Bangladesh. FASEB J. 2014, 28, 256. [Google Scholar] [CrossRef]
- Boylan, L.M.; Hart, S.; Driskell, J.A. Neonatal behavioral development: Impact of pyridoxal content of mothers milk. FASEB J. 2000, 14, A232. [Google Scholar]
- Latifah, L.; Nurcahyani, Y.D.; Yunitawati, D.; Kusrini, I.; Mulyantoro, D.K. Breastmilk iodine level and infant development in replete and non replete iodine area. Ann. Nutr. Metab. 2019, 75, 98–99. [Google Scholar] [CrossRef]
- Cheatham, C.; Stegall, J.; Sheppard, K.; Armer, A.; Millsap, G.; Wernimont, S.; Zeisel, S. The relation of human milk lutein, choline, and docosahexaenoic acid content to recognition memory abilities of 6-month-old breastfed infants. FASEB J. 2014, 28, 247. [Google Scholar] [CrossRef]
- Gebreegziabher, T.; Woltamo, T.; Thomas, D.G.; Kennedy, T.S.; Stoecker, B.J. Iodine supplementation of lactating women and assessment of infant visual information processing and maternal and infant thyroid function: A randomized trial. PLoS ONE 2019, 14, e0223348. [Google Scholar] [CrossRef]
- McCullough, A.L.; Kirksey, A.; Wachs, T.D.; McCabe, G.P.; Bassily, N.S.; Bishry, Z.; Galal, O.M.; Harrison, G.G.; Jerome, N.W. Vitamin B-6 status of Egyptian mothers: Relation to infant behavior and maternal-infant interactions. Am. J. Clin. Nutr. 1990, 51, 1067–1074. [Google Scholar] [CrossRef]
- Neumann, C.G.; Oace, S.M.; Chaparro, M.P.; Herman, D.; Drorbaugh, N.; Bwibo, N.O. Low vitamin B-12 intake during pregnancy and lactation and low breastmilk vitamin B-12 content in rural Kenyan women consuming predominantly maize diets. Food Nutr. Bull. 2013, 34, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wu, D.; Wu, W.; Li, H.; Cao, L.; Xu, J.; Yu, X.; Bian, X.; Yan, C.; Wang, W. Relationship between Iodine Concentration in Maternal Colostrum and Neurobehavioral Development of Infants in Shanghai, China. J. Child. Neur. 2016, 31, 1108–1113. [Google Scholar] [CrossRef]
- Cheatham, C.L.; Sheppard, K.W. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients 2015, 7, 9079–9095. [Google Scholar] [CrossRef] [Green Version]
- Gebreegziabher, T.A.O.; Stoecker, B.J. Comparison of two sources of iodine delivery on breast milk iodine and maternal and infant urinary iodine concentrations in southern Ethiopia: A randomized trial. Food Sci. Nutr. 2017, 5, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honzik, T.; Adamovicova, M.; Smolka, V.; Magner, M.; Hruba, E.; Zeman, J. Clinical presentation and metabolic consequences in 40 breastfed infants with nutritional vitamin B12 deficiency—What have we learned? Eur. J. Paediatr. Neurol. 2010, 14, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, R.Q.; Chow, B.F.; Chinn, K.S.K.; Blackwell, B.N.; Hsu, S.C. Prospective Maternal Nutrition Study in Taiwan—Rationale, Study Design, Feasibility, and Preliminary Findings. Nutr. Rep. Int. 1973, 7, 517–532. [Google Scholar]
- Osei, J.; Baumgartner, J.; Rothman, M.; Matsungo, T.M.; Covic, N.; Faber, M.; Smuts, C.M. Iodine status and associations with feeding practices and psychomotor milestone development in six-month-old South African infants. Matern. Child. Nutr. 2017, 13, e12408. [Google Scholar] [CrossRef]
- Park, S.; Bellinger, D.C.; Adamo, M.; Bennett, B.; Choi, N.K.; Baltazar, P.I.; Ayaso, E.B.; Monterde, D.B.S.; Tallo, V.; Olveda, R.M.; et al. Mechanistic pathways from early gestation through infancy and neurodevelopment. Pediatrics 2016, 138, e20161843. [Google Scholar] [CrossRef] [Green Version]
- Prado, E.L.; Abbeddou, S.; Adu-Afarwuah, S.; Arimond, M.; Ashorn, P.; Ashorn, U.; Bendabenda, J.; Brown, K.H.; Hess, S.Y.; Kortekangas, E.; et al. Predictors and pathways of language and motor development in four prospective cohorts of young children in Ghana, Malawi, and Burkina Faso. J. Child. Psychol. Psychiatry 2017, 58, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A. Modeling the effects of maternal nutritional status and socioeconomic variables on the anthropometric and psychological indicators of Kenyan infants from age 0-6 months. Am. J. Phys. Anthropol. 2000, 111, 89–104. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Al-Mohawes, S.; Al-Rouqi, R.; Elkhatib, R. Selenium status in lactating mothers-infants and its potential protective role against the neurotoxicity of methylmercury, lead, manganese, and DDT. Environ. Res. 2019, 176, 108562. [Google Scholar] [CrossRef]
- Arakawa, T.; Mizuno, T.; Honda, Y. Brain function of infants fed on milk from mothers with low serum folate levels. Tohoku J. Exp. Med. 1969, 97, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, S.L.; Mridha, M.K.; Tofail, F.; Arnold, C.D.; Khan, M.S.A.; Siddiqui, Z.; Ullah, M.B.; Dewey, K.G. Home fortification during the first 1000 d improves child development in Bangladesh: A cluster-randomized effectiveness trial. Am. J. Clin. Nutr. 2017, 105, 958–969. [Google Scholar] [CrossRef]
- Boylan, L.M.; Hart, S.; Porter, K.B.; Driskell, J.A. Vitamin B-6 content of breast milk and neonatal behavioral functioning. J. Am. Diet. Assoc. 2002, 102, 1433–1438. [Google Scholar] [CrossRef]
- Zielinska, M.A.; Hamulka, J.; Grabowicz-Chadrzynska, I.; Brys, J.; Wesolowska, A. Association between Breastmilk LC PUFA, Carotenoids and Psychomotor Development of Exclusively Breastfed Infants. Int. J. Environ. Res. Public Health 2019, 16, 1144. [Google Scholar] [CrossRef] [Green Version]
- Castriotta, L.; Rosolen, V.; Biggeri, A.; Ronfani, L.; Catelan, D.; Mariuz, M.; Bin, M.; Brumatti, L.V.; Horvat, M.; Barbone, F. The role of mercury, selenium and the Se-Hg antagonism on cognitive neurodevelopment: A 40-month follow-up of the Italian mother-child PHIME cohort. Int. J. Hyg. Environ. Health 2020, 230, 113604. [Google Scholar] [CrossRef]
- Zielinska, M.A.; Hamulka, J.; Wesolowska, A. Carotenoid Content in Breastmilk in the 3rd and 6th Month of Lactation and Its Associations with Maternal Dietary Intake and Anthropometric Characteristics. Nutrients 2019, 11, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albers, C.A.; Grieve, A.J. Test review: Bayley, N. (2006). Bayley scales of infant and toddler development–third edition. San Antonio, TX: Harcourt assessment. J. Psychoeduc. Assess. 2007, 25, 180–190. [Google Scholar] [CrossRef]
- Brazelton, T.B.; Nugent, J.K. Neonatal Behavioral Assessment Scale; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Paluch, P.; Kochański, B.; Ganc, M.; Cieśla, K.; Milner, R.; Pluta, A.; Lewandowska, M. Early general development and central auditory system maturation in children with cochlear implants—A case series. Int. J. Pediatr. Otorhinolaryngol. 2019, 126, 109625. [Google Scholar] [CrossRef]
- Abe, S.K.; Balogun, O.O.; Ota, E.; Takahashi, K.; Mori, R. Supplementation with multiple micronutrients for breastfeeding women for improving outcomes for the mother and baby. Cochrane Database Syst. Rev. 2016, 2, CD010647. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Allert, R.; East, C.E. Vitamin A supplementation for postpartum women. Cochrane Database Syst. Rev. 2016, 3, CD005944. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.L.; Voigt, R.G.; Prager, T.C.; Zou, Y.L.; Fraley, J.K.; Rozelle, J.C.; Turcich, M.R.; Llorente, A.M.; Anderson, R.E.; Heird, W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.K.; Plows, J.F.; Jones, R.B.; Alderete, T.L.; Yonemitsu, C.; Poulsen, M.; Ryoo, J.H.; Peterson, B.S.; Bode, L.; Goran, M.I. Human milk oligosaccharide 2′-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS ONE 2020, 15, e0228323. [Google Scholar] [CrossRef]
- Allen, L.H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 2012, 3, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, S.P.; Wachs, T.D.; Grantham-McGregor, S.; Black, M.M.; Nelson, C.A.; Huffman, S.L.; Richter, L. Inequality in early childhood: Risk and protective factors for early child development. Lancet 2011, 378, 1325–1338. [Google Scholar] [CrossRef]
- Prendergast, A.J.; Humphrey, J.H. The stunting syndrome in developing countries. Paediatr. Int. Child. Health 2014, 34, 250–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.S.; Kakuma, R. The optimal duration of exclusive breastfeeding: A systematic review. Adv. Exp. Med. Biol. 2004, 554, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Lopez-Alarcon, M.G.; Garza, C. Nutrient Adequacy of Exclusive Breastfeeding for the Term Infant during the First Six Months of Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Horta, B.L.; De Mola, C.L.; Victora, C.G. Breastfeeding and intelligence: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 14–19. [Google Scholar] [CrossRef]
- Victora, C.G.; Horta, B.L.; De Mola, C.L.; Quevedo, L.; Pinheiro, R.T.; Gigante, D.P.; Gonçalves, H.; Barros, F.C. Association between breastfeeding and intelligence, educational attainment, and income at 30 years of age: A prospective birth cohort study from Brazil. Lancet Glob. Health 2015, 3, e199–e205. [Google Scholar] [CrossRef] [Green Version]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Perrone, L.; Di Palma, L.; Di Toro, R.; Gialanella, G.; Moro, R. Interaction of trace elements in a longitudinal study of human milk from full-term and preterm mothers. Biol. Trace Elem. Res. 1994, 41, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, R.D.E.S.; Fernando, L.F.; Rafael, E.V.; Lamy, Z.C.; De Queiroz, A.L.G. Breast milk supplementation and preterm infant development after hospital discharge: A randomized clinical trial. J. Pediatr. 2016, 92, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, A.; Fewtrell, M.S.; Morley, R.; Lucas, P.J.; Baker, B.A.; Lister, G.; Bishop, N.J. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am. J. Clin. Nutr. 1996, 64, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | Mothers had a higher than average educational level and high average income |
Study ID | Number of Participants | Population Characteristics | Breast Milk Micronutrient Measured | Time-Point of Breast Milk Micronutrient Measurement | Infant Developmental Outcome Measure | Time-Point of Infant Developmental Outcome Measurement | Main Results |
---|---|---|---|---|---|---|---|
Cross-Sectional Study Design | |||||||
Boylan et al., 2002 [58] | 25 | All participants were from low-income backgrounds | Vitamin B6 in the form of pyridoxal, pyridoxamine, and pyridoxine | 8–11 days postpartum | Brazelton Neonatal Behavioural Assessment Scale (NBAS) | 8–11 days postpartum | A significant, positive correlation was identified between breast milk pyroxidal concentration and the Habituation subscale (r = 0.94; p ≤ 0.05), and the Autonomic Stability subscale of the NBAS (r = 0.34; p ≤ 0.05). |
Prospective Cohort Study Design | |||||||
Zielinska et al., 2019a [59] | 39 | Mothers had a higher than average educational level and high average income | The carotenoids β-carotene, lycopene, and lutein and zeaxanthin | One and three months postpartum | Six sub-scales of the Polish Children Development Scale (DSR): Manipulation, Perception, Memory, Speech and language, Social behaviour, and Motor skills | Six months postpartum | Breast milk β-carotene was significantly associated with infant scores on the Motor Development subscale of the DSR (β = 0.348; p ≤ 0.05 (95% CI 0.036–0.660)). This association remained significant following adjustment for confounding variables such as infant age, and maternal education (β = 0.296; p ≤ 0.05 (95% CI −0.031–0.623)), and following adjustment for infant birth weight and the number of children in the household (β = 0.359; p ≤ 0.05 (CI 0.025–0.693)). Breast milk lycopene was significantly associated with infant unadjusted scores on the Manipulation subscale of the DSR (β = 0.348; p ≤ 0.05 (95% CI 0.036–0.660)). |
Castriotta et al., 2020 [60] | 370 | Most mothers had a college degree, and the average maternal non-verbal intelligence score was high | Selenium | One month postpartum | The Cognitive Scale of the third edition of the Bayley Scales of Infant and Toddler Development (BSID-III) | 40 months postpartum | A trend level association was identified between the concentration of selenium in breast milk and the cognitive composite scores of infants on the BSID-III (rs = −0.09; p = 0.07), however this did not reach statistical significance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockyer, F.; McCann, S.; Moore, S.E. Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review. Nutrients 2021, 13, 3848. https://doi.org/10.3390/nu13113848
Lockyer F, McCann S, Moore SE. Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review. Nutrients. 2021; 13(11):3848. https://doi.org/10.3390/nu13113848
Chicago/Turabian StyleLockyer, Francesca, Samantha McCann, and Sophie E. Moore. 2021. "Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review" Nutrients 13, no. 11: 3848. https://doi.org/10.3390/nu13113848
APA StyleLockyer, F., McCann, S., & Moore, S. E. (2021). Breast Milk Micronutrients and Infant Neurodevelopmental Outcomes: A Systematic Review. Nutrients, 13(11), 3848. https://doi.org/10.3390/nu13113848